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We consider the spin waves and correlation functions in a Heisenberg ferromagnet in the complete 
temperature range below the transition temperature Tc. We find the damping of the spin waves and 
show that the damping is small for all T < Tc for long wavelengths. The damping increases with 
increasing temperature and the range of wave vectors for which the damping is less than the frequency 
tends to zero as T - Tc. We give expressions for the correlation functions of the longitudinal and 
transverse spin components as functions of the wave vector, frequency, temperature and magnetic 
field. 

1. INTRODUCTION 

Q NE usually assumes that spin waves exist in a fer
romagnetic only at low temperatures T << Tc and that 
"the concept of spin waves completely loses its mean
ing"[)] at temperatures of the order of Tc. This point of 
view is connected with the fact that as the transition 
temperature is approached the number of spin waves 
and the fluctuations in the moment cease to be small so 
that the damping of the spin waves must increase. 

We show in the present paper that, nevertheless, the 
damping of long-wavelength spin waves remains small 
for all temperatures below the critical one in a Heisen
berg ferromagnet. We obtain for the ratio of the damp
ing of a spin wave with wavevector k to its frequency 
an expression of the form k3f1 ( T) + k2f2 ( T ). The co
efficients f1 and f2 increase when T c is approached 
so that the range of k for which spin waves exist 
shrinks. However, if k2 < ( 1 - T /Tc) a where a is a 
number of order unity the relative damping is small 
and spin waves exist right up to T = Tc. 

This result is connected with the fact that long
wavelength spin waves are simply small oscillations 
in the direction of the total moment of the system. 
However complicated the structure of the system, the 
rotation of the average moment as a whole does not 
change the energy of the system, when there is no 
magnetic anisotropy, and, especially, does not lead to 
dissipative processes. Therefore, both the frequency 
and the damping of the spin waves tend for all T to 
zero with k and it seems natural that then the damping 
tends to zero faster. 

We do not take into account in this paper relativistic 
effects of the magnetic interaction or anisotropy. In 
most ferromagnetics they are small compared with the 
exchange interaction and can influence the damping of 
only the very long wavelength spin waves, for instance, 
the width of ferromagnetic resonance. For spin waves 
with microscopic wave lengths these effects are 
usually small; quantitative criteria are given in the 
Conclusion. 

We use the previously-developed temperature-de
pendent diagram technique. [2 J We obtain a general 
expression for the correlation function of the trans
verse spin components K·+- as function of k, the fre
quency w, the temperature T, and the magnetic field 
H. For a large interaction range r 0 this expression is 
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valid everywhere below Tc, except in the immediate 
vicinity of the transition point Tc - T ::S Tcr06, J.L}I 
$ Tcr(t At low temperatures the results are valid for 
all ro. We show, in particular, that the dependence of 
the spin wave spectrum on T and H leads by no means 
to a similar dependence of the average moment. In the 
low temperature range the results are the same as 
those given earlier [1, 3 • 4 ] and generalize them. 

We study also the dependence on k, w, T, and H of 
the correlation function Kzz of the longitudinal spin 
components. We find that in the range of small k the 
most important contribution to Kzz is connected with 
the presence of spin waves. We obtain an expression 
for this contribution, valid for all temperatures below 
Tc. Near the critical point this contribution is appre
ciably larger than the contribution from static fluctua
tions described by formulae of the Van Hove-de 
Gennes-Villain type [s,s] and has a different dependence 
on k, w, and T. We discuss the possibility of an ex
perimental verification of the results, in particular 
in experiments on the critical scattering of neutrons. 

2. THE CORRELATION FUNCTION OF THE TRANS
VERSE SPIN COMPONENTS 

We consider an ideal Heisenberg ferromagnetic with 
Hamiltonian 

ie = -flH~Sr'- ~ ~ V(r-r')SrSr'· (1) 
r r=t=r 

Here Sr is the spin operator of the atom which is as
sumed to be fixed in a site of the crystal lattice, and 
r is the coordinate of the site. V ( r - r ') is the ef
fective potential of the interaction between the spins, 
H the external magnetic field, directed along the z 

axis, and iJ.S the magnetic moment of the atom. 
In a previous paper [2] , referred to in the following 

as I, we suggested a temperature-dependent diagram 
technique to describe systems with spin-spin interac
tions. We showed in I that the correlation function of 
the spins can be written in the form (see I (13)): 

Kar(k, iwn) = :6eik(r,-r,); f eiwntdt (i'(Sr,'"(t)- (Sa)) 
r, ~ -~ 

x(Sr,"(O)-(Sr)))= ~ar(k,iwn) ' 
1- ~Vk~ar(k, rw,) (2) 

where the index pair ay takes on the values +-, - +, 
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or zz; 

~ay is the irreducible self-energy part. We showed 
that in the first approximation in the self-consistent 
field 

The quantities y and b ( y ) are defined by Eqs. I ( 3 ) 

and I ( 5): .y = ~(Vo<s•> +!ill), 

(3) 

SpS•exp (yS•) ( 1) ( 1) 1 y (4) 
b(y) = = S+- cth, S+- y--cth-

Sp exp (yS') 2 \ 2 2 2 ' 

and in the first approximation taken in (3), the depend
ence of y on H and T is determined by Eq. I ( 4) 

<s•> = (y- ~!ill) I Wo = b(y). (5) 

The excitation spectrum is determined by the poles 
of the analytical continuation K ( k, w) of the correla
tion function K(k, iwn).C7 • 8J Replacing in the second 
Eq. (3) iwn- w we get, using (5), for the spin wave 
spectrum in first approximation 

ffi = Ek = b(y) (Vo- Vk) + ,ul. (6) 

The spin wave energy (6) depends quadratically on 
k for small k and to simplify the notation in the follow
ing it is convenient to introduce the mass of the spin 
waves m defining it by the relation 

Jc'A 
ek = 2m+ !ill. k--+- 0, 

1 
m= Vob(y). (7) 

As in I ( 24) we have denoted here by X~i the principal 
ValUeS Of the tensor VQ1 L: XaX(3 V ( r ), and by ki the 

r 
components of k along its principal axis. For cubic 
lattices each of the quantities X~i is equal to one third 
of the mean square interaction range R~ and k2 

= I k I 2R~/3. In the general case k2 is not proportional 
to I k I 2 and by k we shall in the following always un
derstand the dimensionless quantity ( k2 ) 112 from (7), 
and not lk 1. 

