
SOVIET PHYSICS JETP VOLUME 26, NUMBER 3 MARCH, 1968 

RADIATION TRANSPORT EQUATION FOR CORRELATED SCATTERERS 

Yu. N. BARABANENKOV and V. M. FINKEL'BERG 

Submitted February 28, 1967 

Zh. Eksp. Teor. Fiz. 53, 978-986 (September, 1967) 

A derivation of the equation for radiation transport in scattering media is presented. Underlying the 
derivation are the general equations for the average over an ensemble of values of the Green function 
for a scalar wave field (Dyson equation) and the bilinear combination of two Green functions (Bethe­
Salpeter equation). The mass operator and intensity operator (kernels of the Dyson and Bethe-Salpeter 
equations) are represented in the single-group approximation in which wave scattering effects by 
groups of correlated scatterers are taken into account. The extinction and scattering coefficients of 
the transport equation can be directly expressed in terms of the Fourier transform of the mass and 
intensity operators evaluated on the energy shell. The conditions of applicability of the equation are 
discussed. 

1. INTRODUCTION 

THE radiation transport equation plays an important 
role in the theory of multiple scattering of waves with 
its numerous applications, such as radiation equilibrium 
in stars, diffusion of thermal neutrons, resistivity of 
conductors, scattering of light by fluctuations of mater­
ial media, etc. For scalar waves the transport equation 
is of the form 

(s'lx)l(x,s)= -?d(x,s)+ )t(s,s')l(x,s')d2s', (1) 

where I(x, s) is the ray intensity of the wave field at the 
point x and in the direction of the unit vector s, K is the 
extinction coefficient and f(s, s') is the scattering coeffi­
cient. 

The transport equation (1) was first formulated by 
Khvol'son, and then by Schwarzschild. In its present 
form the equation was independently obtained by 
Chandrasekhar, [l] Rozenberg, [2 l and somewhat earlier 
by Sobolev[3 J who considered the special case of 
Rayleigh scattering. The derivation of the equation by 
these authors was phenomenological or semi-phenom­
enological and was based on energy balance considera­
tions. No explicit microscopic interpretation of the ex­
tinction and scattering coefficients that enter the equa­
tion was given. For nonabsorbing media it was only 
required that the relation 

?t = ) f(s, s') d2s, (2) 

be satisfied; this ensured that the principle of conser­
vation of energy was satisfied for Eq. (1). The coeffi­
cients K and f are sometimes related with the total and 
differential cross sections for scattering by an isolated 
scatterer. In this case relation (2) follows from the 
optical theorem for an isolated scattererl4 l. 

A number of works have appeared in recent years in 
which attempts have been made to provide a derivation 
of the transport equation and to evaluate the limits of 
its applicability. Dolin l5 l considered the scattering of 
narrow beams of electromagnetic waves by large-scale 
fluctuations of the index of refraction of the medium, 
assuming the waves to be small and the fluctuations 
weak (K and f are quadratic in the fluctuations). Even 

earlier Gnedin and Dolginovl6 l considered the problem 
of deriving the transport equation in their study of quan­
tum mechanical scattering by a system of independent 
scattering centers of a target. Later Borovo1 [7J and 
one of the authors [aJ derived Eq. (1) in the model of 
independent scatterers. An electromagnetic wave field 
was considered inl7 l and a scalar one inlal. 

Here we wish to consider a derivation of the trans­
port equation which generalizes the results of the cited 
papers above all in that it does not assume independence 
of the scatterers or a normal distribution law of the 
fluctuations of the index of refraction of the medium. 
We shall obtain expressions for the coefficients of ex­
tinction K and scattering f; these expressions include 
effects of correlation and multiple scattering of waves. 
The importance of taking into account cooperative ef­
fects in the transport equation has been noted by Rozen­
berg. [gJ However, so far this problem has not been 
solved in general form. 

Simultaneously with the derivation of the equation we 
refine the conditions for its applicability obtained in [5-al. 
Some of these conditions must be replaced by more 
stringent ones, whereas with some it will be possible 
to dispense. 

