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It is shown that the interrelationship of various three-plasmon interactions (one or two waves simul­
taneously participate in at least two three-plasmon interactions) may require an appreciable reevaluation 
of the efficiency of some nonlinear processes previously obtained and leads to qualitatively new effects. 
Thus, owing to the interrelationship between three-plasmon interactions, multiplasmon decay instabilities 
may arise already in the first order of perturbation theory with respect to the number of quasiparticles 
of the turbulent state. A characteristic feature of multiplasmon instabilities of the indicated type is the 
excitation of frequencies which may be smaller or larger than the initial ones. The influence of dissipa­
tive effects on multiplasmon decay processes is investigated. It is shown, in particular, that even in 
weak coupling all the coupled waves may grow at the linear instability increment of one of them. The 
smallness of the coupling constants determines only the relation between the intensities of the bound 
waves. 

As is well known, nonlinear processes play an import­
ant role in different physical phenomena occurring in a 
plasma (dynamics of instability development, radiation, 
propagation of intense electromagnetic waves), in solids 
(nonlinear optical phenomena), etc. Most papers de­
voted to nonlinear wave interactions (see, for example, 
the reviews[1 - 5 J) contain in the main only qualitative 
estimates of the efficiency of the individual ternary 
wave interactions, and usually pay no attention to the 
mutual interaction of certain processes. 

The purpose of the present paper is to show that the 
interrelationship between different nonlinear processes 
in a turbulent plasma can lead to qualitatively new ef­
fects and can significantly alter the earlier estimates. 1 > 

We investigate here a frequently encountered situation, 
when one or two waves participate simultaneously in 
two three-plasmon interactions. Let us consider a 
simple example. 

It is known[7 , BJ that the confluence of two Langmuir 
waves leads to radiation from a turbulent plasma at 
frequencies on the order of 2 Woe ( w0e -electron Lang­
muir frequency); this phenomenon has been distinctly 
recorded both under astrophysical conditions[9 , 10 J and 
in the laboratory. [llJ The intensity of such a process, 
according to theoretical estimates[7 ' BJ obtained under 
the assumption that there are no other nonlinear proc­
esses to influence the given process, is relatively 
small. 2 > However, if there are other nonlinear proc­
esses, such as decays, which proceed very rapidly, and 
if in addition some of the wave indicated above partici­
pate in them, the situation may change. Simultaneously 
with the waves excited by the decay, there can be ex­
cited also a transverse wave with an increment deter­
mined by the fast decay process. In other words, the 
confluence intensity is greatly increased. We indicate 
for concreteness that in a non isothermal plasma (T e 
» Ti) it is possible to have a rapid decay of a Lang­
muir wave into a Langmuir and ion-acoustic wave, and 

1lconceming the interaction of waves with fixed phases see also [6 ]. 

2> At the same time, at a sufficiently high level of turbulent pulsations, 
the radiation due to wave confluence only can be appreciable. 

this decay initiates intensive confluence of the Lang­
muir waves into a transverse one. 

We emphasize that the excited waves (Langmuir, ion­
acoustic, and transverse) increase with a common in­
crement, and furthermore one of the excited waves, the 
transverse one, has a frequency larger than the fre­
quency of the initial Langmuir wave. 

The foregoing example illustrates the general situa­
tion which arises not only in a plasma but also in non­
linear optical media. 

1. DECAY INSTABILITIES WITH EXCITATION OF 
THREE PLASMONS 

A. The decay of one wave into three, or of two into 
two (called four-plasmon interaction) has been consid­
ered in a number of papers. [12- 14J The probabilities of 
such transitions are usually smaller than the probabili­
ties of three-plasmon processes. 

We shall consider cases when simultaneous excita­
tion of three waves by one initial wave is due not to 
four -plasmon interactions, but to the mutual coupling of 
two three-plasmon processes. Without specifying con­
cretely the types of the waves, we investigate in general 
form the case when four waves participate in the follow­
ing three -plasmon processes: 

(1.1) 
where ki = {kb w}-four-vector of the i-th wave. 

