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The influence of nonmagnetic impurities on the phase transition in a ferromagnet is investigated within 
the framework of the two-dimensional Ising model. The extent to which the impurities weaken the 
long-range correlation between spins is shown. This weakening results in a finite value of the specific 
heat at the Curie point. 

1. A large amount of experimental data on the influence 
of impurities on second-order phase transitions (critical 
points) exists at the present time. [I- 4 ] A large number 
of effects have been uncovered which have not hitherto 
found an explanation. We list some of them: 

a) The specific heat curve at the critical point 
broadens upon increase in the impurity concentration, 
and the specific heat maximum is finite (in place of a 
narrow peak tending to infinity in a pure substance). 

b) At temperatures slightly above the specific heat 
maximum, a characteristic "discontinuity" appears. 
The phase transition point is apparently associated with 
this discontinuity. 

c) As noted in l3 l, the Curie temperature in ferro­
magnets having nonmagnetic impurities falls more 
slowly than is predicted by existing theories, e.g., the 
self-consistent field method. 

The influence of impurities on second-order phase 
transitions in ferromagnets above the Curie tempera­
ture T c is evaluated in this paper. It is shown that in 
such systems, the contribution of the long-range corre­
lati~ns to the specific heat (r c > 1/ ci~ , where r c is the 
radtus of the long-range correlations, and Cim is the 
concentration of nonmagnetic impurities) is strongly 
reduced in comparison with the pure substance, whereas 
the contribution of the short-range correlations is only 
slightly changed. This results in a finite value of the 
specific heat at the critical point. 

Broutlsl has noted that in the study of disordered sys­
tems of the type investigated in the present paper, two 
limiting cases can arise: 

a) If the sample is prepared at a temperature much 
above Tc, and quenched rapidly, so that the impurities 
cannot achieve thermal equilibrium, but are held to 
fixed positions, it is necessary to average the thermo­
dynamic potential assuming a random distribution of 
impurities in the lattice sites. 

b) If the same sample is cooled infinitely slowly, so 
that the ions are in equilibrium at each temperature, 
one must average a statistical sum. 

2. The subsequent calculations are made within the 
framework of the two-dimensional Ising model, by the 
method set forth in l6 l. For the Ising lattice with im­
purities, at a temperature T > Tc, it is possible to show 
that the part <I> of the thermodynamic potential which is 
related to the discontinuities at the critical point can be 
written 

r=t (1) 

where fr is the number of closed loops of length r given 
by ' 

1 
fr = z,Sp N(klv J k'l'v'), 

A(klvJk'l'v') = xA0 (klvJk'l'v'), x = th J(kl; k'l') 
T 

the quantity J(kl; k'l') is equal to J if magnetic ions oc­
cur at the sites k l and k'Z', and is equal to zero only if 
a nonmagnetic impurity is located at one of these sites; 
Ao is the "transition probability" matrix. l6 , 7l 

We shall examine the case of impurities rigidly held 
in randomly distributed positions. If only one site with 
a nonmagnetic impurity falls on a loop, this loop will not 
contribute to the thermodynamic potential. The proba­
bility that all sites of a loop of length r will be occupied 
by magnetic atoms is equal to cr-m, where c is the 
concentration of magnetic atoms, and m is the number 
of self-intersections of the loop; therefore, after aver­
aging, the thermodynamic potential <I> can be written 

(2) 
m==O 

where frm is the number of closed graphs with m self­
intersections (in the pure material). 

Terms with r >> 1, corresponding to the long-range 
correlations, are the most important near the phase 
transition point, and in the subsequent evaluation we 
shall use this condition. We shall call the area of a 
graph the area bounded by its external lines, and re­
write Eq. (2) as 

II>~ T ~ xrcr ~ ( ~ frrn(S)c-m' dS; (3) 
r m 

here frm (S)dS is the number of graphs of length r with 
m self-intersections, OGcurring in the interval of area 
from S to S + dS. 