2. INITIAL EQUATIONS 

We take as the initial equations the general equations 
which are satisfied by the Green's function averaged 
over the ensemble ,'ll(x, x') = ( G(x, x')) and by the aver­
age double Green's function WJ(x, x'; y, y') 
= ( G(x, x')G(y, y')) of the scalar wave field ljJ(x). The 
unaveraged Green's function G(x, x') satisfies the equa­
tion 

(<:\x + ko2 +V(x))G(x, x') = 6(x-x'). (3) 

V(x) denotes the random effective potential which char­
acterizes the spatial distribution of the potential energy 
of the force centers in the quantum mechanical problem, 
and the distribution of the index of refraction in the 
acoustic problem. Analogously the constant k~ repre­
sents the energy of the particle E {n2/2m = 1) or the 
square of the wave number of free space. The equations 
for the average Green's functions are by analogy with 
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quantum electrodynamics called the Dyson equation11 : 

;§ =Go+ G,M;§ 

and the Bethe-Salpeter equation 

W = (;§ 0 ?§) + (;§ 0 "T§)KW. 

(4) 

(5) 

Two new operators, M-the mass operator, and K-the 
intensity operator, enter in these equations. 

In the theory of multiple scattering of waves Eqs. (4) 
and (5) were first formulated by Foldy[Io] for a model 
of isotropic noncorrelated point scatterers, and by 
Bourretl111 for scattering by fluctuations of a random 
effective potential V(x) with a normal distribution. The 
operators M and K were calculated by Foldy in the first 
approximation in the concentration n of the scatterers, 
and by Bourret also in the first approximation in the 
correlation function B(x, x') = ( V(x)V(x')), ( V) = 0. 
Subsequently Frisch extended Eqs. (4) and (5) to the 
case of a potential V(x) [121 with an arbitrary distribution 
and arbitrary correlations between the locations of dis­
crete scatterers. [3 J However, Frisch did not generalize 
the approximations for the operators M and K adopted 
by Foldy and Bourret to the case considered by him. 
Such a generalization along with a refinement of the 
conditions of applicability of the corresponding approxi­
mations has been carried out by one of the authors. [I4.il 

According to the results obtained in l14J, the mass 
operator M and the intensity operator K can under the 
conditions specified there be replaced by the first terms 
M1 and K1 of their expansions in the number of their 
correlation groups. In the case of discrete scatterers 
the operators M1 and K1 include effects of scattering of 
waves by groups of correlated scatterers. The number 
of scatterers in the group can be arbitrary. In the case 
of a continuous scattering medium these operators have 
the same meaning and the role of the scatterers is 
taken on by fluctuations of the potential. We call the 
operators M1 and K1 single-group operators, since they 
take into account only single scattering of waves by 
correlation groups. These operators for independent 
scatterers coincide with the approximation of Foldy, 
and Gnedin and Dolginov, and in the case of a potential 
with a normal distribution-with Bourret's approxima­
tion. 

It should be noted that the single-group operators M1 
and K1 have the important property of compactness. It 
consists in the fact that their kernels tend to zero when 
the distance between their arguments becomes large 
compared with the correlation length l. The rate of 
decrease of the kernels is determined by the behavior 
of the correlation functions for large distances between 
their arguments. 

For the purpose of bringing the presentation below 
close to the terminology accepted for the case of inde­
pendent scatterers, we introduce the concept of the 
specific operators Mo and Ko. We shall specify these 
operators by the relations 

(6) 

1>We write these equations in symbolic operator form. G0 (x-x') = 
-exp(ik0 lx-x'l)/47rlx-x'l denotes the retarded Green's function of 
Eq. (3) for V = 0 (free space). The sign .® denotes the direct or tensor 
product of two operators. 

where X1 is the coordinate of the center of one of the 
scatterers of the correlation group. The operators 
Mo(XI) and Ko(xi) are determined with the aid of expres­
sions obtained in [14] in which one must however consider 
the coordinate x1 fixed. In the case of independent scat­
terers the specific operators Mo(x1) and Ko(x1) go over 
into nT(xi) and nT(x1) ® T(x1) where T(x1) is the scat­
tering operator of an isolated scatterer with its center 
at the point x1. This circumstance makes it possible to 
interpret the operators M0 and K0 as scattering opera­
tors of certain independent effective inhomogeneities of 
the medium. 