Let the intensity of the wave ko be much larger than 
the intensities of the other waves. We shall show that 
all three waves (k1 , k2 , k3 ) can be simultaneously ex­
cited upon decay of the wave ko· (We emphasize, that 
we are considering here only three -plasmon processes.) 
It is seen from (1.1) that the frequency w3 is larger 
than the frequency of the initial wave w0 • For the sake 
of simplicity we shall consider the case when the waves 
ko constitute a one-dimensional packet of waves,3 > that 

3>The smearing of this packet over the directions, as a result of the 
reaction of the excited waves on the initial ones, is a slow process. It 
occurs within times much longer than the times of interest to us. 
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is, N(ko) = N0 (koll)o(ko1 ) (where N(ki) is the number of 
waves whose wave vectors lie in the interval between 
~ and ki + dki , and ko1 is a vector perpendicular to 
the direction of propagation of the wave packet). Then 
the wave kinetic equations describing the processes 
(1.1), take the form[SJ 

( a ) Wo12 (k1; - ku_, k~1 :- k111; kou, 0) - + f 1 N 1 (k•l = -:--:----:~--'--::--=----c"-~:-"'------"--'-
at 1 awoNkou- aw,(- ku_, kou- k,uJ Nk~1l 

X No(kou)[Nt(kt) + N,(- ku, kou- k1ull 

+ wa10 (k1; k011· 0; ku, kou + k,u) 

I awol akO!I- awa (ku, kou + ktll) I akoul 

X No(k~I)[Na(ku_, k011 + k1u)- N1 (kt)], (1.2) 
;a \ \Tt + f, JN,(- ku_, k~ 1 - k111 ) 

wo12(kl;- ku_, k011- k111; k011• 0) 

1 awolakou- aw, (kou- k,u,- kul lak~il ka ~-ku . k211 ~k.11 -k ,11 

X No(k~I)[N, (kt) + N,(- ku, k0u- kt~~)J, (1.3) 

( :t + fs )Ns(ku, ~I+ k1u) 

wa'0 (k,; kou, 0; ku_, kou + k,u) 

I awolakou +awl (koil + kall, ka_L) /{)~II k3_l_ ~ku_' kall ~h Oil +kill 

X No(kou)[NI(kl)- Na(ku, kou + k,u)]. (1.4) 

In (1.2)-(1.4) we have introduced the following nota­
tion: ri -decrements (increments) of the. correspond­
ing waves in the linear approximation; wls(kj; ks; ki) 

-probability of decay of the wave ki into the waves kj 
and ks; Ni -number of waves of type i; ko11-solution 
of the equations 

Wa(ktll + k011; ku_) = Wo(kOII• 0) + W1 (kt), 
(1. 5) 

Assuming that N0 is constant, the solution of the 
system (1.2)-(1.4) is 

a 

N;(t) = ::8 Nj") e'a1, j = 1,2,3, (l.H) 
a:=t 

where v a are the roots of the dispersfhn equation 

(v + ft) (v + f2) (v +fa) + (v + ft) (v + f2) Wa1 (1. 7) 
- (v + ft) (v +fa) W21 + (v + f2) (v +fa) (w1a- Wt2) 

- (v + f1) W2tWal- (v + f2) WatWt2- (v +fa) WtaW21 = 0. 

Here 

w,l I awo - awl I = wl21 awo - aw,(-ku; kou- kill) I 
akOll akOII I akou akou 

== Wo12 (kl; -ku, kou- k111; kou, O)No(kou), 

I ow, awo I I awo awl I W13 ----- =wal --+--
akou akou ak011 akou. 

= Wa01 (k1; kJ11), 0; k111+~h ku_)No(kou). 

B. Let us consider a case when the nonlinear build­
up or attenuation of the wave are small. Then the solu­
tion of (1. 7) is 

v1=0, 
'V2 = 1/,(w21 + w,,- w,,- wat) 

(1. 8) 

-J-1f.((w21 + W12- w1a- Wat) 2 +4(w,,w,a+ Wt2Wa1 + w,,wa,)J"•, (l.H) 
va = 'f,[w" + w,,- w,a- wat] 

- 1/,r(w,, + w,,- w1a- wa,) 2 +4(w21 wla+ w12wa, + w,lwa,)]''•. 
(1.10) 

As seen from (1.9), v 2 always gives an unstable so­
lution. However, the feasibility of such an instability 

calls for a special analysis. It will be shown below that 
such a possibility is always realized in the absence of 
linear damping (growth). We shall now consider differ­
ent limiting cases of (1.9). 

