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The propagation of strong electromagnetic waves in a semiconductor is investigated in the case when 
the effective electron temperature is not a unique function of the incident-field amplitude. The problem 
is solved for weak damping of the waves. A qualitative investigation, using a model is performed for 
arbitrary damping. It is shown that under certain conditions the reflection coefficient becomes an oscil­
lating function of the incident-field amplitude. The results can easily be applied to a plasma. 

WE have previously investigated nonlinear effects 
produced in the propagation of electromagnetic waves 
in a semiconductor when the electron gas is heated by 
an alternating magnetic field propagating in the sam­
ple. [1J It was assumed there that the electron tempera­
ture is a single-valued function of the field. Yet, in 
many cases this may not be so, and qualitatively new 
effects result. The present communication is devoted 
to the investigation of these phenomena. 

The complete system of equations describing the 
propagation of strong electromagnetic waves in a semi­
conductor consists of the wave equation and the equa­
tion for the determination of the temperature ([1l). For 
simplicity we assume that the wave propagation and the 
magnetic field are directed along the z axis. We con­
fine ourselves to the normal skin effect, since it can be 
shown that the phenomena considered in the present 
communication do not appear in the limiting case of a 
strong anomalous skin effect. 

According to formulas (1.19), (1.21), (1.22), and 
(3.1) of [1l, the complete system of equations of the 
problem has the following form: 

A(v)(v-1) =B(u)u2, 

rPE I dz2 + k'e (v)E = 0. 

Here v = 6/T, e is the electron temperature, T the 
lattice temperature, u the modulus of the electric 

(1) 

(2) 

field E, k = w/c, and w is the frequency of the incident 
field. By E is meant E =Ex± iEy-the field of the 
normal wave. For concreteness we shall consider a 
resonant normal wave E =Ex+ iEy· The nonresonant 
wave is investigated in similar fashion. A(v) describes 
the transfer of energy from the electron gas to the lat­
tice and takes the form [1J 

(3) 

where Ao and r are determined by the mechanism of 
this transfer. If there are l such mechanisms, then 

l 

A(u)= ~Ao;vr;-1 • (4) 

The nomenclature for q is given in [ZJ, and the coeffi­
cient Aoi is given in [1J. 

From formulas (1.11) and (1.22) of [IJ we obtain for 
B(v) and t:(v) the expressions 

(5) 

(6) 

where w0 is the nonlinear frequency, v(x) is the fre­
quency of the collisions causing the momentum trans­
fer, x = E/T, E is the electron energy, WH = ieiH/mc, 
e is the electron charge, m is the electron mass, H is 
the external magnetic field, and £ 0 is the dielectric 
constant of the lattice. If there are p mechanisms for 
momentum transfer, then 

p 

v(x)=~v;(x). 
i=i 

(7) 

Formulas (1)- (6) were obtained under the assumption 
that the electrons have a Maxwellian distribution, that 
is, the electron concentration is so large that the dis­
tribution over the energies is controlled by the inter­
electron collisions. 

The equation for the temperature (1) for a specified 
value of u can, in general, have several solutions. 
This was first noted by A. Gurevich,[3 J who presented a 
physical explanation of this phenomenon. 

We rewrite (1) in the form 

D(u) = u•, (8) 

where D(v) = A(v)(v- 1)/B(v). If Eq. (8) has several 
roots, then there must be among them such roots v(u) 
which decrease with increasing field u (see Fig. 1). As 
seen from (8), this takes place if the function A(v) in­
creases slowly or B(v) increases sufficiently rapidly 
with increasing v. This is tantamount to stating that 
the electrons do not have time to transfer to the lattice 
the energy acquired by them from the field. It is ob­
vious that such a state is nonstationary. The only stable 
branches of the curve v(u) are those in which v in­
creases with u, that is, dv /du > 0. It is seen from (8) 
that the stability condition can also be written in the 

form dD(u) I du > 0. (9) 

630 
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FIG. 1. 