At low temperatures, T << TcS-\ b = S and we find 
from (6) the Bloch formula[oJ for the spin wave spec
trum 

(8) 

At finite T the quantity b ( y) is determined by the 
condition that (5) be self-consistent. In particular, for 
H = 0 and T- Tc = VoS(S + 1)/3, Eq. (6) gives ac
cording to I ( 6 ) and I ( 21 ) 

c = a(6a + 1) . (9) 
10 

However, the region where the temperature depend
ence of the spectrum is determined by Eqs. (6) and (9) 
(as also is the case for similar results from Sec. 5 of 
I) occurs only for large r 0 • At low temperatures (6) 
gives an exponential temperature dependence of the 

,,.. ... \ Q 
v+ +-0-

FIG. 1 

spectrum while the following terms which take into 
account the interaction of spin waves lead to a power 
law. We find therefore the correlation function K+- in 
the next approximation. 

To do this we must take into account in the polari
zation operator ~+-, which occurs in (2), the next 
terms which are depicted in the diagrams of Fig. 1. 
As in I (16a), the dotted lines correspond in this figure 
to the effective interaction of sz with sz and the full
drawn line which we shall use here instead of the wavy 
line in I, corresponds to the effective interaction of 
S + with S- (1.16b): 

The vertex points in Fig. 1 correspond to the vertex 
blocks given by Eq. 1(11). 

After summing over the frequencies of the internal 
lines we find for the first correction ~}~> to ~+-

'~ (Vq-k- Vq)z .l 
+ b (eq- iffin) (1- ~Vk:_qb')U • 

q 

(11) 

where, as in 1(18) 

nk = [exp(~ek) -1]-', ny = (e" -1)-1. 

Substituting (11) into (2) and performing the analyti
cal continuation through the substitution iwn - w we 
obtain after elementary transformations 

Kt(k, ffi) = T(S•)t- ffi +!ill+ (V0 - Vk)(S•)-

~ b'~Vq-k-Vq 
- .<::;nq(Vq-k- Vq) --.<::;-----

q b q 1-~Vqb' 

- b' ~· (Vq-k- Vq)2 ]-1 (12) 
q (eq-ffi-ii\)(1-~Vq-kb') 

Here ( sz) is determined from the first approximation 
formula I( 18): 

y- ~11H b" ~v 
(S•)=---=b+-~ q , +~ [n.-nq(1-~Vqb')], 

j3V0 2 q 1-~Vqb q 

(13) 
The spin wave spectrum is determined by the poles 

of (12). It is clear that when there is no magnetic field 
the energy in the small k region is, as before, propor
tional to k2 • It is also clear that the temperature de
pendence of the spin wave spectrum reduces to the 
T-dependence of ( sz) [loJ only in the zeroth approxi
mation (6), as the last three terms in the denominator 
in (12) are of the same order of magnitude as the 
terms in Eq. (13) for the moment. 

3. THE SPIN WAVE SPECTRUM AT LOW 
TEMPERATURES 

In the low temperature region the deviation of the 
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moment from the saturation value is proportional to 
T 3 / 2 (see, e.g.pJ or I(31) and (32)): 

(Sz) =S- (-~ )'''_!__z., (P~-tH). (14) 
2nV.S ro3 ' 

Here Za(x) = l:n-ae-nx, the average relative inter
n 

action range ro is determined as in I(28): 

ro3 = vc-1 Det'hii3Vo-• ~x,.x~ V(r) II =3y3x01 X02Xos vc-1; (15) 

Vc is the volume of the elementary cell and Xoi the 
same as in (7). 

However, in the spectrum the terms proportional to 
T 3 / 2 are cancelled by the latter terms in the denomi
nator in (12). Dropping exponentially small terms we 
get in that region 

w = ~-tH +S(V0 - VI<)-~ nq(Vo- VI<- Vq + Vq-k)· (16) 
q 

In the last term in (16) the expression in brackets 
is for small k and q proportional to k2q 2 so that the 
correction to the spin wave spectrum due to interac
tions turns out to be proportional to T 5 / 2 for small T. 

One can also find the low-temperature corrections 
to the spin wave spectrum without making any assump
tions about the range of the interactions being large. 
As in thermodynamics (Sec. 6 in I) the result reduces 
to replacing the Born amplitude Yo- Yk- Vq + Vq-k 
in the last term in (16) by the complete scattering 
amplitude A ( k, q, k, q) for which we can use the 
ladder approximation I(35). 

We consider, for example, the small k region and 
find the mass renormalization for the case of cubic 
lattices when k2 , determined by Eq. (7), is equal to 
I k j 2R~/3. In that case the correction term is after 
summing over q in (16) also proportional to I k 12 • 

Replacing in ( 16) the Born amplitude by A ( k, q, k, q) 
leads to the fact that the last term in (16) is multiplied 
by some factor Q(S, r 0 ). This factor leads also to an 
analogous correction to the thermodynamic formulae 
and for the case of nearest neighbor interactions it can 
be taken from the paper by Dyson (Eqs. (117) and (138) 
of [3J). For instance, for a simple cubic lattice with 
nearest neighbor interactions this factor is equal to 

1 + 0.038-1 0.17 ( 1 ) 
Q(S) ~-----+-- Q\- =1.68. 