The evaluation of Eq. (3) will be made under the as­
sumption that the function frm (S) has a narrow peak 
with maximum at the point mo(r, S) and decreases with 
increasing m (for m > mo) more rapidly than 
e-K(m-mo), where K is some arbitrary constant. With 
this assumption, Eq. (3) can be rewritten in the follow­
ing form: 

ill~ T ~ xrcr .\ c-m.<r, Bl /r(S) dS, 

where fr(S)dS is the number of graphs of length r oc­
curring in the interval of area from S to S + dS. 

(4) 
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If frm (S) decreases with increasing m as e- K(m- mo), 
the region of applicability of this method is lln cl < K. 

If frm (S) decreases more rapiqly than e -K(m- mo) for 
any K (for example, e-(m-mo) ), the proposed method 
is applicable for any c. 

We express the average number of self-intersections, 
m 0(r, S), in terms of randS. To estimate it, we assume 
that the probability of passage of a loop through any site 
within the area S is the same for all sites. Through each 
site, a line passes on the average r/S times. We con­
sider two extreme cases. For r/s << 1, this parameter 
can be taken as the probability of passage of a line 
through the given point. The probability of self-inter­
section at some point is equal to (r/S)2 (three, four, etc., 
self-intersections can in this case be neglected). The 
average number of intersections in the whole area is of 
the order of (r/S)2S. In the opposite extreme (r/S » 1), 
a line passes through a point many times, and one may 
assume that a line has fallen on all sites, the number 
of which is of order S, only one time; therefore the 
number of self-intersections is mo ~ r - S. Thus 

mo - r' I S for S ';:> r, 
mo - r- S for S < r. 

(5) 

3. We shall compute the number of graphs f~(S) of 
length r located in an area smaller than or of the order 
of S. (For simplicity we select a square with side 
L ~ IS.) We have 

1 1 1 
1/(S)- -Sp Ao'(kivlklv) = -SpAor(pgvlpgv) =- ~ A{(pg), (6) 

r r r . 
•pg 

where the Ai (p, g) are the eigenvalues of the matrix Ao, 
and the summations on k, l and p, g go in integer steps 
from 0 to L - 1: 

1 L-t 2n 
Ao(pgvlp'g'v') =-1)?.; exp{i--z[(p-p')k'+ (g-g')l'l}· 

R'l'=O 

L-h.':_l L-l'-1 

~ S exp {; 2n (pn + gn') .}Ao(n, n' I w'). 
n~-h' n'~-1 L {7) 

We have used the fact that Ao depends only on the differ­
ence of the corresponding coordinates, and have intro­
duced the notation Ao(klvlk'l'v') = Ao(n, n'lvv'), where 
n=k-k'andn'= l-l'. 

Because of the finite ranges of summation, the sums 
over n and n' depend upon k' and l'. Hence the matrix 
Ao is not diagonal in the indices p and g. Since lnl and 
ln'l cannot be greater than unity, in the Ising model 
with nearest-neighbor interactions, we have from Eq. ('7) 

A0(pgv lp'g'v') = ei"'P I Lll_0 (10 I vv') (livv•Ogg'­
- L-1/igg• exp {-i2n(p- p') I L}) + 

+ ei2"•1LA0(01Ivv') (/ipp•Ogg'- L-'livv·exp {-i2n(g- g') I L}) 
+ e-izng1Lll_0 (0- 1lw') (livv•Ogg•- L-16pv•) + 
+ e-i2"P I LA0( -1 Olw') (/ipp•Ogg•- L-16gg•). (8} 

We shall find the eigenvalues of the matrix (8) by per­
turbation theory (assuming L-1 « 1). In the zeroth ap­
proximation, this matrix consists of fourth-order blocks 
situated along the main diagonal, and the calculation of 
the eigenvalues reduces to the solution of an algebraic 
equation of fourth order. It is easy to see that the main 

contribution to the sum (6) comes from two complex 
conjugate roots Ai> for small p/L and g/L (p/L and g/L 
« 1), respectively equal to 

