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Electron tunneling through a structure consisting of a normal metal, dielectric, and superconductor is 
considered for the case when a sound wave passes through this structure. The frequency dependence 
of the excess current produced by the sound field is found. 

RECENTLY, a significant quantity of research has 
been devoted to the study of the tunnel current of super­
conductors subjected to the action of a sound field. [l-3 ] 

The problem in question took on special interest in con­
nection with the study of the effects of the action of 
phonons on the volt-ampere characteristics of super­
conducting tunnel diodes. [3 J 

The present research is devoted to the study of the 
tunnel current of a structure consisting of a normal 
metal, dielectric, and superconductor in the case in 
which a sound wave passes through this structure. The 
sound wave modulates the tunnel current at its fre­
quency, and as a result an effective tunnel current, 
which depends on the sound frequency, is added to the 
constant tunnel current. We shall study the volt-ampere 
characteristic of this current as a function of the sound 
frequency close to absolute zero temperature. 

1. The Hamiltonian of the considered system we can 
write as follows: 

H = Ho+H,, Ho = Hn +H,+H;nt, (1) 

where Hn and Hs are the Hamiltonians of the metals to 
the left and to the right of the barrier, and Ht and Hint 
describe the contact terms (see [ 4 l) and the interaction 
of the sound with the electrons, respectively. The latter 
have the values 

JJ1 = ~ ~ dr1 dr,[T (r1, r2 ) '¢+ (rt, t) cp (r2, t) + T' (rt, r,) cp+(r,,t) '¢ (rt, I)], 

Hint = ~ dr i'a~ Ua~ (x)'¢+(r, t)'¢ (r, t). 
(2) 

Here T is the amplitude of the transmission of the elec­
tron through the bax:_rier, uaj3(x) is the deformation 
tensor of the body, A.aj3 is a tensor whose components 
are equal in order of magnitude to the Fermi energy, 
and ljJ(r, t) and cp(r, t) are the electron field operators 
to the right and to the left of the barrier. 

We introduce the following functions: [5 J 

, , iSp{exp(iH0-r-iN"A)'¢+(r,t)¢(r,t)} 
G>(r,t,r,t )= n { ('JJ ."')} , "P exp t o't"- uvA 

t > t', 

(3) 
, , _ -iSp {exp(iHo-r-iN"A)¢(r',t')'¢+(r,t)} , t 

G<(r,t,r,t)- S{ ('JJ .N')} ,t>, p exp t o-r- t A 

where iA. = J3J.J., iT = J3 (J.J. is the chemical potential, J3 a 
quantity inverse to the temperature) and N(r, t) 
= 1f(r, t)ljJ(r, t) is the operator corresponding to the 
number of particles. Let us find the time change in the 
particle number operator to the right of the barrier. 
Using the equation of motion of the operator and the 

first formula of (2), we obtain the following expression 
for the tunnel current between two metallic specimens 
(after averaging over the grand canonical ensemble) 
separated by a dielectric partition: 

609 

2 
(lV (r, t)> = -h Re ~ dr' dr, dr2T (rt, r2 ) T' (r, r') 

t 

X ~ dt' [G~ (r2, t', r', t) cg! (r, t, r, t') 

- cxp {i( ic 1 - "A 2)} G~l (r2 , t', r',t + -r) G~l (r,t + -r, rt, t') ]. ( 4) 

The functions G :( (r, t, r 1 , t 1 ) can be found by means 
of the solution of the Gor'kov equation, obtained with 
account of the interaction of the sound wave with the 
electrons. [a] By means of this solution and Eq. (3), one 
can obtain the following expression for the correction 
6G>(r, t, r 1 , t 1 ) to the function G>(r, t, r 1 , t 1 ) that is 
linear in the deformation tensor: 

+oo d 
6G> (r t r' t') = e-iooot (" ~ eiw(t-t') ' ' ,, J 2tt 

-oo 

X~ dr"ia~Ua~(r")[g>(r",r', w)g>(r,r', w + wo) 

+ f>(r", r',w)f> +(r, r", w + wo)], (5) 

where g~(r, r 1 , w), f:((r, r 1 , w) are connected with the 

functions G:;;,(r, t, r 1 , t 1), F:((r, t, r 1 , t 1 ) by the following 
relations: < 

+oo 
G (r t r' t') = \ dw e-io>tt-t') g;; (r, r', w), 

§ I I I j 2rtl 
-00 (6} 

+oo 
F ( t r' t') = (' dtv e-iw(t-t') J~ (r, r', w). 

