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Scattering of an electromagnetic wave by molecules possessing dipole moments is considered by classical 
and quantum methods. Expressions are obtained for the total elastic and inelastic scattering cross sec­
tions. Frequency shifts are found which depend on the intensity of the incident wave. 

THE spectrum of a system located in the field of a 
strong electromagnetic wave undergoes an appreciable 
change. This leads to various observed effects. The 
intensities and frequencies of the absorption lines 
change.[1-3 l In the Raman spectrum[4J the frequency 
shifts relative to the frequency of the incident wave 
and the corresponding scattering cross sections will 
depend on the intensity of the incident wave. 

lq this paper we consider the motion of a molecule 
possessing a dipole moment in a strong radiation field. 
It is assumed that the electric field intensity E of the 
wave is small compared with the atomic field and the 
frequency w0 is considerably larger than the eigenfre­
quencies of the rotation of the molecules, but small 
compared with the vibrational frequencies. The change 
in the dipole moment d is due to the precession of the 
molecule (this change, as will be shown below, is 
- d~/ J w~) and to the polarizability (this change is 
- KE, where the polarizability K-10- 24 cm3 ). There-
fore, for sufficiently low frequencies wo«d.f.fK -0.3eV 
one can ignore the polarizability and consider the mole­
cule as a rigid rotator with a moment of inertia J and 
a dipole moment d of constant magnitude, whose inter­
action with the wave is of the form 

U = -dEo cos root. (1) 

The dipole moment will execute rapid precessional 
oscillations (of frequency w0), and the average kinetic 
energy of these oscillations will play the role of a po­
tential energy for the slow rotation. If the field is suf­
ficiently large, so that this potential energy is not small 
compared with the energy of free rotation, then the 
spectrum will change appreciably. 

Let us begin with the classical treatment. The equa­
tions of motion of a rigid rotator in the field (1) are of 
the form 

, Mz2 cos 9 dE0 
9 = -----coswotcos9 

J2 sin3 9 l ' 
(2) 

where (} is the angle between d and E0 , cp is the azi­
muthal angle, Mz is the conserved projection of the 
momentum on E0 , and the primes denote time deriva­
tives of the corresponding quantities. 

We write e(t) in the form 

dEo 
9(t)= 9o(t)+-1 2 cosw0t8in90 (t), 

roo 
(3) 

where (} 0(t) changes with a frequency small compared 
with w0 • In addition we assume that the condition 

(4) 

is satisfied. Substituting (3) in the second of Eqs. (2), 
and averaging over the rapid oscillations (of frequency 
w0), we obtain for (} 0 an equation with an effective po­
tential energy[SJ 

, 1 dU eff 
9o =----

/ dOo ' 
U Mf 1 rl'-Erf . 

eff = 21 . 20 +-4 -1 2 sm2 90, 
s1n uo wo 

(5) 

which can be integrated in elementary fashion: 

{ 2 }-'/, 
t= ~d6o J(e-U,err)' . (6) 

The constant E entering in (6) represents the energy 
of the motion of the rotator in the field of the wave 
averaged over the rapid oscillations. With the aid of an 
adiabatic invariant it can be related to the energy of the 
rotator for t = -oo if it is assumed that E0 (t =- oo) = 0. 
The form of the effective potential energy depends on 
the relationship between a = d2 E~ /4Jw~ and {3 = M~/2J. 
If a < /3, then Ueff has at the point rr /2 a minimum 

Uo= a+~. (7) 

If, on the other hand, a> {3, then Ueff has at the point 
rr/2 a maximum equal to U0 and two symmetrically 
placed minima 

(8) 

For E > U0 the "slow" motion is given by the follow­
ing equations: 

cos90 = l'1-a2 cn(u.,k1), 
b 

<p = IT (am u., n1,k1), 

a jb2 - a2 

dEo -- 11 1-a2 - 1-a2 

u,=-_-jb'-a2 t k,= v---, n,=--
y2lwo b2 -a2 a' 

a2 =~[1-1/ 1- 4a~J. b2 =~ [1 + 11 1- 4a~ l· 
2a e2 2a V e2 (9) 