1-0.18-1 S ' 2 
(17) 

At low temperatures the spin wave spectrum for cubic 
lattices has thus for small k the form 

w = JlH + VoS Jkj•Ro• [ 1- vQ(S, ro) n( __E__)"' Z•,. (P~-tH) l. (18) 
6 Sro3 2nV0S · · j 

Here Za and r 0 are the same as in (14) and 11r~ de
notes the mean quartic interaction range: 

vro• = ~r'V(r)/Vovc'l•. 

Thus for nearest neighbor interactions 11 =; 1, and ro 
is equal, respectively, to 1, {2, and ..f'J for simple, 
face-centered, and body-centered cubic lattices. 

It is clear from Eqs. (17) and (18), and also from 
sections 6 and 7 of I, that as ii) thermodynamics the 
Born approximation (16) is applicable not only for a 
large interaction range ro, but also for large S. In 
that case Eq. (16) is applicable not only for T « VaS 
~ Tc/S, but also in the much wider range T << Tc. As 
we discussed in Sec. 7 of I in the interval V oS « T 
<< V0 S2 ~ Tc the temperature becomes then larger than 

the spin wave energy for all k. The spin wave density 
can then be expanded in the neighborhood of its classical 
expression T/Ek and the correction to the spectrum is 
in first approximation proportional to T/Tc. The spec
trum in a simple cubic lattice has thus, for instance, in 
that region for nearest neighbor interactions the form 

[ T ( 1.51JlH V.S )] ( ) 
w = ~-tH +S(V0 - VI<) 1- VoS" f + V.S ----zr-' . 19 

4. THE SPECTRUM NEAR THE TRANSITION 

As was discussed above, at temperatures of the 
order of Tc we can use Eq. (12) only for large inter
action ranges r 0 and not too close to the transition, 
i.e., for Tc - T » Tcr~6, JJ.HS >> Tcr~9• For Tc - T 
<< Tc, JJ.HS << Tc we can then expand the denominator 
in Eq. (12) in powers of y and T - Tc. As is discussed 
in Sec. 5, weakly-damped excitations will then occur 
only for small k. The expression for the spin wave 
mass M in that region has the form 

1 1 [ v ( 2Yv) 2 v 1-l'v/u J (20) 
M=-;;;_ 1+ -{u 1+3 -;; + 9l'u (1+l'v/u) 2 ' 

where m is determined by Eq. (7) and, in accordance 
with the notation in I(25) to I(27) 

c c T- Tc 
u=-Y2 +..:, v=-y2 +·-r, 't'=--, Tc=aVo, 

a 3a Tc 

=___: 3l'6 =~(1 + t ) 31'6. 
V a2 2nro3 5 2S(S + 1) 2nro3 

cy3 + 3ay..:- 3ah = 0, h = JlH / Tc. 
(21) 

We give the explicit form of the corrections to the 
mass (20) for the cases of weak and strong magnetic 
fields, considered in I(29). We have 

a) -r>O, ch2 /a-r"~1: 
m 5 v 28 v ch2 
-= 1+--=----=-; 
M 3 l'-r 27l'-ra..:3 

(22a) 

(22b) 

(22c) 

The second term in the square brackets in (20) 
corresponds to the correction to the average moment 
( sz) , and the third one to the last three terms in the 
square brackets in (12). It is clear that also at low 
temperatures both terms are of the same order of 
magnitude and that the temperature dependence of the 
spectrum and its dependence on the magnetic field do 
not reduce to the analogous dependence for the average 
moment. For instance, in the weak magnetic field 
region below the transition the correction (22c) to the 
mass does not contain a term proportional to ..;11, 
which according to (20) and I(29c) occurs in the mo
ment. 

5. SPIN WAVE DAMPING 

The damping of spin waves and also the absorption 
of a variable external field is determined by the imag
inary part - r( k, w) of the denominator of the correla
tion function K+- in (12): 

I ~ (Vq-1<- Vq)2 (23) 
r(k, Ol)= nb LJ 1- pvk-qb' ll(eq- w). 

q 
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In the small k region Eq. (23) becomes 

3l'if b'Vo ( (!)- 11H )'I• k• r(k,,w)= -- -
2:rtro3 b(1-flVob') bV0 4 

X f (_Eo_!!_~ 2 ( w - JlH) ) 
\ 1- ~Vob' 2' k2bV0 ' (24) 

where 
f(x,t)= (1+:~) 2 ln 1+x(1+l'tl2 1+x(t-1) 

4x3l't 1 +x(1-l't)' x2 

f(O,t)= 1 +4t, 
(25) 

and the quantities k2 and r~ are the same as in (7) and 
(15). To find the damping of the spin waves or the width 
of the ferromagnetic resonance we must put in Eq. (24) 
2 ( w - J..L H) = b V ok2 after which the second argument of 
the function f is equal to unity. 

The damping determined by Eqs. (23) and (24) is 
connected with the scattering of spin waves by fluctua
tions in the moment sz. For small k it decreases 
proportional to k5 • When the transition point is ap
proached the scattering by fluctuations increases. Thus, 
in the region near the transition, considered in section 
4, the complete expression for the spectrum for small 
k can according to (20) and (24) be written in the form 

k2 
[ y ( k2 )'I• a W=JlH+yT,- 1+11-i-=:- - -

2 l'u 2u c 
7 k2 

3 2y2 
X 

when k'<u l u 2k2 

-In- when k""::?>u 4y2 u 

We have denoted by o the relative correction to the 
mass determined by (20). 