The transition from the stable branches to the unstable 
ones occurs at a temperature determined from the equa­
tion dv/du = oo or the equivalent equation duldv = 0, or 

dD(v) I dv = 0. (10) 

The field u corresponding to the transition of the tem­
perature from one branch to the other, is determined 
from (8) by substituting in it the roots of Eq. (10). 

Let us consider now the incidence of a plane electro­
magnetic wave from vacuum on the half -space z > 0 
filled with a semiconductor. For concreteness let us 
assume that in the case under consideration Eq. (8) has 
three roots (see Fig. 1). As seen from the figure, the 
curve describing the dependence of the temperature and 
the field has two stable sections, AC and DF, and one 
unstable section CD. 

Let us stop to discuss the change of the temperature 
of the electron gas as a function of the electric field 
u0 = u(+O), which in turn is determined by the ampli­
tude of the field E0 incident from the vacuum. When 
the field increases adiabatically from zero, the elec­
tron temperature, as a function of the field deep in the 
sample, is described by the lower branch AC so long 
as u0 < Ub· At u0 = Ub the temperature of the electron 
gas on the boundary v0 changes abruptly from v3 to v4, 

bypassing the unstable part of CD the curve. With fur­
ther increase of Uo, v0 moves to the right along the 
curve DF. The electric field attenuates with increasing 
distance z from the boundary of the semiconductor, ow­
ing to dissipation, to zero as z- oo. The electron tem­
perature decreases together with the field and tends to 
the value T. At a certain point z = a, the function v(z) 
changes abruptly from v2 to v1 , leading to a discontin­
uity in the dielectric constant E(v) at this point. Since 
an electromagnetic wave is reflected from a discontinu­
ity of the dielectric constant, the semiconductor behaves 
in the investigated case like a plate of thickness a. 

It is well known that the coefficient P of reflection 
from the plate into vacuum is an oscillating function of 
the plate thickness. The plate thickness a should be 
determined from the equation u(a, E0 ) = ua, which de­
termines the field at the discontinuity point. Thus, a is 
a function of E0 and ua, and consequently P oscillates 
with variation of E0 • If we now decrease Uo, then at 
u0 = ua the value of v0 again changes abruptly from v2 

to Vr The dependence of v on u is then described by 
the section of the curve BA, and the dependence of P 
on E0 is monotonic (see [lJ ). It will be shown that T 
depends on E0 via v0 • Consequently, discontinuities in 
v0 lead to discontinuities in T. 

Let us proceed to the calculations. We confine our­
selves first to weakly damped waves. In order for the 
waves to be weakly damped, the real part of E(v) should 
be much larger than the imaginary part, that is, we as­
sume that the dielectric constant can be written in the 
form 

e(v) =n2 +ia<P(a,v), (11) 

where the smallness of the parameter a« 1 corre­
sponds to weak damping. It is also assumed that n2 »a. 
The function ~(a, v) is of the order of unity. We shall 
assume that ~(a, v) can be represented in the form of 
a series 

w 

ID(a,11)= ~ a1- 1<D1(v). 
1=1 (12) 

The coefficients ~z(v) are also of the order of unity. 
It is seen from formula (6) that the dielectric con­

stant can be transformed to the form (11) in one of the 
following three cases: 

I. vI I WH - w I « 1. Expanding ( 6) in powers of v, we 
get 

wo2 
n2 = eo-----

<o(w-wH) 

I 
a=---, 

WH-W 
S .. v(x)x'i• 

1= --dx, 
e• 

0 

II. Cyclotron resonance, w = wH. We have 

n2 = eo, 

(13) 

(14) 

In order for the second term in (11) to be much smal­
ler than the first, the inequality w~ lwHv « 1 should be 
satisfied. 