If, on the other hand, U0 > E > U1 (under the condition 
a> {3), then the motion is given by the relations 

-- b 
cos a.= l'1- a2 dn(u2, kz), <p = Il(am u,, 11:!, k,)' 

aj1-a' 
(10) 

dEo -- 11 b2 -a2 b2 -a2 
Uz=-_-f1-a2 t, k2= v---, n, =---. 

~~ 1-- ~ 

The following notation[6 J has been used in (9) and (10): 
cn(u, k), sn(u, k), and dn(u, k) are elliptic Jacobi func-
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tions, am u is the amplitude of u, and n(x, n, k) is an 
elliptic integral of the third kind. The components of 
the dipole moment are of the form 

d 'd d . . cli-Eo . 
x ± l"li ~ e±•<P sm 6o + --cos ro0te±•<P sin 60 cos 6o, 

lroo2 

cli-Eo 
d,_ ~ d cos 6o - -1 2 cos root sin2 60• 

roo 

Let us calculate the intensity of the dipole radiation. 
Differentiating in these equations only the second terms, 
we obtain the following expressions for the total scat­
tering cross sections: 

=~~{a•+ (1-a2) (1-E(/cz) ]}, 
0 3c• J• K(k2) (11) 

when a >{3 and U0 >£ >U11 and 

a=~!_{a•+(b'-a2) [1- E(k,) ]} 
3c• / 2 K(k1) ' 

(12) 

when c > U0 • Here K and E are complete elliptic inte­
grals of the first and second kind. 

The usual expression for the total cross section for 
scattering by a rigid rotator (see, for example, [71 ) is 
obtained from (11) and (12) if one replaces in the latter 
the curly brackets by%. 

We present expressions for the cross sections which 
correspond to radiation of a given frequency. For a> {3 
and U0 > c > U 1 they are of the form (the scattered fre­
quencies are indicated in parentheses): 

where 

(I)_ 8n d•A 2 
On -, 3c• ]2 n ({I)= roo+ nQ,), 

( E(k2 ) J Ao=a2+(1-a2) 1--- , 
K(k•) 

(13) 

n• nJ.n { K'(kz) } 
An=A-n=-(1-a2) K•(k•) 1 _A2n,A.=exp -n K(k•) ,n:;;-1, 

__ K(k2) 

Bn= 
rq'1- a2 i { b [ II(n2k2) ] · J cos _ IT(amx,n,,k2)----x 

K(k2) 0 al"1- a2 K(k2) 

nn } ---x dn(x,k2)l"1+nzsn2(x,kz)dx, 
K(k2) 

(:14) 

n dEo -, -- Mz IT(n,, k2) 
Q,=---_-l1-a2, Q2 =----, 

K(kz) 1"2/(J)o la2 K(k,) 
II(n, k) == II(n /2, n, k), 

and K' (k) is K( -J 1 - k2 ). 

Analogous expressions are also obtained for the case 
£ >Uo: 

where 

<•>_ Bn d• C 2 
On -"3c4]2 n 

<•> Bn d• Dn2 

On ="3c4J2-2 -

(6) Bn d• D~n 
On =3e4]2-2-

( 2n+ 1 ' 
-ro={l)o+r.!•+--r.!s), 

2 I 

( 2n+1 )· {!)= roo-r.!•+-2-r.!s _, 

(15) 

C =a2 +(b2 -a2) [1- E(k,)] 
o K(~) , 

:rt2 nJ.n { 
Cn = C-n = -(b2 -a2) K'(k,) 1 _A2n, !..= exp 

__ 2K(hl) 

Dn=~~ ) cos{ b [ II(amx,n1,k1)-II(n,_,k,) x] 
2K(k1) 0 al"b2 -a2 K(k1) 

(n+'lzln } · -----x cn(x,k1) 1"1 +n1 sn2(x,k1) dx; 
K(k1) . 

