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The motion is considered of a non-conducting magnetic fluid with an internal angular momentum, due 
to self rotation of the molecules. It is assumed that the magnetization of the fluid and its internal 
angular momentum are proportional to each other. Because of the correlation of the translational 
(hydrodynamic) and rotational motions of the molecules on the one hand, and between the external 
magnetic field and the magnetization on the other, a complex interaction between the magnetic and 
hydrodynamic phenomena appears in liquids with the indicated magnetomechanical coupling. A com­
plete set of hydrodynamic equations, including the field equation and the equations of motion for mag­
netization, can be obtained on the basis of the conservation laws. The magnetization equation of motion 
is a generalization of the Bloch-Bloembergen and the Landau-Lifshitz equations. Stationary flow of 
fluid in a hydrodynamic tube with a circular cross section is considered. 

THE presence in the molecules of a fluid of rotational 
degrees of freedom leads to the result that, under the 
action of any type of orientation factor, an internal 
angular momentum is produced whose density K is con­
nected with the magnetization M by the relation 

M=J;K. (1) 

A similar type of dependence should hold for all fluid 
molecules; however, the specific nature of the coupling 
and the magnitude of the magnetomechanical ratio A will 
change from substance to substance. Evidently a strong 
effect should be expected in diatomic fluids, in the mole­
cules of which b-type coupling exists (according to the 
classification of Hund). 

For the indicated coupling between the magnetization 
of the fluid and the internal rotation, the external mag­
netic field is the reason for the orientation of the mole­
cules. Another reason for the orientation is the interac­
tion between the self rotation of the molecules and the 
hydrodynamic motion (with velocity v) of their centers 
of mass. l) It is then clear that, when a fluid (even a 
nonconducting one) moves in the magnetic field H, the 
latter changes the character of the motion. 

Account of the interaction between v, M, and H is 
connected with the significant change in the equations of 
hydrodynamics. Here, together with the field equations 
and the Navier-Stokes equation, which expresses the 
law of momentum conservation, we consider the equa­
tion of conservation of the total angular momentum, the 
volume density of which is composed of the ordinary 
angular momentum L = pr x v and the internal angular 
momentum K. The last equation reduces, by means of 
(1), to the equation of motion for magnetization. 

In this research, the hydrodynamic equations are 
derived by a phenomenological method, on the basis of 
the conservation laws, for a nonconducting fluid with 
coupled magnetic and characteristic mechanical mo­
ments. As an example, we consider stationary flow of 
the Poiseuille type. 

1> For X= 0, this orienting factor is shown to be unique. Such a 
situation was considered in [ 1 ]. 
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1. THERMODYNAMIC RELATIONS 

We introduce the local set of coordinates S' in which 
the velocity of the given fluid element is zero. This 
system rotates relative to the laboratory system S with 
an angular velocity n = ]'2 curl v. The volume densities 
of the total energy in the systems of coordinates con­
sidered are connected by the well-known relation l2 l 

E=E'+ (L+K)Q. (2) 

To find the thermodynamic quantities, we make use 
of the equations 

oE' 
- ijg-- = L + K, 

i3E' B H+4nM 
-OR= 4n = ~-4n-- (3) 

The derivatives here are taken at fixed values of the 
internal parameters K and M, the entropy, and the fluid 
density. In connection with the last formula, we make 
two observations. In carrying out the transition from 
one set of coordinates to the other, we transformed the 
energy but let H and M remain unchanged. Under the 
condition that an external electric field is absent, the 
transformation of the given quantities should have led to 
corrections of the order of (v/c)2 • Furthermore, no dis­
tinction is made here between the magnetic field in 
which a given molecule is located and the applied field 
H. Such an approach is a valid one, inasmuch as the re­
orientation and diffusion of the molecules in the fluid 
are so great that the local field evens out to a very 
small mean value. 

Integrating (3) and taking (1) into account, we get 

·E'= U0 (M)~M( H + ~) ~ ::-) I,dQ. (4) 

Equation (2) is conveniently rewritten in the form 

( pv• H•) 
E =\ -2-~ 8n +KQ + U, 

(5) 

by introducing into consideration the internal energy of 
the fluid, U, which includes the energy of hidden rota­
tion and of magnetization. For K = M = 0, the latter ex­
pression transforms into the usual 

pv• H• 
E= --~+ Uoo(p, s). 