- [ l'2 t2n\ 2 J { n --} (9) A;o= (1'2+1) 1-16\ -y;) (P'+g') exp ±iy1P'+g2 • 

In the first approximation in L -1 , it is necessary to 
calculate only the corrections to the matrix elements 
diagonal in p and g. From Eq. (8), we obtain 

(10) 

The result (10) is quite reasonable, since the compu­
tation of the difference of the transition probability 
within and on the surface of the area S results in cor­
rections of order L-1• Substituting Eqs. (9) and (10) into 
(6), we obtain 

1 - L { 12( 2n )' fr'(S)--(12+1)'e-r1Ll; exp --- (P'+ 
r 16 L 

p,g=O 

.} n-
+g')r. cos-l'P'+g'r. 

: L 
(11) 

The effective range of summation on p and g in this 
formula is less than L/r. 

We shall examine the two extreme cases L/fr» 1 
(S » r) and L/fr « 1 (S « r). In the first case were­
place the summation on p and g by integration on 
w 1 = 27Tp/L and w 2 = 27Tg/L. For r » 1, the resulting 
integral is easy to estimate: 

s - a t ( 12 ) =- (1'2 + 1)'e-riL- J exp -- w2r sin ywr dw iv='l, -
,., ay o 16 

s 
- - ~ (T2 + 1)re-riL. (12) 

In the integration we have made use of the fact that 
exp(- 2 w2r/16) is a smooth function in comparison with 
sin ywr. 

In the opposite extreme, S « r, the first term (p = g 
= 0) in the series in Eq. (11) gives the main contribution, 
and 

1 -
//(S) -- (12 + 1)re-riL. 

r (13) 

The total number of graphs in the entire lattice of 
N sites having an area less than S is determined from 

N - ( r) fr' (S) - -- (12 + 1)r exp• ---=: 
r' \ l'S ' 

S';pr, (14a) 

N - 1 r' 
// (S) - -,.(l'2 + 1)' exp - --=-}• 

r.:> l'S (14b) 

In the region S ~ r, the two methods of derivation of the 
limiting values (14a) and (14b) give incorrect factors 
multiplying the exponentials, since these factors cannot 
be made continuous in this region. However, as will be 
seen in the following, the region S ~ r does not make a 
significant contribution to the specific heat of the sys­
tem and does not influence the critical temperature. 

4. We divide the integral in Eq. (4) into two parts: 
from zero tor and from r to r 2 • Substituting Eqs. (5), 
(14a), and (14b) into (4), we obtain 
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[ 1'' r2 dS 
$~-NT~ crxr("yZ + 1)' - ~ oxp{- !"_ +!Inc!~}~ 

r . r2 r f S S S'f, 

r . dS 
-Sexp{-!"__+!Jnc!(r-S)}~.J. (15) 

o · -ys s·,, 

To estimate these integrals, we note that the exponents 
have two maxima, at the points S ~ r 2 and 
S ~ [r/lln c\]213 • For r!ln cl 2 « 1, the first integral 
gives the main contribution, its integrand having a maxi­
mum nearS = r 2 • For r!ln c\ 2 >> 1, the second integral 
dominates. 

In the first case (r!ln c\ 2 « 1), we have 
~ ~ 

S exp {- ~ + !In c I~} dS :::::; S e-r!is dS :::::; ~ . 
r · y S S /)'lr r S'f, r 

(16a) 

In the second case (r!ln c\ 2 >> 1), we obtain, except 
for the factor multiplying the exponential, which does 
not affect the subsequent results, 

~ exJ{- :_ +!Inc! (r ~ S)} dS ~ exp {!Inc!r- 2r'h\ln c! 'lo}. (16b) 
o . -ys S''' 

Considering Eqs. (16), we rewrite Eq. (15) as 

1/llncl 2 _ 

- [ ..., c'x'(l'2+1)' 
I]) ~ -NT L r' - ~ x'(fZ + 1)' 

r=4 r=i/lln cl2 

X exp {-2r'"\lnc!'h}. (17) 

The radius of convergence of the series (1 7) is deter­
mined by the condition xc(-12 + 1) = 1, from which the 
critical temperature is found as the singular point of 
the thermodynamic potential. Thus, for rigidly held im­
purities the critical temperature does not depend on im­
purity concentration. From Eq. (17) it is seen that the 
derivative of the thermodynamic potential with respect 
to temperature is finite at the critical point. 