If the process ko- k1 + k2 is fast, that is, if W21 and 
W12 are much larger than W31 and W13, then 

(1.11) 

All three waves build up with this maximum increment. 
The following relations, which can be derived from 
(1.2)-(1.4), are established in this case between the 
spectral energy densities of the different waves Ij 
= (2rr)-3Nj Wj for the timet> 1/v2 

Ia WatWa 
/;~ (w12+w,1)w1 

(1.12) 

If the process ~- ko + k1 is the faster one (w 21 and 
w 12, W31 and w 13 ), then 

or the growth increments of all three waves is of the 
order of v 2, and the intensity ratio is of the form 

I, (w1a+wa1)W2 

I;~ W;uUh 
(1.13) 

In this case (at frequencies that do not differ greatly) 
the intensities of all waves are of the same order of 
magnitude, and the growth time of the waves is charac­
terized by the time of the slow process. 

Let us stop to prove that the instability defined by 
(1.9) always takes place. To this end it is necessary to 
show that if at a certain initial instant of time t = 0 all 
three Nj are positive, then in all the succeeding in­
stants of time any Nj is positive. 

From (1.2)-(1.4) we have 
Nl1> = -N~'> = N,<1>, 

N~2>=~Nf>, N~2>=~N,C'>, 
"' - w,1 "' + Wa1 

Ni">=~M3>, fla'>=~-N,ca>_ 
va-w21 va+wa1 

(1.14) 

(1.15) 

(1.16) 

From (1.15) we see that if N~2 > > 0, then N~2> and N~2> 
are also positive, since v2 >W21· It follows from (1.14) 
and (1.16) that certain of the Nt and Nt have differ­
ent signs. Further, we can express N~a > in terms of 
the values of Nj at the initial instant of time (Nj(O)): 

• .<2) N 1 (0) (v2 + wa1) (v2- w,1) N,(O) (v,+wat) (v,-w21) (w,,-va) 
lVi = +-~-'--,--

vz(v,- v3) v2(v2 -- va) (w21 + w31) 

Ns(O) (v2+ wa,) (v,- w21) (va+ wat) 
(1.17) 

v,(v,- va) (w21 + Wat) 

(J) N1 (0) (v3-w21 ) (v3+wa1) N,(O) (w,,-va) (v,-w21) (va+Wat) 
N, =- . ·---

v3(v2- va) va(v,- va) (w21 + Wat) 

N 3 (0) (w21 - v3) (v, -1:._11':'2_(:-.:_+ w,,)_ (1.18) 
va(V2- v,) (w, + w,,) 

N?>=N1(0)-Ni'>-Nf'>. (1.19) 

Recognizing that I v31 > W31 and v3 < 0, we find that for 
any initial distribution of the wave numbers we have 
N~2> > 0, and consequently the remaining two solutions 
can develop against the "background" of the unstable 
solution. 

It is necessary that the intensity decrease due to 
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these solutions cannot lead to negative values of Nj. To 
this end it is sufficient to prove that the Nj (t) curves 
have no points of tangency with the t axis. The point t0 

at which a tangency might take place is determined by 
the vanishing of one of Nj (t) and its derivative 3Nj (t)/at. 
This gives two relations. For example, for N3 (t) these 
relations are of the form 

NUl 
vato = In {- 1 Vz } , 

N~3l(vz- v 3) 

From (1.20) it follows that the following inequality 
should be satisfied 

(1.20) 

(1.21) 

Substituting (1.17) and (1.18) in (1. 21) we verify that the 
inequality (1.21) is not satisfied, that is, there is no 
point of tangency. A similar analysis leads to the con­
clusion that there are no tangency points for N 1 (t) and 
N 2(t). 