3. CALCULATION OF THE AVERAGE GREEN'S 
FUNCTION 

In the case of a statistically homogeneous medium 
the Dyson equation (4) is solved by a Fourier trans­
formation. The F2urier transform of the average 
Green's function ;r;(p) turns out to be 

1 
~(p)= v (7) 

ko2 - p2 - M1 (p) 

For an isotropic medium the Fourier transform of the 
mass operator M1(p) = Mo(P, p) does not depend on the 
direction of the vector p. 

The conditions for the applicability of the single­
group approximation for the mass operator l14J allow 
one to make without loss of accuracy an appreciable 
simplification in calculating the Green's function :§. It 
turns out to be possible to replace in expression (7) the 
Fourier transform M1(p) by its value on the energy 
shell MI(ko). Formally this replacement is explained 
as follows. Seeking out the pole of expression (7) clos­
est top = ko and taking into account the inequalityl14l 
IMI(ko)l « k~, we solve the equation 

(8) 

by an iterative method. Taking into account the second 
iteration 

If the derivative is small 

ldM.! ap•i p~k, ~ 1, 

then we can confine ourselves in (9) to the first two 
terms. At the same time the fact that the derivative 

(9) 

(10) 

(10) is small follows from the conditions of applicability 
of the single-group approximation. 

For the following it is useful to explain the meaning 
of the described replacement of the Fourier transform 
of the mass operator by its value on the energy shell 
from the point of view of coordinate space. Calculating 
the Fourier integral, and omitting at the same time the 
third term in (9), we obtain 

.'!} (x- x') ~ -exp(ikelflx- x'l) /4nlx- x'l. (11) 

The effective wave number is 

ketf ~ ko- l'.f1 (ko) /2ko. (12) 

Let us now turn to the Dyson equation (4) and repre­
sent its solution in the form of an iterative series. Let 
us consider, for example, the third term of the series 
GoM1GoM1Go which we shall, for the sake of clarity, de­
pict by the diagram in Fig. 1, denoting the repeated 
arguments of the operators by x1, x2, x3 , and x 4. First 
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FIG. I. 
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we carry out the integration over X4 , assuming all other 
points to be fixed. By virtue of the compactness of the 
operator M1(x4 - x3) the positions of the point x 4 and of 
the center of the corresponding inhomogeneity are local­
ized in the neighborhood of the point X3 with a linear 
dimension of the order of the correlation length l. If 
the point of observation x lies in the region of 
Fraunhofer diffraction with respect to the above inhomo­
geneity, then the Green's function Go(x- x 4) can ap­
proximately be represented in the form 

Go(x- x,) ~ Go(x- xa) exp [ -ikosxx,(x4 - x3 ) ], (13) 

where the unit vector sxx is directed along the vector 
x - x3. Proceeding analogously in integrating over x2 , 

we obtain for the iterative term under consideration the 
expression M~(ko)G0GoGo. Summing all the terms of the 
iterative series transformed in such a way, we again 
arrive at the Green's function (11). 

4. TRANSFORMATION OF THE BETHE-SALPETER 
EQUATION INTO THE TRANSPORT EQUATION 

Equation (5) can be given a graphic physical meaning 
if one represents its solution in the form of an iterative 
series and introduces the specific intensity operator K0 • 

Let us consider, for example, the third term of the 
series 

( .'§ 121 "!§ ) Ko ( ;g 121 !!!) Ko ( .'§ 121 .'§), (14) 

in which the integration is carried out both over all re­
peated arguments of the operators and over the centers 
of two inhomogeneities. We represent the given term by 
the diagram of Fig. 2, associating the upper lines with 
the operators :§, the lower ones with ::J, the circles with 
four points with the operators K0 , and the fifth point 
within the circles with an inhomogeneity center. The 
diagram describes the successive scattering of waves 
by two inhomogeneities. 

FIG. 2. 