2 8n 
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The minus sign in front of the second term is due to the 
fact that the independent variable in the thermodynamic 
potential E in our consideration is the field intensity H 
and not the induction B [see {3)]. Furthermore, we com­
pute the derivatives aEjaM from {2) and {5) and equate 
them. With account of (1) and {4), we have 

au= aUo(M) -(H ~.) 
aM aM + ;.. 

Integrating this equation and eliminating Uoo in Uo(M), 
we get 

U= U0 (M) -M(H+QIJ.). 

The magnetization of the fluid is always small. 
Therefore, we can limit ourselves to the quadratic term 
in the expansion of the isotropic function Uo(M) in even 
powers of the vector M: 

U=Uoo(p,s)+ M'-M(H+E_). {6) 
2x J. 

From the condition aujaM = o, we determine the 
equilibrium value of the magnetization to be 

M=x(H+QIJ.). {7) 

This value should correspond to the minimum energy of 
U. It then follows that x > 0, i.e., we have to deal with 
the unusual case of paramagnetism of the rotating mole­
cules ("hydroparamagnetism"). As is seen from the 
formula {7), the role of the effective magnetic field in 
such a medium is played by 

H'=H+QII.. 

For a motionless fluid, found in thermodynamic 
equilibrium, Eqs. {5) and {6) give 

E = Uoo(p, s) - JAJi2 I 8n (JA = 1 + 4nx). 

{8) 

It follows from the thermodynamic identity for the in­
ternal energy, 

dU = pTds + wdp + x-1 (M- xH')dM- MdH' (9) 

(s and w are the entropy and enthalpy per unit mass, 
T the absolute temperature), that the expression for the 
differential pressure p = pw - U is 

dp = -pTds + pdw- x-1 (M -xH')dM+ MdH'. {10) 

2. CONSERVATION LAWS 

For a phenomenological derivation of the equation of 
motion of a liquid in a constant magnetic field, we use 
the conservation laws for mass, energy, linear and 
angular momenta: 

ap I at+ div (pv) = o, 
aE I at + div Q = 0, 

a an;, 
Ot(pv;)+ ax, = o, 

a ac;,z at (L;, + K;,) + ---ai; = 0. 

(11) 
(12) 

{13) 

(14) 

Here Q, IIik• and Gikl correspond to the definition of 
the flux density of energy, linear and angular momenta, 
Lik = eiktLz, Kik = eiktKz. Another equation for the 
rate of change of the internal angular momentum and 
entropy must be added to the set (11)-(14). One also 
needs the field equation in a nonconducting medium: 

oK;, a 
~t +-0-(vzK;,)=j;,, 

o xz 

pT (~: +vvs) =F, 

rotH = 0, div (H + 4nM) == 0. 

(15) 

{16) 

{17) 

The unknowns in these equations are the dissipation 
function F and the antisymmetric tensor of the angular 
momentum density of the internal forces fik· It is con­
venient to express the latter in terms of the stress 
tensor aik• defined by the equality 

(18) 

From the definition of the tensor Lik = p{xek- xkvi), 
Eqs. (14) and (15), and also the equation of motion 

p ( OP; + v, ov,_) = OfJik - !!__, 
i)t ax, ax, ax; 

{19) 

we find, after simple calculations, [l] 

{20) 

Here gik z is the flux density tensor of the internal 
angular momentum. It is connected with the previously 
introduced tensor Gik z by the relation 

Equation {15), with account of {1) and (20), takes the 
form 

(21) 

The equations constructed from this scheme take on 
meaning if the form of the quantities Q, aik• gikl• and F 
entering into them is made clear. 

3. EQUATIONS OF MOTION 

We carry out the standard procedurel1' 4 l of the de­
termination of the unknown terms of the hydrodynamic 
equations. For this purpose, we find aEjat from Eq. (5) 
and use the identity {9). Substituting the time deriva­
tives of p and v from (11) and (19), we find 

i)i!~ =- ( ~ + w )div(pv)- pvV ~2 - vVp 

ocr;, as aM (22) 
+ v;-·-+pT-+x-1 (M~xH) -. ax, at at 

On the basis of the identity (10), the third term on the 
right side of (22) can be written in the form 

-vVp ='pTvVs- pvVw-J.-1vV(MQ) 
+ x-1 (M- xH) (vV)M- M(vV)H. 