III. wH = 0, wlv « 1. Under this assumption, the ex­
pansion takes the form 

n"l= eo, a=wl, 
.. s x'lz 

1= ---dx, 
0 eXv(x) 

00 

4 W<Jz il-l S x'i• 
<Dz=--- --dx 

3n''• w2 v'I•Jl vte•l• · 
0 

(15) 

In order for the expansion to be valid, it is neces­
sary to satisfy the inequality w~ I wv 0 « 1. 

We shall need in what follows the dependence of the 
dielectric constant on the modulus of the field u. To 
this end, it is necessary to substitute v as a function 
of u in formula (11). We introduce the following nota­
tion: Let cp(u) denote the function ~(v(u)) if v > v2 , and 
let zp(u) denote the same function if v < V3. In the new 
notation, Eq. (2) takes the form 

rPEI dz2 + k2 [n2 + iaQJ(u))E = 0 for v > v,, (16) 
rPE I dz2 + k'[n2 + ia¢(u) )E = 0 for v < v3• (17) 
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We can add to these equations the ordinary boundary 
conditions of electrodynamics at the point z = 0 

~-(-:-0) = BE(+O) 
oz oz E(-O)=E(+O), (18) 

and at the point a: 

BE(a- 0) BE(a + 0) 
&z = ----az-' E(a-O)=E(a+O). (19) 

If v0 < v3 , then e:(v(u)) is a single-valued function of 
u. This case was considered in detail in [lJ. We shall 
therefore assume directly that v0 > v2. 

To solve Eqs. (16) and (17) we shall use a method 
similar to the method of varying the constants. We 
seek a solution of (16) and (17) in the form 

E = E0(eih' + Pe-i"'), z < 0, 

E = wf(z)eikm + w2(z)e-ikm, 0 < z <a, 

z> a. 

(20) 
(21) 
(22) 

The structure of the field in (21) takes account of the 
fact that there are both an incident and reflected wave 
in the region of space 0 < z < a. 

Let us obtain equations for w1(z), w2(z),' and w3(z). 
Substituting (21) in (16) we get 

[ d'Wt dWt J . - · + 2ikn- + ik2atp(u)w1 eikn' 
dz2 dz 

[ azw. dw2 J . + --2ikn-+ik"atp(u)w2 e-••m=O. 
dz2 dz 

(23) 

We expressed the field E in terms of two unknown 
functions of w1 and w2. Inasmuch as now one unknown 
function is expressed in terms of two, we can impose 
additional conditions on them. We stipulate that the ex­
pression in the first square bracket in (23) vanish. It 
follows from this that the expression in the second 
square bracket vanishes. Ultimately we get for W1 and 
W2 the system of equations 

d"wt dw1 
dz"- + 2ikndz + ik2aq>(u)w1 = O, (24) 

d2w2 dw2 
dz"- - 2ikn dz + ik2atp ( n) w2 = 0. (25) 

Substituting (22) in (17) we get for w3 the expression 

d"wa dwa -.-+ 2ikn- + ik"a¢(u)wa = 0. 
dz" dz (26) 

Equations (24)-(26) are best solved by successive 
approximations in a-. We must bear in mind the follow­
ing circumstance. When a = 0, the quantities wz 
(l = 1, 2, 3) are constants. When a differs from zero, 
the wz vary like functions of z, depending on the small­
ness of a, that is, it can be assumed that wz (z) 
= wz (akz). It follows therefore that differentiation of 
wz with respect to z increases the order of smallness 
of wz, and integration lowers the order of smallness of 
the quantity, that is, we have the following estimates 

(27) 

We confine ourselves in the calculation to terms of 
order a. We write wz in the following fashion: 

(28) 

and we seek uz and Sz in the form 

We note that the expansion of u2(z) begins with a term 
that is linear in a, since the jump causing the appear­
ance of the reflected wave vanishes when a = 0. Calcu­
lations show that in order to find quantities of the or­
der a in the expansion of e:(v) it is necessary to retain 
terms of order a 2• Substituting (28) in (24)-(26) and 
taking (27) into account, and also the boundary condi­
tions (18) and (19), we obtain with the aid of an itera­
tion method the following first- and second-approxima­
tion values: 