We substitute in {14) the Green's function (11). We 
shall make use of the graphic concept of the Fraunhofer 
diffraction region presented in the previous section, and 
write the Green's functions :§ in expression (14) approxi­
mately, in analogy with (13), expanding the exponents of 
their exponentials in a series relative to the inhomo­
geneity centers. Then, integrating over all repeated 
arguments of the operators, we arrive at a transformed 
expression of the form 

j' d3xz J. d3xt :§ (x- Xz) ;g (Y- xz) 

X Ku(ko5xx, kosx,x,; koSyx, kosx,x,) I :§ (x2- x,) /2 

where Ko is the Fourier transform of the specific inten­
sity operator Ko. Expression (15) corresponds to the 
diagram of Fig. 3 which is obtained from the preceding 
by making each foursome of points coincide with the in­
homogeneity center. 

FIG. 3. 

Further transformations of expression (15) can be 
carried out by a method presented in [aJ. Here we 
modernize the method of that paper with the aid of 
symbolic operator language. With this in mind, we 
introduce the functional space of the point x and direc­
tion s, and in this space-the operators 

( x-x') F0 (x,s; x',s')=j:§(x-x')/ 261 s---- 6(s-s'), {16) 
\ jx-x'l 

,;(x,s; x',s') = 6(x-x')Ko(koS,koS'; koS,koS'). (17) 

In addition, we introduce the operator 

R(z,s;x',y') =Ko(kos,koSzx•; k.,s,k~zy' );r}(z-x'):'9(z-y'), {18) 

which transforms a function of the points x' and y' into 
a function of the point z and direction s. With the aid of 
the Fo and R operators expression {15) can be written 
in abbreviated form as RFoR where R denotes a trans­
posed operator that transforms a function of the point z 
and direction s into a function of the points x and y. 

Other terms of the iterative series of Eq. (5) are 
transformed in a perfectly analogous way. In doing this, 
in the second term (;r; ® ~)Ko(:9 ® 3) the operator Ko 
is replaced by its Fourier transform Ko with arguments 
of the type kos. It corresponds to the diagram of Fig. 4 
The fourth term will be transformed into RFoTFoR. The 
corresponding diagram is shown in Fig. 5. 

FIG. 4. FIG. 5. 

After the described transformation, we sum all the 
terms of the iterative series under consideration. As a 
result we obtain for the double Green's operator W the 
representation 

{19) 

F denotes a new operator that appears in the summing. 
It satisfies the equation 

F = Fo + Fo1F. (20) 

The operator F plays an important role in the deriva­
tion of the transport equation and has a simple physical 
meaning. Let us note its principal properties. 

First, it satisfies the integra-differential equation 

(sY'x)F(x,s; x',s')= -xF+~ d2s"f(s,s")F(x,s"; x',s') 

+ 16~' 1\(x-x')l)(s-s'). (21) 
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The coefficients K and f are 

x = -Im Mo(ko, ko) / ko; 

' 
j(s, s') = -· -K0 (koS, koS'; koS, koS') 

16n2 

(22) 

Equation (21) is obtained from the integral equation (20) 
by differentiation. 

Second, the field intensity operators 

J(x; x', y') = 9JJ (x, x'; x, y') 

and the flux densities 

ll(x;x',y')= ~;cvx-'ii'y)x=y'IU'(x,,x'; y~,y') 

are expressed in terms of the operator F. The expres­
sions are of the form 

J(x; x', y') = J0 (x; x', y') + ~ d2s/(x, s; x', y'), (23) 

ll(x; x', y') = ll0 (x; x', y') + ~ d2s s/ (x, s; x', y'), (24) 

/(x,s; x',y')= ~ F(x,s; x'',s")d3x") d2s"R(x'',s"; x',y'), (25) 

where Jo and ITo are determined by the first term 
(.'§ ® ?§) of representation (19). Let us multiply Eqs. 
(23)- (25) by j(x')J(y') where j is the field source, and 
integrate over x' andy'. We obtain the field intensity 
J(x), the flux density II(x), and the function I(x, s) of the 
point x and direction s. It is natural to take this function 
to be the ray intensity of the scattered radiation in the 
sense that it satisfies the transport equation (1) with a 
source 

Q(x,s)== 1: 012 ~R(x,s; x',y')j(x')J(y')d'x'd'y' (26) 

and is related to the field intensity J(x) and the flux den­
sity II(x) by the relations usual in the phenomenological 
transport theory. 