The last component in this expression is transformed 
by means of the field equation (17):* 

{ 1 H2 } -M(vV)H=div -[H[vB]]-v--v(MH) 
4rt Srt 

We substitute all this in Eq. (22). Collecting in them the 
terms of the form div, and taking into consideration the 
equation of entropy growth (16), we find 

*[vB] =v X B 
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aE { ( v2 
) 1 lf2 } -=-div pv -+w --[H[vBJJ+v--+v(MH')-(va) at 2 4n 8n 

[ M 1 ( H2 )l av· +F- a;"+-(M-xH')i'l;,-- H,B.--Ii;• ~ 
X 4n 2 • _ ax, (2 3) 

[ aM; a l + x-' (M;- xll;) at+ ax. (v.M;) ... 

To write out the last term on the right side of (23), we 
must make use of Eq. (21), which gives 

x-'(M, -zH,)\aM;+~ (v.M;) J 
L Ut O.Xk _ 

Using the obvious relations 

(24) 

where 

(va) =· v;a;,, (M- xH, g) = (M;- xH;) g;,. 

Comparing Eq. (24) with the equation of energy con­
servation (12), we have 

( 
v2 \ 1 fl' 

Q=pv -+w) --[H[vBJ]+v-+v(MII') 
2 4n 8n 

'A 
-(va)+- (M-xH,g), 

X 

I. a . [ M M ' F = ---g,.,- (M; -xll;)+ a,.+- ( -xH )li;• 
X iJ~ X 

-- :n ( ll;Bh- ~ li;, ) J [ ~~;• + ~ (M;•- zll;>) J. 

(25) 

(26) 

For what follows, it is convenient to symmetrize all 
the terms in Eq. (26). Taking into account the definition 
of the angular velocity vector 

and introducing the notation 

(27) 

we get for the symmetric and antisymmetric parts of 
the stress tensor 

(28) 

By virtue of the law of entropy growth, the dissipa­
tion function should be positive. The most general ex­
pression for A, Sik• and gik then are as follows: 

2'AA = - 'A[MH]- 'Av [MH'] + ~ (M - xH') 
t 

+ ~ [M [MH'] + -~ M (M, M- xH'), 
M2 M2 

From the symmetric part of the stress tensor, we 
separate the tensor 

( av; av. 2 au,\ av, 
x;•=TJ ~+---b;.- +sb;.--. ax, ax; 3 ax, I ax, 

(29) 

which characterizes the viscous stresses in the ordin­
ary fluid. It is easy to establish the fact that for the 
given choice of unknown quantities the dissipation func­
tion will be a quadratic form, to guarantee the positive 
nature of which we must satisfy the conditions 

(32) 

The term with the coefficient v does not make a contri­
bution to the dissipation function and therefore the sign 
of v remains undetermined. 

We now write down the equations of hydrodynamics 
with internal rotation and magnetic moment. Substitu­
ing the resultant values of aik• - 2Aik = aki - aik• and gik 
in (19) and (21), we obtain the equation of motion of the 
fluid: 

p [ ~: +(vV)v] =- v[ p +: (M- xH')] +(MV)H 

+ [ + x(1+a'<) ].1.v+ [s+~- x(1+at)] Vdivv 
11 4'Azt ,_ 3 4'Azt 

+ - 1- [1 + ~t +(a- ~)'<X (MH') J rotM 
2'At MZ 

- x(a-~) [M V (MH') ]-2'-rot[MH'] 
2'A - ' MZ 2 

and the equation of motion for the magnetization 
aM 
at+(vV)M = 'A(1 + v){MH1- [M!l] 

1 , ax ~ , 
-:;(M- xH )- MZ [M[MH']- M2 M(M,M- xH) 

-D1 rotrotM + DzV divM- M divv, 

where we have used the notation 

D, = '1'1 + '\'s, D, = J.t(y, + 4yd3) 

(33) 

(34) 

(35) 

for the coefficients of the "transverse" (D 1 ) and the 
''longitudinal'' (D2 ) diffusion of the magnetic moment. 
The complete set of hydrodynamic equations also in­
cludes the field equation (17), the continuity equation (11) 
and the entropy growth equation (16). 

In the determination of the equations of motion, we 
assumed the magnetic field to be constant in time. The 
same is not assumed in the calculation of the electric 
field which would arise as the result of induction from 
the variable magnetic field. Furthermore, the equations 
used previously are also valid for the variable H for not 
too high rates of their change. In fact, as shown inlal, 
Sec. 60, the induction effects are unimportant if 

w'<x(c i l)', (36) 
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where w is the rate of change of the magnetic field and l 
is a characteristic dimension of the plane in which the 
fluid moves. 