(26) 

We give the explicit form of the relative damping 
for small k given by the last term in the brackets in 
(26) for the regions near the transition considered in 
(22): 

a) -r>O, ch2 /a-r3 <,1: 
r (k) 7 ( k2 )'" a'f' . (2 7a) 

ek - 11H = 3 2-r ch2 ' 

b) ch2 /al-rl 3 "':?>1: (27b) 
__!:_Q1_ = _2 ( y"a )'I• [!!.(_a_)'"]'!. ; 
ek - 11H 3 9ch2 2 \ 9ch2 

c) -r < 0, ch2 I al-rl 3 < 1: (27c) 
__!:_Q1_ _ _2 _Y_ (-Jc2__)'1' 
Ek- ~·H- 18 l'Gl 21-rl . 

It is clear from (26) and (27) that notwithstanding the 
increase in absorption near T c the damping is small 
in the very small k region and spin waves exist al
though for k2 > max ( I T I, h213 ) damping increases fast. 
It is also clear that in a weak magnetic field the damp·· 
ing has an appreciably different form above and below 
the transition. When T < Tc the relative damping is 
according to (27c) of the order yk3 I T l-2 while above 
T ~ this factor is multiplied by the large quantity 
T h-2 • The following terms of the expansion in y for 
T > Tc will contain higher powers in H -2 • The con
cept of spin waves or paramagnetic resonance has 
therefore above the transition a meaning only for suf
ficiently strong fields and small k. We give a more 
detailed discussion of this in the following. 

At low temperatures the damping described by Eq. 
(23) is exponentially small. Therefore the damping 
described by the next terms in the expansion in r~3 
and corresponding to spin wave-spin wave scattering 

become more important. Moreover, the next approxi
mation contains corrections to the first approximation 
(23) which describe the damping due to scattering by 
fluctuations. We must check that these corrections do 
not change the dependence of the damping on the wave 
vector k, i.e., that also in the following approxima
tions in r 03 the fluctuation damping is for small k 
proportional to k5 • We find therefore the next approxi
mation for the scattering at arbitrary temperatures. 

A -- r:.:::" -e- ~~ ~~~ I I f'----1 ' I + ~ + ~/--- + J__l_ + _l_ _ _L+ J._______..L.. 

0 
/ ' + __L___:;.. 

+ 

f:.:.~ ,-, 
\ I ~ } 

+......::.L...+K 
\ I _, 

FIG. 2. 

In Fig. 2 we give the second approximation dia
grams !:l:! for 2::.-. We have dropped in that figure 
terms containing isolated dotted lines with zero mo
mentum; these terms correspond to substituting the 
corrections to y from (13) into the first approximation 
Eq. (11) and they give for the damping the same de
pendence on k and w as (23). In the expression for the 
spectrum the quantity !:i:! /bG~ occurs, as can be 
verified using (2) and (3). Hetaining in the answer only 
those terms which have a nonvanishing imaginary part 
(which means, in particular, that we drop the last four 
diagrams of Fig. 2) we obtain after very complicated 
calculations 

}:~(k,w) -'---=---.:.... - - }: - ~, 
bG2(w) - s ' 

(28a) 

_ 2(b')' ~ ~Vq (V pk)' v:-q Lk-P Lq-p G(w) 
(ep-w)(eq-w) 

p. q 
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_ 2(b')• ~ ~Vq-k Vqk(Vpk) 2Lk-Ph-qG(w) 
p,q (ep-w)(eq-w) 

_ 2 jb') 2 ] ~Vk-P Vpk V qk Lk-P Lk-q G((J)) 

b p,q 8p -(J) 

+ b•b'] ~ ~Vk-P Vq Vp-q-k(Vpk)2Lk-PGm2 ~ (Vpk)•L:-P 
(ep-w) (eq-iwm).(ep-q-k-iwm) + ' ep- OJ 

p, q m p, q 

[ b"' (b") 2 b"- 2b'Gm 
X -pVqLq +--~2Vq Vk-qLqL)<-q + Vq ~ . 

2 2 m eq-!Olm 

+ V V ~ (b') 2 - 2bb'Gm + b'V nk-q- nq J 
q p-q-k ..::..1 (eq- iwm) (8p-q:.k- iwm) k-P 8q- Bk-q · 

m 

(28c) 

Here v.k= Vp- Vp-k• Lp = (1- ,BVpb'f\ G(w) 
= ( y - §w t\ Gm = ( y - i,Bwm t\ and in the sums over 
m the quantities iwm = 2m7TiT are the imaginary fre
quencies of the temperature-dependent diagram tech
nique. C7J To find the imaginary parts in Eqs. (28) we 
must replace one or three energy denominators by a 
a-function: ( Ei - w t 1 - i7Ta ( Ei - w). 

Let us first of all consider the term Es. Replacing 
the denominator by a a-function we find for the damp
ing Es connected with the spin-wave-spinwave scatter-
ing 

n 
f,(k, w) = 2 (ePm -1) 

X] (Vp + Vq- VP-k- Vq-k) 2 npnqll(ep + eq- ep+q-k- w) 
p,q 1-exp(-~ep+q-k) ·(29) 

It is clear from (29) that in the region of small w 
and k the quantity rs is proportional to wk2 • The spin 
wave damping (or the ferromagnetic resonance width) 
is obtained from (29) through the substitution w = Ek 
= J.LH + b(Vo- Vk}. We give the explicit form of the 
relative spin wave damping given by (29) for small k, 
k2 << 1, in different temperature ranges: 

bVok2 
a) ek=-2-+llH~T: 

r,(k) =_E__ks~ (-T-)''• Z•,,(~f.IH); 
81<. 8r06 bel< 2nb Vo 

b) ek<T: 
r,(k) 9 k2 T2 {ln2 (T/e~<.) when T~bVo 
-;;;-=4n3r08 2Vo2b' ln2 (bVo/el<) whenek<bVo<T. 