Ut (O) 

2n s du sf•> = s~•> = J.•> = 0, 
z=- ka ~1 (u)u' 

uf0l(o) 

,.,(11) 

2n S du Sf> =-..::.._-2na, 
z-a= -lea lflt(u)u' 2k 

uf0l(a) 

(0) 

S\'l'z)=Sltl(O)-~ r [-1-~ d(tpt(u)'1+ 4Jl2(u) l du, 
1 k J 4n2 u du q>1 (u)u .. 

u\0)(0) 

U3(0) 

s~i)(z)= s~>(a)-~ s [-1- 1 d(lflt(u)u) + 1P•(u) ]au, (29) 
k 4n2 u du 1jl1 (u)u 

u\O)(u) 

ll\1> (z) = u\1> (O)tp1 (u\0>) u\0> (z)/q>t (u\0> (0)) ul"> (0), 

u~1> (z) = u~1> (a)1j>1 (u~•>) u~•> (z) /'ljlt (u~0> (a)) u~•> (a), 

u~1l(z) = u~ll(O)uf' (0)/u\0> (z). 

The procedure described above for finding the solu­
tion is not applicable in the direct vicinity of the point 
v2• Indeed, it follows from (29) that 

a(!{=- kall>t(v)u\">. 
dz 2n 

Differentiating this expression, we can easily show that 

d"ut(tl k2al <•> [ u\0> dll>1 ( v) dv J 
--=-ll>t2 (v)u,- 1+----- . 

dz2 4n2 11>1 (v) dv du 
(30) 

However, near the point v2 the derivative dv /du in­
creases without limit, in connection with which the ex­
pansion (28) becomes meaningless. 1> However, near 
the point v = v2 Eq. (16) can be solved by an iteration 
method, using the smallness of (v- v2)/v2. To this end 
we determined first the dependence of v on the coordi­
nate z near the point v = v 2. 

Expanding D(v) in powers of v- v2 (see formula (8)) 
and recognizing that dD(va>/dv = 0, we get 

(31) 

The prime denotes differentiation withrespect to v. 
The modulus of the field near the point a has no singu­
larities whatever, and therefore u(z) can be expanded 
in powers of a-z. We ultimately have 

V-IJ·=v<a-zJ''•, v=2[D"~:.> I dud;> lr- (32) 

Expanding <P1(v) in powers of v - v2 and substituting 

2) Allowance for the thermal conductivity in the balance equation 
(I) leads to a finite but large value of dv/du. This circumstance is ines­
sential in what follows. 
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this expansion into the equation for determining w 1 and 
Wz, we get 

d2w1,2 , . dw1,2 . [ dcD1 (vz) , l (33) 
dz2 ·± 2Lknd;- + 1ak2 cD,(vz)+v--dv- (a- z) hj w1,2 = 0. 

Using the smallness of the second term in the square 
bracket in (33), we solve it by successive approxima­
tions with respect to this term. The result is 

{ ak } ak 
w,,z = A,,zexp + 2n cD1 (vz) (z- a) + --;;:-cDt'(v2 ) 

[ Zla I ak IJ''• 
X D" (v2) A,,, 2n cDt(vz) i Al.2 

X [ f (a- z) '/, dz- e+2ikm ~ e±2ihm(a- z) 'f, dz'l. 
a a ·' (34) 

The solution of (33) can be made continuous at the 
point z = a with the solution of (26) with the aid of the 
boundary conditions (19), and it is possible to go over 
to the solution of (24) and (25) when z is to the left 
of a. With this aid of this procedure (which will not be 
presented here, owing to its complexity), we can de­
termine all the arbitrary constants that enter into the 
solutions. In particular, we can find the reflection co­
efficient P. Here, naturally, we must use also the 
boundary conditions (18). The expressions for the ar­
bitrary constants which enter into the solution are 

ul"> (0) = 2Eo/ ( 1 + n), u~0) (a)= u\0) (a), 

(I) n- 1 u,<o)z (a) . , 
u, (0)= -~--c------[cD1 (u 1 )- (jl1 (v2)]sm2kna, 

4w (n -t- 1) u\'J (0) 