The dissipation terms in Eqs. (33) and (34) contain 
seven independent kinetic coefficients: besides the usual 
coefficients of shear (17) and bulk (/;) viscosities, there 
are also three coefficients a, {3, and T of magnetization 
relaxation, and two (D1, D2) of diffusion of the magne­
tization. The coefficient of rotational viscosity 
x(1 + aT)/4A2T in Eq. (33) is expressed in terms of the 
kinetic coefficients a and T and the thermodynamic 
parameters x and.\.). The coefficient .\.(1 + v) in (34) 
has the meaning of the effective magnetomechanical 
ratio. However, it must be expected that v is close to 
zero, inasmuch as no direct physical mechanism is 
evident which could lead to the renormalization of the 
magnetomechanical ratio .\.. 

The sum of the relaxation terms in the equation for 
the magnetization (3 4) is equal to 

M [ (MH') ] xH' 
-- 1+~•+(a-~)-rx-- +-(1+a.). 

't • 't 

(37) 

From the ratio between the coefficients a, {3, and T we 
find which terms in the last expression are important. 
If 

(38) 

then it suffices to keep in the equations for the magne­
tization of the three relaxing terms only the first, which 
is proportional to T- 1, setting a= {3 = 0. In this case, 
Eq. (34) can be regarded as the hydrodynamic general­
ization of the modified Bloch equation (with a single re­
laxation time equal to T). In the other limiting case, 

(39) 

the important term is that with the coefficient a, i.e., 
we obtain the hydrodynamic analog of the Landau­
Lifshitz equation. 

The equation is materially simplified if the fluid can 
be regarded as incompressible, and Eqs. (38) and v = 0 
are satisfied. 

divv = 0, div (H + 4nM) = 0, rotH= 0, (40) 

p [~: +(vV)v ]=- V [p + : (M -xH')] +TJe~v 

+ 2:, rotM+(MV)H, (41) 

oM +(vV)M = A.[MH]-_!(M -xH')-D1 rotrotM+DzV divM. (42) at -r 

Here we have introduced the notation 

T]e =T] + x/4A.2; (43) 

for the sum of the coefficients of shear (17) and rotational 
(x/4.\.2T) viscosity. 

The equations obtained in this section permit us to 
consider a broad range of problems, in which the mag­
netomechanical effects can be seen to be important. In a 
medium with the investigated properties, the greatest 
physical interest attaches to nonstationary processes of 
various sorts. Their study lies outside the framework 
of the present paper and will be treated elsewhere. A 
simple stationary solution is given below for the system 
of equations (40)-(42) corresponding to cylindrical 
Poiseuille flow of an ordinary fluid. 

4. STATIONARY FLOW IN A CHANNEL 

Let us consider the stationary motion of a fluid in a 
long, cylindrical channel of circular cross cut in an 
infinite solid. A constant and homogeneous magnetic 
field H0 is directed along the axis of the channel (the 
z axis). We transform the dimensionless variables, 
choosing as a unit of length the radius of the channel R, 
the unit of field Ho, the unit of velocity 1/e/PR, and the 
unit of magnetization 2.\.T7]~pR2 , and introduce the nota­
tion 

• __ pRa ( _ iJ[J_)' ~ - wo=A.-rHo, 
4T]." oz (44) 

y = x/4A.Z;TJe, 6 = ;D,f R2, N = 8:n:(A.•TJe) 2 / f.LPR2 

for the dimensionless parameters which characterize 
the properties of the fluid, the pressure gradient, and 
the value of the applied field (wo is the dimensionless 
Larmor frequency). 

At first, we shall consider the case in which the ex­
ternal magnetic field is absent (wo = 0). In this case, we 
can show the exact solution of Eqs. (40)-(42), in which 
the velocity is parallel to the channel axis (vr = vcp = 0, 
Vz = v(r)), while the magnetization has only the cp com­
ponent Mcp = M(r). The latter arises from the presence 
in the flow of a vortex v which creates a magnetic field 
H', similar in its geometry to the field of linear flow. 
For the indicated v and M, Eqs. (40) are satisfied iden­
tically, and (41) and (42) give 

M' M 
e = const, (rv' + rM)' = -4er, M + yv'- 6 ( M" +--;:-- -;:2) = 0. 