§. r' ' ' J 2nL :::> 
-00 

We substitute (5) in (4} and transform to the momen­
tum representation. We then get for the effective cur­
rent 

Cnn Aa~Ua0q~ (" (" (" (" (" do, do, 
Jeff (wo) = -=---- J dw J J d£1 d£2 .l .l --

y2(2n)2 (4n)2 

X [A<2>(p1 + q, w)A<2>(pt, w- wo) + B(pt, w- wo)B+(pt + q, w)] 

X A<'>(pz, w- wo)!z+ ( w - wo) [jc ( w- wo)- /z-((J))]. (7) 

.dere cnn = (27revFITI 2/Il.)N1n(O)N2n(O) is the conductivity 
of the normal tunnel current, Nlll(O), N2 n(O) are the cur­
rents of the electron states of the metals to the left and 
to the right of the barrier, u~ is the component of the 
displacement vector, and 

+ 1 
ft:2(w)= exp[+(flt,z-w)/T]-1 
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The functions A(p, w) and B(p, w) can easily be de­
termined if we equate the imaginary parts of the Green's 
function, found from (6), with the imaginary part of the 
retarded Green's function. It is easy to establish the 
fact that the following equations hold: 

A(p,w) =21mGR(p,w), B(p,w) =21mFR(p,w). (8) 

If we take it into account that for the normal metal 
A(p, w) = 21ro(w- ~p- Jl.), then in place of Eq. (7), we 
get, after carrying out the integration over ~ h 

Jeff (wo) = CnnA~~u~•q~ I dw \ dsp ~ dop 
12·2n J • • 4n 

X [A (p, w- wo)A (P + q, w)+ B(p, w- wo)B+(p + q, w)] 

xt.+(w-wo)!fc(w-wo)-k(w)]. (9) 

The resultant expression describes the tunnel current 
of the normal metal-dielectric-superconductor struc·­
ture, connected with the presence of a sound field of 
frequency w0 • We note that Eq. (9) has a very general 
form and is valid both for ideal superconductors and 
for superconductors containing impurities. 

2. Let us now consider the case in which we have an 
ideal superconductor to the right of the barrier. Using 
the expression for the retarded Green's function of 
superconductors, [sJ we get, in accord with what was 
pointed out above, 

in -- ---
B(p,w)= [6(w-1s2 +1'1')-6(w+1s'+L'1')]. (10) 

1£'+ A' 

We substitute (10) in (9) and carry out integration over 
~ and over the angles. Without account of the anisotropy 
of the electron-phonon interaction, we have, after sev-
eral transformations, (11) 

where 

w(w- wo) 
K(w, wo) = ----o======~===-

1 (w- Wo) 2 - 112l'w'- 1'12 

11' J 
( ) e(i-I<D-1) 

w w-wo 

+ 1 - -'-'-----'---~---[ l'(w-wo) 2 -112 1w2 -112 

w(w -- wo) 
11' J 

( ) e(1-j<D+j) 
w w-·wo 

l'w'- 112 + l'(w- w0) 2 - 1'12 
<!>±= 

(12a) 

e(x)={1, x>O 
0, X< 0 (12b) 

and n{3 = q[3/lql is a vector in the direction of propaga­
tion of the sound. 

Equations (11) and (12) for the tunnel current are 
greatly simplified if we make some assumption on the 
quantity q-the wave vector of the sound. We limit our­
selves to the practically most interesting case, when 
lqlvF » A. Then we get from Eq. (11) for T = 0, 

(13) 

for V >A. For V <A, we have Jeff(wo) = 0 (V is the 
shift in the Fermi level of the superconductor from that 
in the normal metal). Equation (13) can be expressed 
in terms of the elliptic integral; however, we shall 
present some limiting cases: 

Jeff( wo) = CnnA~~u~•n~ 
4 12/ivF 

X ~ v ;~ (TV'- A'. - : 0 In V + 1:' - 1'1' )T Wo ~ V- 11 

--- 11' v + 1V'- 11' 
21V'-L1'+-In , Wo~/1 

Wo 1'1 

3. Let us consider paramagnetic impurities. Taking 
into account the relation (8) and the fact that the retar­
ded Green's function is the analytic continuation of the 
temperature Green's function in the upper complex 
plane w, we can rewrite Eq. (9) in the following form: 