Kri voglaz and Kashcheev C 4J obtained earlier 
formulae similar to (30) for low temperatures. 

(30a) 

(30b) 

We consider now the low temperature region. Since 
all terms Ef of (29c) contain as factors derivatives of 
Dv or b ( y ), for T « Tc/S, the fluctuation term 
rf, as also the first approximation term of (23) is 
exponentially small. The damping is here therefore 
determined by the spin wave term Es and given by 
Eqs. (29) and (30). As in thermodynamics and in the 
spectrum (Sec. 3) the damping at low T can also be 

found without assuming ro (or S) to be large. As be
fore, to obtain an exact answer we must then in Eq. {29) 
replace the Born approximation Vp-kVp - V q + V q-k 
by the exact amplitude A ( k, p + q - k, p, q ) deter
mined by Eq. I(34). As in the case of nearest neighbor 
interactions in cubic lattices the exact expression for 
A in the small momenta range, important at low T, 
can be taken from Dyson's paper {Eq. (79) inC 1J ). 

We note that for large spins S Eq. (29) for the damp
ing is valid not only for T « T c/S but also in the 
wider interval T « Tc. In the range Tc /S :S T « Tc 
the quantity y ~ ,BV oS :S 1: and the functions ny and 
b' ( y) ~ - ny can no longer be assumed to be small. 
However, in that range the first order term of (23) (as 
also the similar corrections in the thermodynamics 
case discussed in section 7 of I) contains higher powers 
of S-1 i.e., T/Tc. Therefore also in that range is the 
damping determined by the term rs of (29). 

When approaching the transition point the spin wave 
damping rs, as also the fluctuation term in (23), in
creases. Thus, in the regions considered above in (22) 
and (27), which are near the transition, the relative 
damping has according to the second of Eqs. (30b) the 
form 
a) 1: > 0, ch2 /a1:3< 1: 

~=...f.~(a"")"tn• 1 . 
ek 6n1: 2-r ch2 k2/2 + 1:' 

(31a) 

b) ch2 /aj"tj 3 ~1: 

r, 1 ( y"a )''•k2 ( a )''• 1 
-;;;- = 6n 9ch2 2 9ch2 ln• k2 /2 + ( ch• f3a) ''• ; (31b) 

c) 1: < 0, ch2 / a I 't 13 < 1: 

r, =__!_,_f_~ln• 1 
ek 54n j1:j 211:1 k2/2+(ch2/3aj"ti)'" 

(31c) 

It is clear from (31) that near the transition the T
and H-dependence of the spin wave damping has the 
same character as that of the fluctuation term of (27). 
As in (27), notwithstanding the increase of the damping 
near Tc, for very long wavelength spin waves with 
k2 < IT I the relative damping is small for T < Tc. 
Above Tc the damping is small only for sufficiently 
strong magnetic fields. 

We now compare the contributions to the damping of 
the spin wave term r s of (29) and of the first order 
fluctuation term in (23) in different temperature and 
frequency ranges. These expressions have different 
w- and k-dependences: for small w, k the quantity rs 
is proportional to wk2 while the term (23) is according 
to (24) and (25) proportional to ( w - J.LH )1 12k4 or 
( w - J.LH} 3 / 2k2 • Therefore, (23) is non-vanishing only 
when w > J.LH while (29) is non-vanishing for all w. 
For spin waves w - /J.H = k2 /2m so that the ratio of 
(24) to (29) is proportional to k. At low temperatures 
the term (23) as was discussed above is exponentially 
small while {29) decreases as a power. Therefore, 
both for low temperatures and for small k. at all T the 
damping is determined by the spin wave term {29). 
However, at temperatures of the order Tc and not too 
small k ( k2 2; IT I r06 ) the term (23) becomes more 
important, in particular if we bear in mind the small 
numerical factor in (31c). 

We discuss now the second order fluctuation term 
rf of (28c). We note firstly that the first term of rf 
is, in contrast to all others, proportional to r 03 and 
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not to r~6 • In reality, however, the term ~ r~3 is com
pletely cancelled by the corresponding contribution 
from L:s in (28b) which arises from the regions when 
one of the momenta p or q is not small; p > r~1 or 
q > r~1 . In the discussion of the term rs given above 
the contribution from these regions was not taken into 
account for the sake of simplicity; moreover, these 
terms are proportional to the expression (23) and as 
was discussed above are small for low T and small k. 
However, in a formal expansion in r03 the first term of 
L:f should be included in L:s after which both (28c) and 
(28b) contain only terms ~r06 • This was not done above 
for the sake of clarity and simplicity of the presenta
tion. 

One verifies easily that for each of the terms of L:f 
the frequency and wave vector dependence of the imag
inary part has the same character for small w and k 
as the first order expression (24). Each of them is 
proportional to ( w - J.1. H )112k\ ( w - J.1. H )3/2k2 or higher 
powers of w - JJ.H and k. As in (24), the imaginary 
part occurs only when w > JJ.H. At low temperatures 
all terms of L:f are exponentially small. When ap
proaching the transition the damping increases but as 
in the case (27) the relative damping r(k)( Ek- JJ.Hr' 
for T < Tc turns out to be, after separating off the 
factor y 2 IT r', proportional to half-odd-integer powers 
Of k2 [ T r', Starting with %, and to be small if k2 
< IT I. Therefore, the evaluation of the fluctuation 
damping in second order does not change the w- and 
k-dependence of the damping from the first approxima·
tion (24). 