A 1 = u, (a)+ a [u1 (a)+ ikS1 (a) u1 (a)) 

u\"> ( 0) (1) (o) 

Az= a u<f>(a) u, (O)exp{-ikS2 (0)}, (35) 

(11 1 {n-1 ui0
>
2 (a) 1 S1 (0)= · -----[cD1 (v2)- cD1 (v1)] cos2kna- cD1(vo) , 

2n (n -1) k 2n u<0) 2 (0) 

(!) 1 [ n-1 u\0)2 (a) , J 
S3 (a)=-- [cD1 (v2)- cD1 (v!)] 1 +---.--cos2kna 

4n'k n + 1 u~21 (0) 

u (O)(a) 

___ 1 __ cD,(vo)-1_ 1~ f_1_,.!_ d(cp,(u)u) +y_:_~J du. 
2n(n + 1)k k L 4n2 u du cpt(u)u 

u.~O)(O) 

The reflection coefficient is described by the following 
formula 

_ 1-n ta{ cDt(v0 ) ua' . } 
P- ----. ----- + -{<I>t(v!)- QJ1(vz)] e2•kna . 

1 + n n ( 1 + n )2· 4E02 (36) 

It can be shown that if dv/du is finite at the discontin­
uity point, then formula (36) still remains in force. It is 
seen from (36) that the reflection coefficient is a peri­
odic function of a. 

We now proceed to determine the dependence of a on 
the amplitude of the incident field. As already indicated 

above, the thickness a is determined from the equation 
that the amplitude of the field at the point a be equal to 
the field ua. The equation for finding a, as follows 
from (21) and (34), is 

lA, + Az exp {-2ikna} I= lla, 

with A1 and A 2 determined by formula (35). 
We shall seek a solution of (37) in the form of a 

power expansion, starting with a -l: 

a= a_,a-1 + ao+ a,a + ... 

(37) 

(38) 

We shall retain in this expansion only the first two 
terms, since the third term adds to formula (36) an in­
essential correction of the order of a 2• Substituting 
(38) in (37), we get a_ 1 

n vf dlnD(v) 
a-1 = k J cD1- 1 (v) dv dv. (39) 

v, 

In finding a_10 we have gone over in all the expressions 
from integration with respect to u to integration with 
respect to v, using formula (B). The next approxima­
tion yields an equation for the determination of a 0 : 

d = qsin (d+ b), (40) 

where 

d = 2knao, 
2kna_1 

b=--, 
a 

1- n2 u.Z <I>(v2)- cD(v1 ) 
q= 

4 Eo2 <D (vo) 

It is seen from (40) that d (meaning also a 0 ) is a peri­
odic function of a_1 a - 1 , and consequently the reflection 
coefficient P contains all the harmonics in the Fourier 
expansion in a_ 1 a- 1 • An exception is the case n = 1, 
when, as follows from (40), q = 0 and a= a_1 a-\ 

Let us investigate Eq. (40). A simple analysis shows 
that the equation has one root at lq I :S 1, and a finite 
number of roots when lq I > 1. If I q I > 1, then the only 
root of this equation with a physical meaning is the 
smallest one, since a wave reaching the point a deter­
mined by this root transforms the semiconductor in the 
region z > a from a regime corresponding to the upper 
branch into a regime corresponding to the lower branch. 
It follows therefore that none of the transitions caused 
by the other roots can be realized. In the general case, 
Eq. (40) must be solved graphically, but when lql < 2/e 
it can be solved by expansion in a Lagrange series.c 41 

When lql < 2/e, the reflection coefficient is reduced to 
the form 

1- n ia r <IJ,(vo) Zla2 ~ 
P=---- +--<D1 (v1)-<D,(vz) LJ B, 

1 + n n c (1 + n) 2 4Eo2 l~-oo 

Here 

{ 2iknla_1 }] 
xexp --- . 