(16) 
n dE0 -- Mz II(n.,_k,) 

r.!s=---=--l"b2-a2, Q•=·-·---. 
K(k1) l"2lro0 la2 K(k,) 

In formulas (14) and (16) fh, Oa, 03, and 0 4 are 
frequencies of the "slow" motion of the rotator which 
depend on the intensity of the incident wave. Let us in­
vestigate these quantities in certain limiting cases. If 
a < {3 and £ r:::s U0 , 

Mz y cli-Eo2 Mz 
r.!s=2- 1---- Q•=-, 

l 2Mx2roo2 ' l 

and when c » U0 , the energy dependence is the same as 
in the absence of the field: 

1/2r.!s = Q• = l'2e / !. 

If a> {3 and the energy £ is close to the minimum 
£ r:::sU1, 

dE0 1/ -M,ro0 
Q,=2-_-- v t-1"2--, 

l"2lw0 dE0 

dEo 
Q·=-_--. 

l"2lwo 

For £- U0 the frequency 01 vanishes as 
1/ln (1- L/U0)-1 , and Oa = Mz/J. 

Let us consider the scattering cross sections for 
certain special cases. If the strong inequality 

(17) 

holds, where £ 0 is the energy of the rotator in the ab­
sence of the wave, then the energy £ in the field of the 
wave is 

MdE0 
8= :::::: U1~U0• 

l"2Jroo (18) 

In this case inelastic scattering occurs principally 

n d• 8 ( u,) 
Oinel (wo+r.!2)=omel ,(wo-r.!2):::::3c•fiU. 1+-8- ' 

Oinel (roo+r.!.-Q,)=Oinel ({l)o-!:.l•+Q,) 

n d• e ( U1 \ 

:::::: 3C'fiUo 1 ----;-- }' (19) 

Q2 :::::: ~Eo ( 1 _ e- U, ), g, _ g, =_!Eo ( 1 _ e + U, : . 
~k~ ~ ~~' ~ . 

The total cross section is 
4n d• 8 

o:::::---.-
3c• J2 Uo ' 

whereas the elastic cross section is small 

2nd•(e)' 
OeJ :::::1 "3C':--:f2' Uo . 

If the parameters a and {3 satisfy the condition 
a ~-~~eo, 

(20) 

(20') 

(21) 
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then the energy in the wave E f':j E0 » U0, and the cross 
sections are of the form 

crHe}up(roo ± Q) =' 1/.cr, cr·el = 1/zcr, 

cr= ~~ ~· Q~2Y 218 (1- :J. 
Finally, for a sufficiently weak field when 

a<~~Bo, 

we have E f':j E0 ~ U0 , and 

2:n; d4 ( Uo \ 
crei =3C'Tz 1+3-e-/' 

it d4 ( Uo \ 
crinel (roo±Q)=gc..-]2 1--e-/' 

4:n; d4 ( Uo) cr=-- 1+-·, 
3c4 J2 e 

Actually cases (21) and (23) correspond to classical 
perturbation theory. 

(22) 

(23) 

(24) 

Let us go over to the quantum mechanical calcula­
tion. In the Schrodinger equation for the wave function 
of a rigid dipole in the field of an electromagnetic wave 

{.!!:.... r.12 - dE0 cos root }w = ih B'¥ 
2/ . 8t 

we carry out a change of variable 

dEo . e = 8o +-,-cos (J)ot sm e •. 
'CiJ02 

(25) 

Assuming condition (4) satisfied, we seek >It in the form 

In the equation for the "slow" function u we aver­
age over fast oscillations (of frequency w0). u can then 
be represented in the form 

u = exp{-tet/h}w(Ho), (27) 

where w satisfies an equation with the effective poten­
tial energy 

d2w { 2/e 1 m2 - 1/i 1 ( dE0 \ 2 } --+ -+-- -- --1 sin2 80 w = 0. (28) 
d903 h2 4 sin2 80 2 hro0 