This means, in particular, that near and below Tc 
when there is no field the contribution from both orders 
to the fluctuation damping can be written in the form 
f1 ( y IT l-1/2 )( k2 l T r1 )312 where the first two terms in 
the expansion of f1 are given by Eqs. (27) and the 
corresponding terms from (28c). Similarly, the rela
tive damping connected with spin wave-spin wave 
scattering for the same region can be written in the 
form f2 ( y IT l-1/2 )k2 IT l-1 ln2 k and (31) gives the first 
term in the expansion of f2. 

Above we considered only two approximations. How
ever, it is natural that also in higher orders in 
y IT l-1/2 the k-dependence of the fluctuation and the 
spin wave damping will have the same character. In 
that case, the general expression for the relative damp
ing in the region considered can be written in the form 

Im w ( k' )% k2 1 
~=!t(vl-rl-v') R +iz(vl-ri-''')Rln'"k· (32) 

It is clear from Eq. (32) that in the region considered 
where the self-consistent field approximation is ap
plicable the spin wave damping is small when 
k :S I T l-1/2 • However, according to I(24) or inequality 
(35) below the quantity IT l-1 / 2 is the Ornstein-Zernike 
expression for the spin correlation radius rc ( T) near 
Tc which characterizes the self-consistent field. It is 
therefore natural to assume that also outside the 
region of applicability of the self-consistent field 
method the condition for the existence of spin waves is 
given by the inequality J\: = 1/k :s; rc ( 7). The condition 
for the existence of spin waves Im w/w :s; 1 can then 
be written as 

1 ( Tc- T )" k~--~ ---
rc(T) Tc· · (33) 

The spin waves are therefore not damped if the 
wavelength exceeds the correlation radius. This result 
is natural since, as we noted in the introduction, when 
the wavelength further increases the spin wave goes 
over into an adiabatic rotation of the average moment. 
The value of the exponent a in (33) is determined by 
the temperature dependence of the correlation radius 
rc. If, for instance, we assume for this quantity the 
dependence rc ( T) ~ IT r213 which has recently been 
assumed by a number of authors on the basis of nu
merical calculations and phenomenological consider a
tions, the quantity a in Eq. (33) equals %. 

Finally, we consider the region above the transition 
temperature. As we have already emphasized, in that 
region the damping is large for small H and the con
cept of an excitation loses its meaning. From Eqs. 
(29) and (30) we can also see that in that region for low 
frequencies w the expansion parameter of the self
consistent field is proportional to k ( T - Tc )2 ( J.1. H t 2 • 

Therefore, even though in the thermodynamic case (I) 
the self-consistent field method was applicable in the 
whole of the T-H-plane apart from a limiting vicinity 
of the transition point, and the rigor of it improved 
with increasing T- Tc, the consideration of low
frequency kinetics by this method in the region T - Tc 
> JJ.H ,fk turns out to be impossible. Physically this is 
connected with the fact that for small w in the given 
region relaxation processes become more important 
and to describe these one needs a derivation of the 
hydrodynamic type which is different from the self
consistent field method used. 

6. LONGITUDINAL SPIN COMPONENT CORRELATION 
FUNCTION 

The correlation function Kzz is defined by Eq. (2) 
with a = y = z. In first order in the self-consistent 
field we must substitute in this formula the zeroth ap
proximation for L:zz which is equal to b 'Ono (I ( lla)) 
after which Kzz is equal to (I(14a)) 

(0) • b' 
K, (k, !Wn) = bno 1 _ ~V1,b' (34) 

Near the transition Eq. (34) becomes (1(24)): 

K(o) (k i.w ) - 6 a 
" ' n - no k 2/2+-r+cy2/a ' (35) 

where the H- and T-dependence of y is determined 
by Eq. (21). It follows from (35) that the static suscep
tibility 

Xr = L; K,(O, iwn) 

satisfies in this approximation the Curie-Weiss law 
while the two-fold law is satisfied for the ratio of the 
susceptibility above and below Tc. 

Formulae such as (34) and (35) were earlier ob
tained by Van Hove [sJ and de Gennes and Villain. [sJ 

When T ~ Tc these formulae, as are all self-consist
ent field approximations, are applicable only for large 
interaction ranges ro.~_ and not too close to the transi
tion: I 1 I ?: r(i6 or h;::: r~9 • 

Equation (34) describes only the static correlation 
of sz and to study its time dependence we must find 
the next approximation, describing, in particular, the 
interaction with spin waves. At low T the correlations 
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~J- T Q_ T-{)-T-0- --oo-T-{X)- T--<D-

FJG. 3. 

given by (34) tend exponentially to zero while the next 
spinwave terms in r(i3 decrease as a power. Finally, 
in the range of very small k, as we shall see, the spin 
wave term is more important for all T than (34). We 
find therefore the next approximation for Kzz. 