a 

~ 'Qlk, 1";>2 
:.=l-1 

B 1 = z; Q1." 1<::,0, 
1.~111+1 

1 + 2} 'Q,.. I= 1 
1.=0 

(41) 

Qlk=(-1)(k-l+i)l'lk-1qk/2A( k-~+i )J(k+~- 1 )!; 
The prime at the summation sign denotes that the sum 
includes only terms containing k with parity l ± 1. 
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u The value of a must be determined from the condition 
u2 IE(a)l = lu2 1 = ua. Alternately, using (46), we get 

u, 1- 4Eol";-exp{ika y-;} . \ = u •. 
( 1 + l'ez) (l1ez + l'ei) + O'ez -l'ei) ( 1 -l'ez)exp{2ika l'e2} ( 47) 

FIG. 2. 

Let us now find the period of the oscillations of the 
coefficient of reflection with respect to the amplitude of 
the incident electric field E0 • We denote this period by 
6E0 • It is obvious that it should be determined from the 
relation 

2kn 
--[a-t(Eo + 6Eo)- a_,(Eo)] = 2n. 

a (42) 

Assuming that 6E0 « E0 and expanding the numerator 
of formula (42) in a series, we get 

I da_1 
{JE0 = na kn--. 

dEo 
(4:J:) 

The quantity da_1 /dE0 can be obtained from formula 
(39). Ultimately we get for the period 6E 0 the expres-
sion 

I dinD(vo) 
6Eo = na<l>1 (v0) n2 • 

dE0 (44) 

The dependences of v0 on E0 and on other parameters, 
for various cases, and also of D on v0 are given in [lJ. 

We note that the period of the oscillations of the reflec­
tion coefficient does not depend on the field ua at the 
discontinuity point. 

It is difficult to solve a similar problem for the case 
when the nonlinearity in the wave equation is not small, 
but a qualitative investigation can be carried out by us­
ing the following model. Let the dependence of v on u 
have the form shown in Fig. 2. The transition from the 
upper branch (v = v2 ) to the lower branch (v = v1 ) is 
similar to that described in the case of weak damping. 
Then we have c(v) = c(v2 ) = £ 2 and c(v) = c(v1) = £ 1 when 
v = v1• In this case Maxwell's equation becomes linear 
both in the region z < a and in the region z > a, and its 
solution is written in the form 

E = u,[ exp {iky8;z} + P 1 exp { -ikVB;z} J, 0 < z < a, 

z>a. (45) 

Assuming that the field incident from the vacuum is of 
the form E = E0 (eikz + Pe-ikz), and making the fields 
continuous at the point z = 0 and z = a with the aid of 
boundary conditions (18) and (19), we obtain for the re­
flection coefficient P and for the other constants the 
following expressions: 

p = _0- y;-) (y; + y;.)+ (1-!- ye;) (y;- V~)exp{2ika y;} 

( 1 + l'ez) (Yez +Yet)+ (1-je2) (Yez -jei) exp{2ika je2} ' 

Ye2 -ye, -
P1 = -=--=-exp{2ikaye2}, 

Yez +Yet 

Ut = -----=:---
2Eo(Y-; + y;-) 

(1 + Yez) (ye2 + ye,) + (Yez -yet) ( 1-l'ez) exp{2ika Ye2} 

4E0 y-;exp{ikay;-} (46) 
( 1 + Ve2) (l'ez +Yet)+ (l'e2 -ye,) ( 1 -l'ez)exp{2ika l'ez} 

It will be convenient in what follows to introduce the 
notation ,;r:; = n1 + iK 1 and ..;r:; = n2 + i.K2 • If n1 = n2 = n 
and K1 2 ~ an, that is, the attenuation is weak, then for­
mula (46) follows from (36). On the other hand, if the 
attenuation K is of the same order as n, and kaK 2 > 1, 
then we can neglect in (47) the term with the exponen­
tial in the denominator, and we get for the determina­
tion of a 

(48) 

where 

, . _ f[(n, + nz) 2 + (x, + xz)2][(1 + n2 ) 2 -!- x22) ]''' 
F(x, Y.2, n1, nz)- L 2 nz + x22 

Expanding (46) in terms of exp (-2ikK2a), we get for 
the reflection coefficient P 

1-l'e2 4(l'ez- y;.-)y;-p = ----1- e-2kx2a e2ikn2a. 