5. THE TRANSPORT EQUATION AND THE OPTICAL 
THEOREM 

We have derived the transport equation (1) with the 
extinction and scattering coefficients (22). These coeffi­
cients should be related by relation (2). This relation is 
a consequence of the general optical theorem in the 
theory of multiple scattering of waves [15 l if it is expan­
ded in the number of correlation groups and one con­
fines oneself to the first term of the expansion. In addi­
tion, this relation can be verified directly. 

Let us note yet another important meaning of the 
optical theorem, which consists in the following. We 
have obtained the transport equation by means of the 
described transformation of the Bethe-Salpeter equation. 
From the point of view of the optical theorem this trans­
formation is in a definite sense the only one possible as 
soon as the operators M and K are chosen in the single­
group approximation, and the Green's function is chosen 
in the form (11). 

6. THE CORRELATION FUNCTION OF THE FIELD 
AND THE RAY INTENSITY 

The correlation operator of the field 9JJ - ( '§ ® ?9) is 
defined by formula (19). Multiplying it by j(x')](y') and 
integrating over x' and y', we obtain the correlation 

function of the field Bl/l(x, y). Thus, the calculation of 
the correlation function of the field reduces to the solu­
tion of the transport equation (21) with a 6-like source. 
If the distance lx- yl is smaller or of the order of the 
correlation length l of the effective potential V(x), then 
we find from (19) 

B,.(x,y)~ ~exp[-ikoS(x-y)]/(x,s)d2s. (27) 

According to (2 7) the ray intensity of the scattered 
radiation has the meaning of the spectrum of the corre­
lation function of the field. A similar type of relation 
was first established by Dolin [sJ in the special case of 
scattering of light beams by large-scale inhomogenei­
ties of the index of refraction. 

7. CONCLUSION 

The derivation of the transport equation which we 
have presented assumes the statistical homogeneity of 
the effective potential V(x). We have thereby formally 
excluded the case of a bounded medium. However, it is 
readily seen that the results obtained can be easily 
generalized to the case of a medium whose statistical 
characteristic change smoothly on a scale of the corre­
lation length l and of the wavelength Ao = 2n"/ko. [aJ Since 
the effective wave number keff differs little from ko, 
then in the geometric-optics approximation the rays 
become straight lines. All the formulas of Sec. 4 retain 
their validity if in the exponents of the exponentials of 
the Green's functions ;9(x- x') we replace keffiX- x'l 
by the integral 

lx-x'f 

~ kett(X' + Sxx•P) dp. 
0 

The generalization to the case of an electromagnetic 
field is also obvious. It reduces to changing the scalar 
function I(x, s) and the coefficients K and f(s, s') into a 
vector and matrix respectively. [1 • 9 J 

The conditions of applicability of the single-group 
approximation in the case of a normal distribution of 
the effective potential cited in[14 J coincide with the con­
ditions formulated by Andreev. [lsJ They differ from the 
condition d » Ao where d = K-1 is the extinction length 
cited by most authors in that they impose a limitation 
not only on the imaginary but also on the real part of the 
Fourier transform of the mass operator. 

In a number of papers one encounters also other 
conditions for the applicability of the transport equation. 
In these use is at times made of graphic concepts of the 
theory of diffraction of waves by an isolated scatterer. 
Thus, for example, Borovor [7 J postulates the condition 
n-1 / 3 >> a2/A.o, where a is the radius of the scatterer, 
starting from the usual concepts about the Fraunhofer 
region of diffraction. Conditions of this type appear, in 
our opinion, unfounded, since one cannot transfer auto­
matically the concepts of diffraction theory for an iso­
lated scatterer to an ensemble of scatterers. 

We would still like to dwell on the physical interpre­
tation of the obtained results. In Sec. 2 we introduced 
with the aid of group expansions the concept of inhomo­
geneities. In the approximation made their mutual 
effect breaks up essentially into two parts-a coherent 
and an incoherent part. The coherent effects are taken 
into account by the operators M1 and K1 , or by the coeffi-
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cients K and f in the transport equation; these depend on 
the correlations of the random potential or of random 
scatterers. The incoherent part of the effect of inhomo­
geneities manifests itself in the multiple scattering of 
waves in which the inhomogeneities appear as indepen­
dent inhomogeneities. The described situation is in 
agreement with the point of view of Rozenberg. [gJ 
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