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The effect of violation of quasi-equilibrium in the active medium on laser radiation is investigated. 
Violation of quasi-equilibrium is considered with respect to energy (spectral inhomogeneity) and co­
ordinates (spatial inhomogeneity). The problem concerning the classification of multimode generation 
(MG) and the dependence of the type of MG on the type of inhomogeneity is formulated and solved. It 
is shown that the MG due to spectral inhomogeneity does not occur immediately above threshold and 
possesses a discrete spectrum; the MG due to spatial inhomogeneity commences immediately above 
threshold and possesses a continuous spectrum. It is found that in the case of spectral inhomogeneity 
the number of generation lines can increase as a result of appearance of new lines as well as splitting 
of old ones. 

BEFORE the onset of laser generation, the state of 
the medium can be regarded as in quasi-equilibrium: 
the total number ~ of elementary excitation of the 
electronic subsystem (excited centers, electron -hole 
pairs) is determined by the pumping N and is not in 
equilibrium, but the distribution of the excitations over 
the states depends only on lll . At the threshold value 
N = N1, lasing sets in. Further increase of N leads to 
violation of the quasi-equilibrium. We shall consider 
this violation for the spatial and energy distributions of 
the excitations, that is, the spatial and spectral inhomo­
geneity is due to the inhomogeneity of the field of the 
generating modes and to the finite velocity of excitation 
migration, while the cause of the spectral inhomogeneity 
is the presence of generating modes and the inhomo­
geneity of the spectral-line broadening. In quasi-equi­
librium, the stationary generation is of the single -mode 
type. Sufficiently strong violation of the quasi-equilib­
rium leads to multimode generation (MG). 

The present communication contains a formulation 
and a solution of the fundamental problem concerning 
the classification of stationary MG and the dependence 
of the type of MG'on the type of inhomogeneity. 

The following classification is heuristic: let the type 
of the modes that can generate be fixed. Then these 
modes are numbered in accordance with the frequency 
w in discrete steps of ~w. We raise the following two 
questions: 

1, Does the multimode generation set in in the case 
of sufficiently small ~w (i) practically immediately 
above threshold or (ii) when the pump N 2 exceeds N 1 
by a finite amount, that is, (i) is lim (Na- N1) 

~w- 0 
equal to zero or (ii) different from zero? 

2. If ~w is sufficiently small and N >Na, does gen­
eration occur (C) in a series of modes that are adjacent 
to each other, or in non-neighboring modes (D), that is, 
is the MG spectrum continuous (C) or discrete (D) as 
~w- 0? 

We shall classify the MG in accordance with these 
attributes. Four variants are conceivable (iC), (iiC), 
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(iD), (iiD). We emphasize that the classification is 
based on the behavior as ~w - 0. It is physically re­
quired that ~w be small compared with the width of 
the levels of the elementary excitations, that is, with 
the magnitude of the homogeneous broadening. 

The central problem is the establishment of the de­
pendence of the character of the MG on the character 
of violation of the quasi-equilibrium. We shall prove 
the following cardinal statements: 1) The MG due to 
the spectral inhomogeneity is of the type (iiD); 2) the 
MG due to the spatial inhomogeneity is of the type (iC). 
The proof is based on the generation condition at the 
frequency w: 

F(w) == B(w) -'Y(w) = 0, 

where B is the gain and y the losses. 
Let us prove the first statement. In the case of 

spectral inhomogeneity we have 

B(w) = ~ b(w, w')p(w')dw', 

(1) 

where b is determined by the interaction between the 
mode and the excitations, and p is a function of the 
spectral density of the excitations. The function b is 
analytic with respect to both variables (on the real 
axis), p is integrable, and y is analytic. Consequently 
F is an analytic function. [11 Therefore the condition (1) 
can be satisfied only at individual points [21 -proper-
ty (D). When N = N 1, a first -order tangency takes place 
between curve F and the axis at one point, and genera­
tion occurs at the frequency of this point. For MG to 
begin, it is necessary to have either a third-order tan­
gency or tangency at several points. But F is an ana­
lytic function of w and a continuous function of N. 
Therefore it is necessary that N change by a finite 
amount when the character of the tangency changes­
property (ii). 

Let us classify (D)-generation in accordance with 
the character of its occurrence. If the MG occurs as a 
result of a third-order tangency, then it begins in the 
form of a continuous splitting of one line. This case is 
possible only if the curve F(w) is symmetrical. If the 
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MG is the result of a first-order tangency at several 
points, it begins in the form of several lines, which are 
immediately separated by finite frequency intervals. 
Both cases were observed experimentally in spectrally 
inhomogeneous systems. [SJ We note that in gas lasers, 
where aw is larger than the homogeneous broadening, 
the condition that aw be small is not satisfied. In this 
case neighboring modes can take part in the gener;~.tion. 

We proceed now to prove the second statement. Let 
the spatial distribution of the excitations be determined 
by the parameter 11 = 1J(r). The quantity F is a func­
tional of 1J(r). Putting 

f}(r) = tj + Af}(r), ~ = 0, 

where the bar denotes spatial averaging, and expanding 
in powers of !l.1J in the kinetic equations, we can obtain 
in first approximation 

F(ro) = F(ro)B[-F(ro)] = { F(ro), F(ro) < O (2) 
0, F(ro)> 0. 

Here F is obtained from F by replacing 11 by 7i. The 
function F(w) is not analytic at the points w satisfying 
the condition F(w) = 0. It follows from (2) that genera­
tion takes place in the frequency region determined by 
the condition F(w) > 0; this is MG of the type (C). Fur­
ther, F = f [ w, 17 (N)] is a continuous increasing function 
of N (for fixed w), from which we get the property (i). 
MG of type (iC) is observed experimentally in a ruby 
laser, where only spatial inhomogeneity is present. 

Physically the difference in the manifestations of the 
spectral and spatial inhomogeneities is connected with 
the following. In the case of spectral inhomogeneity, 
the modes that are close to each other in frequency are 
"fed" by the same excitation in nearly equal amounts. 

In the case of spatial inhomogeneities these amounts 
may differ greatly from each other, owing to the fact 
that some of the antinodes of the neighboring modes 
may not coincide. In any case, generation begins at a 
frequency Wm corresponding to the maximum of F(w). 
With further increase of the pump, the generation in­
hibits the growth of the amplification. In the case of 
spectral inhomogeneity, this hindrance is manifest 
most strongly at frequencies adjacent to wm. There­
fore the new generation frequencies are "repelled" 
from Wm and the resultant generation spectrum is 
discrete. In the case of spatial inhomogeneity, the de­
celerating action of the generation is manifest more or 
less equally at all frequencies. Therefore new genera­
tion frequencies are adjacent to wm and the generation 
spectrum turns out to be continuous. 

The foregoing results can serve as a criterion for 
the establishment of the character of the inhomogeneity 
from the character of the experimentally observed MG. 
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