12 - +oo 
Jeff ( w0) = \---- Cnn Re ~ dw ~ d!;p 5 dop (Aa~ (p) u~0q~ 

(2n)' -oo -oo 

X{G(p, -i(w- w0) )G(p + q, -iw)+F(p, -i(w- w0) )F+(p+q, -iw)})av· 

-j,+(w-wo)[/1-(w-wo)-f,-(w)]. (14) 

In the latter formula, the angle brackets denote averag­
ing over the positions of the randomly distributed im­
purities. We carry out the averaging over the impurities 
by analogy with l7 ' 8 ' 6 l. Without repeating the calculations 
of[sJ, we can write down the following expression for the 
averaged values of the effective tunnel current: 

- Aa~Ua0n~wo't1 r [ u u+ 
Jeff(w0)=12 J dw Im-=:=-lm--c= 

lis w' 11- u' l'1- u+' 

1 1 J 
- Im l'1- u' Im 11- u+; . (15) 

_1__ = nmpF ~ [ 1 U1 (8) I' +_!S(S + 1) I U,(S) I' ]ao, 
T1 2n2 3 

_1__=nm~F 5[ jU1 (8)I'+.!_S(S+1)IU,(8)1']'P(P)do. 
T/ 2n2<Jl 3 

(16) 

while the following relation holds between w and u: 

w ( 1 1 ) 
~ = u i- T,L'1 l'1- u2 -' 

_1__ = _2_nmpFS(S + 1l} jU2(8) l'do, 
T, 24 (2n)2 

' (17} 

where U1(e), U2 (e) are the amplitudes of the exchange 
and non-exchange scattering of the electrons on the im­
purities, and S is the spin of the imJ:urity. 

In Eq. (15), w' = A[1- (TsAf213]3 2 represents a gap 
in the energy spectrum of the superconductor. To find 
the expression in the curly brackets, it is necessary to 
know the values of Im(u/v'1- u2 ), Im(1/~1 1- u2 ), which 
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always depend in significant fashion on the parameter 
1/T sA· Taking it into account that the quantities differ 
from zero when w > w', we can expand them in series 
in u- u' (u' is the value of u at w = w'). With the aid of 
the relations (1 7), we obtain for T sil » 1 

1 
Im---

11- u+2 

1/'f ( Ol + Olo- Ol' )·'" =- V3"[1-('t,L'i)-'f,]'l•('t,L'i)'h L'i e(Ol+Olo-Ol'), 

Considering the small shift V in (15) from the gap w', 
and taking the last equations into account, we have 

2l'2 Ol cr' [ ( Ol' )'h]-• ( Ol' )-'h Jeff(Olo}=-3-cnnA•~(p)ua0n~+sJ(Olo} 1- ~ !!: ;(19) 

(V- Ol'} 2 Olo2 4(V- Ol') 
J (Olo) = 2L'i -In , V-Ol' "'YOlo, 

SL'i Olo 

J(Olo)=~10lo(V-Ol')- Ol02 ln(1+21/ V-Ol'), V-ul<Olo. 
4A SL'i V •Olo 

We shall consider the gap-free case. As is easy to 
see, for 1/T sil = 1, the quantity w' = 0, i.e., the gap in 
the spectrum disappears. By using Eq. (17), we can 
easily see that in this case, 

Im-,--1 - = l'3 [ 2(0l + (j)~ r', 
l'1- u+2 4 L'i J 

Im--u+ = iT:3[ 2(0l+Ul()J'". 
l'i- u+2 2 L'i 

(20) 

By substituting the latter formula in (15) and consid­
ering small frequencies and shift, we get 

For sufficiently high concentrations of paramagnetic 
impurities, when T sil « 1, Eq. (17) gives 

1 ('t,L'i)2 ( Ol+Olo ) 2 

Im-l'-:::::1=-=u+=-2 = 11-('ts~f -L'i-- ' 
(22) 

and for small frequencies and displacements, we get 

- ffio't' 
] eff (Olo) ~ l'2 A•~(p) Ua0n~-- V[1 + ('t,L'i) 2]. 

lis 

In conclusion, I express my gratitude to A. A. 
Abrikosov and L. P. Pitaevskir for interest in the work. 
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