1-!- l'e2 (je2 + ye,) (1 + l'e2) 2 (49) 

(50) 

The period of the oscillations OE0 is given by the 
formula 

(51) 

when K 2 ~ n2 the value of 6E 0 is of the same order as 
or larger than E 0 , and is likewise independent of ua. In 
this case the amplitude of the oscillating term decreases 
rapidly when the field increases by an amount on the or­
der of the period of the oscillations, unlike in (36), 
where the amplitude, by virtue of main assumptions, 
remains unchanged. Under different conditions imposed 
on nr. n2 , Kr. and K2 , Eq. (46) can be investigated analo­
gously. 

It is obvious that in order for the effect of the oscil­
lation of the reflection coefficient P as a function of E0 

to take place it is necessary that the wave be damped, 
and also that u0 > ua. Indeed, if the amplitude of the 
incident wave E0 is such that u0 < ua, then the ampli­
tude of the field at any point in the half-space corre­
sponds to the upper branch of the temperature and there 
is no discontinuity of v anywhere. On the other hand, 
if u0 > ua, then there is no damping and the field ampli­
tude deep within the sample is u = Uo and never reaches 
the value ua, that is, there will be no transition to the 
lower branch. This is seen also from the equation. 
Putting K1 = K 2 = 0, we get from (47) the following equa­
tion for the determination of a: 

cos 2knza 

_, 16E02n22u.-2 - (1 + nz) 2 (n2 + n1)2- (n2 - nt) 2 (1- n2 ) 2 

2(1 + n2 ) (n2 + n,) (n2 - n 1) (1-- n2 ) • (52) 
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This equation has a solutiQn if the right side of the 
equation is smaller than unity, that is, if the inequality 
Ec/ua < (1 + n1)/2 is satisfied. It can be usually shown, 
however, that to have Uo > ua it is necessary to satisfy 
the inequality E0 /ua > (1 + n1 )/2. Inasmuch as the last 
two inequalities are incompatible, it is impossible to 
determine a from (52), since the quantity a itself is 
meaningless in this case, that is, there is no effect of 
the oscillations. We note that it is possible to get rid of 
some of the limitations imposed above. 

In the beginning of the paper we assumed that the 
electromagnetic waves propagate along the magnetic 
field. The character of the calculation shows that this 
limitation is not essential. The results will be the same 
for an arbitrary mutual orientation of the magnetic field 
and the electromagnetic wave propagation direction. 

Besides the reflection coefficient, it is of interest to 
investigate also the thermal emf and other thermomag­
netic characteristics connected with the ambiguity of the 
electron temperature. It is obvious that by virtue of the 
fact that the temperature at the point z = a is discontinu­
ous, the thermomagnetic characteristics are likewise 
discontinuous. This circumstance makes it possible to 
determine a by direct experiment. We note that, gen­
erally speaking, owing to the finite fluctuation, the dis­
continuity from the upper branch to the lower one can 
occur at any point in the interval ua :5 u :5 Ub. The en­
tire analysis presented above remains in force here if 
we take ua to mean the field amplitude field at which 
the temperature of the electron gas goes over from the 
upper branch to the lower one. The discontinuity point 
itself should be determined by a theory that takes into 
account the transient of the electron temperature in the 
sample. However, in view of the fact that the period of 
the oscillations of the temperature with the field (see 
formulas (44) and (51)) does not depend on the field at 
the point where the temperature goes from one branch 
to the other, the main features of the effect remains un­
changed regardless of where the discontinuity takes 
place. The quantity ua can be determined by measuring 
the amplitude of the oscillations of the reflection coef­
ficient. 