We consider the solutions of this equation (this is 
Hill's equation) for low-lying states in the case when 
m ~ 1, and 

(29) 

This condition is equivalent to (17). It is convenient to 
express w in the following form: 

w = (sin80) lml+'i•z(8o), (30) 

and to solve the equation for z in the regions 80 « 1 
and rr - 80 « 1 where z is expressed in terms of La­
guerre polynomials. We then have 

These two solutions have a definite symmetry with re-

spect to the point rr/2. The energy eigenvalues are in 
the same approximation 

f!2 dE fl2 
Bmn ~ -~(2n+lml+ 1)+-lml (lml+ 1). (32) 

' J "f2hro0 2/ 

Making use of these solutions, we calculate the prob­
ability of the emission of a quantum (in first-order per­
turbation theory in the radiation field); this leads to the 
following expressions for the scattering cross sections: 

2n d'j ) . • · I' cr(l) = -- ! d8o sm BoWmn•Wmn 'I ' 
3c4 / 2 

(33) 

hro = flmo + 8mn- Bmn', 

cr(2) =_::_.!!.__I ) d8osin Bocos e.w;,±l, n•Wm,n !'' 
3c4 ·J2 ' (34) 

hro = hmo + 8mn- 8m±l. n'· 

In particular, the elastic cross section for scattering 
by the ground state (m = m' = n = n' = 0) is 

Ill 16:n; d• ( hroo )' 
crel ~ ~72 dEo ' 

which coincides with the classical result (20') if the 
quantum value of the energy (32) is substituted in it. 

For inelastic scattering (m = m' = 0, n = 0 

(35) 

- n' = 1) we obtain the same expression, and for the 
transition (n = n' = 0, m = 0 - m' = ± 1) the cross sec­
tion is large 

(36) 

The corresponding frequency is w f':j w0 - dE0 -12J w0 • 

An analogous expression is obtained for the transition 
which corresponds to the emitted frequency w f':j % 
+ dE0 vf2 J w0 • 

The results obtained are applicable to the scattering 
of a sufficiently intense electromagnetic wave with a 
frequency of the order of 10-2 -10-1 eV by a rarefied 
gas whose molecules have a dipole moment. Such mol­
ecules are, for example (the dipole moment in atomic 
units is indicated in parentheses): HF (1.91), HCl (1.08), 
KF (7.3), KCl (10.6), and KI (6.8). In spite of the fact 
that the cross sections for scattering by a rigid rotator 
are small ( ~d 4/J2), in the indicated frequency region 
they do nevertheless exceed by one or two orders of 
magnitude the cross sections for scattering due to the 
polarizability of the molecules. As has been shown in 
this paper, the shifting of lines in the Raman scattering 
depends essentially on the intensity of the incident wave 
if the interaction of the dipole with the wave is not small 
compared with the energy of the free rotation of the 
molecule (a .2: E0 ). 

We have considered the spectrum of Eq. (28) when 
condition (29) is satisfied. In the opposite limiting case 
( IJ. « 1) one can calculate the corrections to the energy 
levels of a free rotator in the usual way. These correc­
tions will give rise to a Stark effect in a rapidly varying 
fieldY 1 For example, 

1 d2E02 1 d2Eo2 

~e(l=O, m=O)=B /roo•' ~e(1,0)=w~· 

and in general 

d2E03 l(l+1)+m2 -1 
~e(l,m)= /(J)02 2(21+3)(21-1) 
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We note that the obtained results concerning the ro­
tational spectrum of a molecule in the field of a wave 
allow one in principle to consider the problem of the 
frequencies and intensities of absorption lines. 

In conclusion the author expresses his indebtedness 
to v. M. Galitskii for his constant interest in the work. 
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