(45) 
The velocity and magnetization of the fluid should re­

main finite over the entire cross section of the channel, 
including its center, and should satisfy the boundary 
conditions 

v(1) = 0, M(1) = 0 (46) 

on the surface of a solid non-magnetizable mass. The 
latter condition requires explanation. Inasmuch as 
M = 0 in the bulk material, the value of M(1) is equal 
to the jump in the cp component of the magnetization at 
the interface between the liquid and the solid. This jump 
determineslsl the surface current density gz = -cM(1). 
Thus the total surface current strength- 27TcM(1), which 
flows through the cross section of the channel, should 
differ from zero at M(1) 1 0~ which is impossible in a 
non-superconducting body. [aJ 

Solving Eq. (45) with the boundary conditions (46), we 
find 

v(r) =-8-{1-r"-~[/o(k)-/o(kr)] )f' 
1-y klt(k) 

M(r)= 2ye[r-/,(kr)J k•=1-y (47) 
1-y / 1(k) ' 6 

(In is a Bessel function of imaginary argument). Return­
ing to dimensionless units, we write out the formula 
which determines the discharge of fluid in the channel: 

q = _ npR• op [ 1 _ 4Yf Io(k) __ 2 )] (48) 
8TJ oz k \ / 1 (k) k ' 

This expression can be interpreted as the Poiseuille 
formula 

:n:pR• ap 
q = - 8T] (R) oz (48') 

in which, however, the viscosity coefficient now depends 
on the radius of the channel: 
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In the limiting cases ~R-- 00 (wide channel) and 
~R -o (narrow capillary) we get 

TJ(oo) = T], TJ(O) = T]e, 

(49) 

i.e., the effect of the rotational viscosity 11e- 11 on the 
motion of the fluid is the greater the narrower the 
capillary. For intermediate values of k = ~R, we have 
11e > 1j(R) > 1j, so that the relative discharge of the fluid 
q/R4 increases monotonically with increase in the rad­
ius of the channel. 

In the presence of an external field (wo f 0), the non­
linear terms in Eqs. ( 41), ( 42) do not vanish identically, 
and it is not possible to find the exact solution of the 
problem. We shall carry out an approximate stationary 
solution of the set (40)-(42), which is valid for small 
pressure gradients (E « 1) in the absence of diffusion 
of the magnetization (D1 = D2 = 0). We seek a solution 
of the following form 

y 

M 
H 

r 
0 

M,(r) 

H,(r) 

'P 
u (r) 
M~(r) 

0 

v (r) 
Mo+m(r) 

Ho 

From the equation for div B, we find 

ooollr + NtJ.Mr = 0. (50) 

The projection of Eq. (42) on the direction r gives, with 
account of (50), 

oooM~- f!.Mr = 0. (51) 

Eliminating Hr and Mr from the remaining equations of 
the system by means of (50) and (51), we obtain 

oooN 
(rv' + rM~)' +- rm'M~ =- 4er 

2:rt 

[m- (ru)' /r]' = 0, Mo= 4:rtxooo/tJ.N, 
(52) 

For small E the solution of these equations with the 
boundary conditions v(1) = u(1) = 0 can be sought in the 
form of a series in powers of E: 

{~~} = e {;;J +e•{;;.} + ... , 

{ :}= e•C: }+ e•{ ::}+ ... . 
After simple calculations, we get, with accuracy to E2 , 

1 +ooo2 2syr 
v(r)=e1 2 (1-r"), M~(r)= , 

+ ooo - y 1+(1)o"- y (53) 
s"y"N (l)o 

u(r)=- 1-y (1 +ooo"-y)"r(1-r2), 

2e2yZN ooo 
m(r)= 1-y (1+(1)o"-y)"(2r2-y). 

As is then seen, the fluid, moving along the channel 
under the action of the pressure gradient, begins to ro­
tate in the presence of an axial magnetic field. The 
trajectories of each element of the fluid are helices with 
a pitch 

L= 2:rtr v(r) = 2:rt(1-y) (1 +(1)o2) (1 + oo0"-y) 
u(r) eoooY"N 

that does not depend on the radius ("solid helix"). 
The dependence of the cp components of the velocity 

on Wo has a resonance character: u passes through a 
maximum at w~ = (1 = y )/3. It is explained by the fact 
that in the absence of a field (wo = 0), there is no reason 
for generating rotation of the fluid, while in very strong 
fields (w 0 - 00) the coupling between v and His disrup­
ted. In this case, only one of the three magnetization 
components remains: Mz = Mo, i.e., the fluid is homo­
geneously magnetized along the axis of the channel. It 
must also be noted that the direction of rotation of the 
fluid does not depend on the sign of the pressure grad­
ient and is determined exclusively by the direction of 
the applied field: the mean values of Uz and wo over the 
crosssection of the channel have different signs. 

In conclusion, I express my deep gratitude to V. M. 
Zal'tsev for valuable advice, G. V. SkrotskU' and G. Z. 
Gershuni for discussion of the results. 
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