We have thus shown that in the case under consider­
ation, for arbitrary initial conditions and relations be­
tween the probabilities wij of the different processes, 
an instability takes place with an increment (1.9). We 
emphasize that the relations between the intensities of 
the oscillations (1.12) and (1.13) are amenable to ex­
perimental verification. 

2. MULTIPLASMON DECAYS AND RADIATION FROM 
A TURBULENT PLASMA 

Almost-one-dimensional broad packets of Langmuir 
waves frequently arise in the development of two­
stream instabilities. We are interested in the process 
whereby the Langmuir waves are transformed into 
transverse ones, leading in final analysis to radiation 
from the plasma. Using the results of the preceding 
section, let us consider the following processes 

l~l'+s, 1(0) ~1'(1) +s(2), 

t~Z+I', t(3) ~1'(1) +1(0). 

(2.1) 

(2.2) 

t, l, and s are respectively the transverse, Langmuir, 
and ion-acoustic waves (Te » Ti). 

We note that in the absence of the process (2.1) the 
process (2.2) is equivalent to transformation of Lang­
muir waves into transverse ones on thermal Langmuir 
fluctuations (see, for example, c15 l ). This is connected 
with the fact that the process of coalescence of Lang­
muir waves (2.2), can occur only for waves propagating 
in almost mutually opposite directions. 4 J Therefore one 
of the confluent waves should be a fluctuation-thermal 
wave. On the other hand, if process (2.1) is "turned 
on," then (2.2) proceeds in a different manner. First, 
in the process (2.1) the excited l' wave propagates in a 
direction opposite to the direction of the propagation of 
the initial l wave, that is, the radiation power increases, 
since (2.2) represents coalescence of two superthermal 
waves. Second, owing to the mutual coupling between 
(2.1) and (2.2), the fast rate of the process (2.1) also 

4)This takes place when w 00 /kc <<I where w 00 is the electronic 
Langmuir frequency. We henceforth put c = I for the speed of light. 

leads to an increase in the plasma radiation power. 
To describe the three -plasmon decay (2.1) and (2.2) 

we shall use the expressions for the probabilities of the 
processes (2.1) and (2.2) (see c5 , 7 • 8 • 16 • 17 l ): 

e2 v m. (kok,) 2 

w012 (k,, kz, ko) = 16 2 -lkzl-k 'k 2 ' 
n:me VTe mi o 1 

e2 ( k02 - k,2 )[kok,)2 
wa10 (k, ko, ka)= · 16 k 'k 2k 2 • 

1t(OOe 3 0 1 

(2.3) 

(2.4) 

From the laws of conservation during the decay it 
follows that the decay (2.1) is possible if 

1 <Uoev m. 
lkol>-- -==komin· 

3 VTe mi 

For simplicity let us consider the limiting case 
I ko I » ko min• when all the results can be written in 
simple form. With the aid of (2.3) and (2.4) we get 

(2.5) 

e2 y3ro0.'- ku.Z ku.2 

Wts= 6 2 2 No(lk,ui); 
nffioe me 

y3ro(le2- kJ. 2 
w,, = 2 w12, Wat = 121 ktnl vr.Z w,a. (2.6) 

From the conservation laws in process (2.2) it follows 
that k11 < w0el/3, which is much lower than k1 11 • 
Therefore in (2. 5) and (2. 6) k11 is negligibly small 
compared with k1ll· If vph « VTe(9me/mi) 112 

(vph = W0e/ I k111 I), then the wave growth increment is 
determined by (1.11): 

(2.7) 

By way of an example let us consider the spectrum 
of the Langmuir oscillations excited by a beam expand­
ing in velocity space as a result of quasilinear relaxa­
tion by an amount ~v0 , that is, 

0, (2.8) 

where ~k is k- w0e/v0 > 0; n1 is the beam density and 
v0 is the beam velocity. Substituting (2.8) in (2. 7) we 
get 

(2. 9) 

The ratio of the intensities of the transverse and longi­
tudinal waves has in accord with (1.12) the form 

16y~vr.Sku.2 l'3wo.'- ku2 

3rooe" 
_!,_ =V m, Vre. (2.10) 
It• mi vo 

With the aid of (2.10), let us estimate the integral 
intensity of the transverse waves: 

r r v mi ku'l'3wOe2-ku2 
J I,dka= 16n J d(ku2 )dktli!Jre5 - 3 lz(k,) 

me Woe 

The ratio a of this intensity to the intensity of the radi­
ation resulting from the transformation of the Langmuir 
waves on the thermal fluctuations is 
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where n0 is the plasma density and ND is the number 
of particles in a sphere having the Debye radius. 