The first order diagrams in Ezz are given in Fig. 
3a. After some calculations we find 

. ony [ b"' (b")2 ~,(k, 'Wn) = bnoay + bno ~ ~Vq 2Lq + - 2- ~Vk+qLqLkH (36) 
q 

+ b"nq + (b') 2~VI<Tq- 2b' (nq _ nk+q) ]+ T ~ nq- ni<+o. 
~(BJ<+q- Bq) q 8J<+q- Bq- !Wn 

where ny, nq, and Lq are the same as in (11) and (28). 
Together with the usual corrections ~ r 03 to the 

zeroth approximation (34) a term of a new kind (the 
last term) occurs in (36) which does not contain ono 
and therefore does not vanish when we analytically con
tinue in the frequency iwn - w. This term describes 
the scattering of a spin wave from the state with mo
mentum q into a state with momentum k + q. In the 
following we shall be interested in the case of small 
frequencies w and k << 1. For small k also q ~ k is 
important in this term. The interaction of such long 
wavelength spin waves is small, as was discussed 
above. Therefore we need not take into account any 
complications corresponding to the interaction of spin 
waves in the limit of small k. In particular, the com
plication from higher powers of E 0 l arising from the 
expansion of the denominator in (2) will be compen
sated by complications of the quantity E itself. The 
three diagrams given in Fig. 3b corresponds thus, for 
example, simply to the interaction of virtual spin waves 
and for small k one can check that they cancel one 
another. Therefore it is in the given case sufficient 
simply to take for the quantity Kzz ( k, w ) the first 
order expression E< 1l(k, w): 

K,(k, w) = ~~!l (k, w) = T ~ nq- nl<H . • (37) 
q BJ<+o - Bq - (!) - Ill 

As we said already the behavior of Kzz in the small 
k « 1 region is of most interest. In that case Eq. (37) 
depends on the ratio of w and k. We consider firstly 
the region of large frequencies w » bV0k = k/m. Here 
Kzz is real and is given by the expression 

1 "' "' iJ2eq x •• (k,w)= -2 LJ ku.kp LJnq---. 
w «.P q aq .. oqp 

(38) 

In the region of low and high temperatures (38) takes 
the following form 
a) T<;bV,. 

(39a) 

r• a•vq 1 
K •• =-~ ku.kp ~ -=---=-. (39 ) 

w• a,p q oqu.oqp V0 - Vq b 

In Eq. (39b) the integral over q is a numerical 
tensor. For instance, for a simple cubic lattice with 
nearest neighbor interactions this expression equals 
-0.18 R~Oa(:l· 

For small frequencies w << k/m and not too low 
temperatures T >> Ek the quantity Kzz is given by the 
expression 

K ) 31'3 m2T2 • . 2mw + k2 + ilt l'Bm~tH 
,(k, (!) = ----! ln---------===:=-

2nro3 k 2mw - k2 + ik l'Bm~tH 

31'3 m2f2 [ k2 - 2mw. k" + 2mw = ---- arctg + arctg --====-
2nr03 k kl'Bmjtfi kl'Bm~tH 

i 1 (2mw + k2) 2 + Bk"m~tH J 
+2 n (2mw-k2) 2 +8k2m~tH · 

(40) 

For the imaginary part of Kzz we can in this case 
obtain a closed expression even without assuming 
Ek « T: 

31'3 m2T2 
ImK .. (k,w)=--3 --

4nro k 

1- exp[- ~(2mw + k2) 2/8mk2 - pfl]i] 
ln~-~~~--~~~~~~~ 

1 - exp [- ~ (2mw - k2) 2/Bmk"- ~ltHl (41) 

It is clear from (40) and (41) that in a weak magnetic 
field there is in the correlation function Kzz a peculiar 
"weak resonance" at the spin wave frequency 
w = k2/2m. The imaginary part then increases logarith
mically and the real part remains finite. 

We can find from (40) the law for the decrease of 
the correlations in time for small k and large times t: 

1 .. 
K" (k, t) = 2n I dw e-i"'t K •• (k, w) 

31'3 m2f2 f . k•t { (8~tH)'''} (42) =-----sm-texp -tk- . 
2nr03 k t 2m m 

It is clear that thanks to the non-localized character 
of the interaction the spin diffusion through spin waves 
has an unusual character. When approaching the transi
tion point the diffusion is retarded proportional to 
( J..L Hjm )1 / 2 • To describe the diffusion in the case of 
very weak fields H and large times we must also take 
into account the spin wave damping discussed in Sec. 5, 
owing to which the law for the decrease of the correla
tions at large t will be exponential even at H = 0. 

We note that for small k, w, H Eq. (37) for Kzz 
increases according to (40) as 
min{k-\ k(mwr\ (J..LHmr112 } and may become much 
larger than the first approximation term (34). This 
increase is connected with the large density of low 
momentum spin waves. We noted above that the inter
action of low momentum spin waves is small so that 
the next approximation to Kzz which takes spin wave 
interactions into account does not change the results. 
The k-, w-, and H-dependence of the correlation func
tion, given by Eqs. (38) to (41) is therefore in the 
region where these quantities are small the same also 
when the interaction range is not large or near the 
transition temperature when the parameter 'Y IT r112 is 
not small. In these cases only the temperature depend
ence changes. This can be seen from the sample of the 
term caused by spin waves which is proportional to 
v'H in the moment ( sz) in Eq. I(29c). This term, as 
we noted in I, leads in the small H region to a value 
of the susceptibility which increases as H-1 /2 and this 
can also be obtained from ( 40) putting w = O, k - 0. 
Taking into account the next approximation in y I Tl-112 

in this term in Eq. I(29c) corresponds as can be seen 
using (22c) simply to a correction to the spin wave 
mass. 

When k increases the spin wave damping increases 
and near the transition point they exist only for small 
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k determined by condition (33). In the derivation of re
lations (40) and (41) the spin wave damping was not 
taken into account. Therefore (40) and (41) will be 
valid near the transition only in the case if the q2 

which are important in the integral in (37) are 
~max (k2 , mJ..LII, m2w2k-1 ) < IT 1a. For larger k, w, or 
H Eq. ( 40) is of the same order as the other terms in 
the expansion of Kzz so that there is no longer any 
sense in splitting it off. 