All the obtained results can be transferred without 
modification to the case of a plasma. 

Let us estimate now the semiconductor and the plas­
rna parameters for which the foregoing assumptions 
are valid. Some of the results of the present article 
were obtained under the assumption that the nonlinear­
ity in the wave equation is small. Let us indicate when 
this takes place. 

We stop first to discuss formulas (14) and (15). In 
order for the nonlinearity in case II (formula (14)) to be 
small, it is necessary to satisfy the inequality w~ / wH v 
« 1, from which we get the following upper bound for 
the concentration: N « vH/47Tec. On the other hand, 
the concentration is bounded from below by the condi­
tion for the establishment of the electron temperature, 
which takes the form [5J 

N '> 1 T'l•v'l•m'l•s"v. 
4n 10e~ 

(53) 

(here s is the speed of sound and lla the frequency of 
collisions with the acoustic phonons). Putting 
m = 10-28 g, s = 105 em/sec, lla = 1011 sec-\ 

T = 10-15 erg, H = 102 Oe, and v = 10, we find that in 
order to satisfy both inequalities N must lie in the 
range 108 « N « 1011• In addition, in order for a sta­
tionary temperature to be established, it is necessary 
to satisfy the inequality wH = w « llee• where llee is 
the frequency of the interelectron collisions, given by 
the formula [5J 

(54) 

At the assumed values of the parameters vee 
= 1010 sec -1 and WH = 1010 sec-\ so that this inequality 
is also satisfied. 

In the case III (formula (15)) we should have the lim­
itation wg/wv « 1, hence w » w~/v and w « llee· 
Putting N = 1013 cm-3 , m = 10-27 g, T = 10-15 erg, 
v = 10, and v = 1012 sec -1, we find that w should lie in 
the interval 1010 « w « 1012, 

For a plasma, let us consider the case when WH = 0 
and the plasma is fully ionized, that is, v = llei "' llee 
(vei denotes the frequency of electron-ion collisions). 
For a fully ionized plasma, a temperature can always 
be introduced.[6 J Putting llee = 106 sec-\ w=105sec-\ 
and N = 109 em-S, we get wUvee w ~ 3 x 107• This 
means that the nonlinearity in the plasma is large and 
we must use formulas (46)- (51). 

Let us obtain now estimates for the relative period 
of the oscillations liE/E0. We start from the formula 
(51) and consider two cases. 

1) 1TK2/n2 « 1. This case corresponds to small non­
linearity and is realized in semiconductors. In this 
case it follows from (51) that liE/E0 = 7TK 2/n2• Deter­
mining n and K from formula (11) for liE/E0, we ob­
tain ultimately 

(55) 

Let us use formula (13) and assume that c0 is small 
compared with w~/w(w- wH). For case I we have the 
formula 

In case II (see formulas (14)) 

OE 2n''• roo2 

Eo =-3- WHv(v)eo" 

When N "' 1010 em - 3 and H "' 102 Oe, we get liE/Eo 
"' 10-2• Similarly, for the case III (formulas (15)) 

Eo 3 wv(v)eo 

Taking w = 1011 sec-\ v = 1012 sec-\ and w~ 
= 1022 sec-\ we get from (58) liE/Eo"' 10-2. 

(56) 

(57) 

(58) 

2) K 2 "' n2• This corresponds to plasma and cyclo­
tron resonance at large carrier densities and to a 
clearly pronounced skin effect in the solid. The real 
part of c is in this case much smaller than the imagi­
nary part. Under these assumptions, we get from (51) 
the relation 

l'JE / Eo - en - 1 - 22. (59) 

In conclusion we indicate that the present analysis, 
generally speaking, does not exhaust all the possible 
stationary regimes and yields no information on the 
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stability of the obtained solutions. 
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