3. DISSIPATIVE NONLINEAR INSTABILITIES 

With the aid of (1. 7) we can investigate the instability 
of a system of coupled plasmons for intensive dissipa­
tive processes. Let r1 greatly exceed all the Wij, and 
let r2 and r 3 be close to zero. Then the approximation 
solution of (1. 7) is 

v, = -r, + Z(w21- Wat) + (w,2- w,,), 

v2 =lw2,(1 + w,21r,), 

va= -w,,(1- w,,jr,). 

(3.1) 
{3.:2) 
(3.3) 

We emphasize that the waves which would be strong­
ly damped in the absence of nonlinear effects become 
unstable in the presence of even weak nonlinearities 
(solution (3.2). 5> The wave intensity ratios assume the 
following asymptotic form (for t » 1/w 21 ) 

I 3 w3w31 

T. = w, (w21 + w,1)' 
{3.4) 

On the other hand, if wave 1 is unstable in the linear 
approximation {that is, r 1 < 0), then all three waves 
build up with a linear increment -r1 as a result of the 
nonlinear coupling between the waves. Thus, the proc­
esses of nonlinear spectral energy redistribution occur 
within times that are determined by the linear incre­
ment. The nonlinear coupling coefficients determine 
only the wave intensity ratios, which take the form 

I. W2W2! I 3 w31w3 

1,= -r,w, {3.5) 

If intense absorption or buildup take place for wave 2 
(ri ~ r3 ~ 0), then the roots of {1.7) are 
v1~ -r2, 
v2 = 1/z(w,2- w"- w13) + 1/.[ (w,2- W31- w1,j2 + 4w31 w12] 'h, 

Va = 1/2(W12- W31- Wta)- 1/2[ (W12- W31- W13) 2 + 4w31 w12]'i•. 
(3.6) 

In the case of strong damping of wave 2, the intensity 
ratios of the unstable solution are 

I 3 w3,wa 
7;= (v2+w31)w, 

(3. 7) 

In (3. 7), V 2 is determined by {3.6). 
For the example considered in the preceding section, 

we find that even in the region of strong damping of the 
ion-acoustic waves, namely if 

(3.8) 

(see Cl6J ), the buildup of all the waves has an increment 
w12 which amounts to% of the increment (2.9), and the 
intensity ratio determined by {3. 7) takes the form 

I, n1v03 i2ii 
Tz, = 12novre3 ' 

(3.9) 

5l A wave buildup effect of this type, in the presence of damping, was 
considered for a somewhat different case in [ 18 ]. 

We note that by virtue of (3.8) the intensity ratio I2/I1 
determined by {3.9) is always smaller than this ratio in 
the absence of strong damping (see (2.10)). 

Finally, if strong dissipation (or buildup) takes place 
only for the wave k3, then the solution of (1. 7) can be 
written in the form 
"'1 = -ra, 

v2 = 1/2(w2, + w,2- w") + 1/2[ (w21 + w,2- w13) 2 + 4w,,w2,]'1•, (3.10) 
va = 1/2(w21 + w12 ~ w") - 1/2[ (w21 + W12- W13) 2 + 4w"w2,]'1•, 

and we get for the intensity ratio 

I2 w2w21 I, w,w" fa < O. ) 
-r;- ro1(v2-w21)' 1:= (-f3)w,-, (3.11 

In conclusion we note that the concrete example pre­
sented by us covers by far not all the possibilities of 
the manifestations of the effects considered here. These 
effects are particularly important for a magnetoactive 
plasma, since the presence of a large number of 
branches leads to the possible occurrence of various 
nonlinear couplings. 
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