For small concentrations of nonmagnetic impurities 
(1- c « 1), the second sum is exponentially small rela­
tive to the first. 

These results can be understood intuitively by 
recognizing that for any concentration, the finite, al­
though exponentially small, probability of occurrence of 
an arbitrarily large compact region composed wholly of 
magnetic atoms, plays a fundamental role in the exis­
tence of the phase transition point. A phase transition 
with a temperature equal to that of the pure substance 
is possible in such regions, although the contribution of 
such regions to the integral is exponentially small, in 
agreement with Eq. (17). 

There remains unexplained the question of whether 
T C• for small concentrations of magnetic material, 
corresponds to the formation of a finite magnetic mo­
ment per atom, or whether this point represents the 
onset of infinite correlations in regions consisting of 
magnetic atoms, for infinitely small magnetic moment 
per site. 

The effective range of summation in the first sum in 
Eq. (17) is r :5. 1/!ln c! « 1/lln c\ 2 ; therefore the sum 
on r can be extended to infinity, and the series then 
summed. We thus obtain the heat capacity at small 
deviations from the critical temperature: 

( - T- T,) 
C ~ Nc2 ln \1- c +(12 + 1)-T~~ · (18) 

This formula agrees with the empirical expression 
found by Voronel' and Giterman. [aJ 

As is seen from Eq. (15), the regionS~ r can give a 
significant contribution only in the terms of the series 
for which r ~ 1/lln c\ 2 • But these terms do not change 
the heat capacity, since the effective range of summation 
in the first sum (which gives the main contribution to 
the specific heat) is of order r « 1/lln c\ 2 • Further, 
the terms for which r ~ 1/lln cl 2 do not affect the criti­
cal temperature. Thus in the region S ·~ r, the factors 
multiplying the exponentials in Eqs. (14) do not affect 
the results. 

In the opposite limiting case, c << 1, the terms with 
r ~ 1 give the principal contribution to the specific heat, 
as is seen from Eq. (17). This corresponds to a greatly 
weakened long-range correlation in the specific heat. 
We have no rule for calculating the specific heat in this 
limiting case, since all preceding calculations have been 
made under the assumption that r » 1. 

If the ions are in thermal equilibrium, it is possible 
to use very rough qualitative considerations showing 
that the phase transition temperature decreases with 
increase in concentration of nonmagnetic impurities. 
For a qualitative estimate, we assume that the deviation 
from a random distribution is small, even in this case. 
In the zeroth approximation, making a statistical aver­
age over the random distribution of impurities, we ob­
tain in place of Eq. (2), 

(19) 

where grm is the number of graphs of length r with m 
self-intersections. Since graphs cannot traverse the 
same line twice, the number of self-intersections cannot 
exceed r/2. On the average,~ grmC-m = grc-m(r) 

m 
and m(r) < r/2. For larger, the quantity m(r) can be 
written as m(r) = ar- {3(r)r, where 0 <a< Yz, and 
{3(r) -0 as r- 00 • With these considerations, one can 
write Eq. (19) as 

(20) 

The critical point is determined from the relation 
c1 - O!xc = f2- 1; that is, with a decrease in concentra­
tion of magnetic impurities, the transition temperature 
decreases. The Curie point falls more slowly than ac­
cording to the self-consistent field theory, in which 
T c = cT~, where T~ is the Curie temperature of the 
pure substance. This is in qualitative agreement with 
experiment. [sJ 

In conclusion, the author considers it his pleasant 
duty to thank V. G. Vaks, M. Sh. Giterman, A. I. Larkin, 
V. M. Nabutovskit', and especially G. V. Ryazanov for 
fruitful discussions. 
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