We considered above only the first approximation in 
Ezz given by (36) and (37) and the diagrams of Fig. 3. 
More complicated diagrams describe not only correc
tions to the temperature dependence of the quantities 
but also relaxation processes and most importantly 
they influence the first order term in (34) and (35). 
Taking these processes into account must, in particular, 
lead to the fact that the "15-function" term in (34) ac
quires a finite width rz: 

K<(l)(k ) b' r. 
" ' 00 -->-1-~Vkb' -iw+r. 

(43) 

We did not succeed in finding the relaxation time 
1/rz since the self-consistent field method, as we 
reminded ourselves already, is not suitable for de
scribing relaxation processes. However, as we noted 
above, the terms (37) to (41) are for small k, w, H and 
all temperatures below the critical one larger than 
(43) provided the interaction range r 0 is not very large. 

7. NEUTRON SCATTERING 

Nowadays there are two basic experimental methods 
to determine the correlation functions K+- and Kzz. 
The first method is the measurement of the magnetic 
susceptibility in a constant or high-frequency magnetic 
field. The transverse susceptibility then has a pole at 
the frequency corresponding to ferromagnetic reso
nance. However, the wavelength of ferromagnetic 
resonance is usual macroscopic, larger than or of the 
order of the dimensions of the sample. Therefore, its 
width is not determined by Eqs. (23)(29) but by relativ
istic effects of the magnetic interaction, the anisotropy 
field, and so on. For spinwaves with microscopic 
wavelengths these effects are small and they were not 
considered in the present paper. 

A more effective method for the study of the k- and 
w-dependence of the correlation function is neutron 
scattering. The magnetic scattering cross-section for 
neutrons involving a momentum change by k and an 
energy change of w is proportional to the spin corre
lation function: [s,u,7 ,a] 

dooo ~ e-iu r eiwtdt(So"(O)S.P(t)) = lmK,.p(k,ro). (44) 
J 1- e-P"' 

r -oo 

We consider the w-dependence of the cross-section 
for different k and T. For all T < Tc and small k 
satisfying condition (33) the quantities Im K. _ and 
Im K-• which appear in (44) have steep maxima, re
spectively, at w = Ek and w = - Ek; the width of these 
maxima is determined by Eqs. (23), (24), (29), and (30). 
Im Kzz is in that region determined by Eq. (41) and is 
a smooth function with a width ~ek which for H = 0 
has only a logarithmic singularity in the point w = Ek· 
In the limiting case when w « 'f and if one of the in
equalities k2 « 2mJ..LII, k2 « 2mw, k2 >> 2mw is satis-

fied, we have _ 
3l'3 T2r=k 

ImK., = -- / .. u; 2nr03 <iJ2 + k2 4m2 + 2k2,..... m (45) 

If we take Van Hove's expression rz ~IT I k2 for 
the width rz in (43) then there will be for small w 
apart from the terril ( 45) in Im Kzz also a small peak 
with width ~1 Tlk2 described by Eq. (43). 

When k increases or when we approach the transi
tion point for fixed k the relative width of the spin 
wave peak increases. When k2 » IT I the correlation 
functions depend weakly upon T and for a large inter
action range are described by Van Hove's formula (43) 
both above and below the transition. The width of the 
peak in that region is not found in our paper. 

In present-day experiments the cross-section inte
grated over frequencies is measured. When evaluating 
the integral of the right-hand side of (44) we must bear 
in mind that in the case considered of small k the im
portant frequencies w are small compared with the 
temperature and the denominator in (14) equals {3w. 
Using the analyticity of K ( k, w) in the upper half
plane of w and the Kramers-Kronig relation we find 
that the cross-section integrated over the frequencies 
can be expressed in terms of the zero-frequency cor
relation function: 

(46) 

We consider the behavior of the k- and T-dependence 
of the total cross sections. Above the transition, all 
three static correlation functions have the Ornstein
Zernike form for large r 0 • Everywhere below the 
transition K. _ ( k, 0) is proportional to k -2 in agree
ment with the results of de Gennes and Villain. [sJ As 
we showed in section 6 the spin waves determine not 
only the behavior of K._ but also that of Kzz which 
is proportional to 1 jk. 

The above described behavior of the correlation 
functions can also be used to study the polarization of 
neutrons. [11 , 12 ] The existing experimental dataC 13J 
agree qualitatively with the results obtained here, but 
they are insufficient for a quantitative comparison. 

8. CONCLUSION 

The basic result of this paper on the existence of 
spin waves even near the transition is valid only for 
sufficiently small momenta which satisfy condition (33). 
On the other hand, the momenta of the excitations must 
be sufficiently large so that the effects of anisotropy 
and magnetic interactions can be neglected. These ef
fects lead to an additional damping which does not 
vanish for small k and w. [14] Taking this into ac
count, condition (33) for the existence of spin waves 
has the form 

(47) 

where {3 is the anisotropy constant and 1J. the Bohr 
magneton. The expression on the left-hand side of (47) 
is of order of magnitude of 10-4 to 10-5 • Therefore, for 
temperatures not extremely close to the transition 
there is a wide region of applicability of the results 
obtained. 

We did not consider in this paper metallic ferro-
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magnetics. The qualitative results are apparently 
also applicable to metals although there must occur 
additional limitations at the small k side which are 
connected with conduction electron damping. This 
damping can be considered, using Fermi liquid 
theory. [15] 

In the foregoing we considered only ferromagnetics 
with one magnetic atom in the cell, such as EuO. To 
describe long-wavelength excitations the details of the 
structure are unimportant. The results obtained are 
therefore applicable also for a description of the low
frequency branch of spin waves in ferrites, i.e., ferro
magnetics with a cell containing several magnetic 
atoms with an uncompensated spin. 

The remarks made about the applicability of the 
results also apply to the correlation functions since 
the main contribution even to Kzz is for small k given 
by the spin waves. 
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