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The stark effect in high-frequency stochastic fields in a plasma is analyzed theoretically. Relations are 
between the spectral line width and the electric field strength for the cases of stochastic oscillations 
and a superposition of regular and stochastic oscillations. It is shown that the stark effect in alternating 
stochastic and regular high-frequency or low frequency fields can be employed effectively to determine 
the main parameters of an unstable turbulent plasma. 

As is well known, strong high-frequency electric fields 
can become excited when instabilities develop in a 
plasma. A peculiarity of these fields is that they very 
rarely represent oscillations with fixed phase and fre­
quency, and are for the most part stochastic. Such 
fields can be excited in the plasma also by external 
sources, for example in the stochastic method of heat­
ing and accelerating electrons or plasma ions. Meas­
urement of the intensity of such fields is of consider­
able interest. Besides being of interest in themselves, 
these measurements are also important because they 
make it possible to determine directly a plasma param­
eter npkTe, which is important for many applications 
and wliich is connected with the field intensity by sev­
eral relations. By determining the field intensity from 
the half-width of the stark contour, it is possible to de­
termine npkPe directly. In addition, knowing np, we 
can also determine from these measurements T e· 

An advantage of this method for measuring the main 
parameters of the plasma is that it does not lead to 
plasma perturbation. Its efficiency increases with in­
creasing electric field intensity, and, starting with field 
intensity values ~2-3 kV/cm, it yields reliable re­
sults. To use this method it is necessary to find a rela­
tion between the width of the spectral line and the inten­
sity of the stochastic high-frequency fields. It is also of 
interest to determine in detail the contour of the spec­
tral line. In the presence of high frequency oscillations 
of frequency w, satellites spaced nw apart appear in 
the Stark contour. Thus, from the form of the contour 
it is possible to detect the existence of high-frequency 
oscillations and to measure their frequency. Since the 
form of the contour depends significantly on the degree 
of stochasticity of the oscillations, it also becomes 
possible to determine the character of the exciting os­
cillations. 

Whereas the Stark effect in external regular alter­
nating field has been investigated quite thoroughly by 
SchrOdinger, r1 J the particular case of monochromatic 
high frequency oscillations was investigated in detail by 
Blokhintsevr2 J and Mitsuk, r3 J the Stark effect in stochas­
tic high frequency fields, insofar as we know, has never 
been considered before. The purpose of the present in­
vestigation was to determine the shape of the spectral 
line due to the high frequency stochastic fields, and to 
derive relations between its half-width and the inten­
sity of the electric field. It is assumed here (an as-
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sumption which is satisfied in a larger number of ex­
periments) that the Stark effect in high frequency fields 
is much stronger than the stark effect due to internal 
Coulomb fields. As is well known, the theory of the lat­
ter has been well investigated by Holts mark, r4 J by 
Mandel'shtam and Sobolev, [SJ and by others. -The main 
investigations of the Stark broadening of lines in a 
high-temperature plasma were made by Kogan[6 J and 
by Kolb, Griem, and Schen, [?J while the nonstationary 
processes of pair collisions were taken into account by 
Vainshtein and Sobel'man. [BJ 

It must be noted that the recent experimental inves­
tigations have demonstrated the possibility of measur­
ing the intensity of high-frequency electric fields ex­
cited by external sources in a plasma, by means of a 
method based on the use of the stark effect in regular 
alternating fields. r3 , 9 ' 10l Preliminary measurements 
of the electric field intensity and of the value npkTe by 
means of the stark effect in irregular alternating fields, 
produced as a result of collective intereactions between 
an electron and a plasma, give results which are in 
good agreement with measurement made with the aid of 
other methods.r11 J We point out that the problem of de­
termining the shape of the spectral line in the case of 
the Stark effect in alternating stochastic fields is simi­
lar to a considerable degree with the well-known radio­
physics problem of determining the frequency spectrum 
of a signal which is modulated in phase or in frequency 
by noise.r12J . 

The simplest method of determining the contour of 
the spectral line is one based on the use of correlation 
functions. As is well known, the spectral density of 
emission is determined in accordance with Khinchin­
Wiener by expansion of the correlation function in a 
Fourier series or integral (for the discrete or continu­
ous spectrum, respectively).r 13 J In the case of a dis­
crete spectrum, it is determined by the relation 

'f T 

l(wn) = lim - ~ K(T)e-i"'•' d1:. (1) 
T-~ 2T -T 

The correlation function K( T) is here equal tor17 l 

t 

K(1:) = -;;pi[ljl(t+-T) -ljl(t)], ljl(t) =a~ E(t)dt, (2) 

01 is the constant of the linear Stark effect. 
We now consider the question of the Stark broaden­

ing due to oscillations excited when an initially-



STARK EFFECT IN HIGH-FREQUENCY STOCHASTIC FIELDS IN A PLASMA 571 

monoenergetic beam of electrons passes through a 
plasma. [141 As is well known, collective interaction 
causes in this case first excitation of oscillations at a 
frequency close to the Langmuir frequency, with a very 
narrow spectrum with respect to the wave numbers k 
(k ::>J W/Vbeam), and then, as a result of the reaction of 
the excited oscillations, the beam decelerates and its 
temperature increases. This starts the buildup of the 
neighboring part of the spectrum (with respect to k), 
and the total oscillation energy increases. In the 
steady-state turbulence state reached as a result of the 
reaction of the growing oscillations on the beam distri­
bution function, broad packets of waves with random 
phases are excited in the plasma, and the oscillation 
frequency remains as before close to the Langmuir 
frequency. Thus, the electric fields acting on the at­
oms and on the ions are a superposition of waves with 
specified amplitudes Ek and with random phases. 

An import circumstance for what follows is that in 
strong magnetic field wfi » wp (wH is the Larmor fre­
quency of the electrons, Wp is the Langmuir frequen­
cy), when the transverse motion of the electrons is for­
bidden, the most intensely excited waves propagate in 
the direction of beam motion; they are quasi-one­
dimensional. This can be seen also from the fact that 
the oscillation growth increment y ~cos 13, where 13 is 
the angle between the direction of motion of the beam 
and the direction of wave propagation (such a relation 
takes place, for example in the case when the elemen­
tary excitation mechanism is the Cerenkov effect). It 
is precisely such a quasihomogeneous character which 
is possessed by waves observed in a large number of 
experiments on collective interactions between beams 
and plasma. The one dimensional character of the ex­
cited waves simplifies the solution of the problem of 
the Stark broadening of the lines, for in this case it is 
legitimate to use the scalar law of addition of the per­
turbations causing the Stark broadening of the lines. In 
the case when the transverse components of the field 
Er are sufficiently large and the waves are not one­
dimensional, it is necessary to use the "vector law" of 
perturbation addition. This more complicated case, 
which is of undisputed interest, will not be considered 
here. 

Since the frequencies of the high-frequency oscilla­
tions are lower than the frequencies of the light radia­
tion, the perturbation due to these fields can be re­
garded as adiabatic, and consequently it does not cause 
any transitions between different states. Thus, in the 
case of the Stark effect due to the high frequency one­
dimensional waves, the function IJI(t) is equal to 

N E 
'¢(t) =a ~-" [sin(wkt+crk) -sincp.], 

k=1Wh 
(3) 

where <Pk = kxo + <Pok, <Pok is the random phase, and w 
is connected with k by the dispersion relation 

wp is the Langmuir frequency of the electrons, k the 
wave number, and a the De bye radius. 

Since k2a2 « 1, we have in first approximation 
N 

'¢(t) ~ _____<:_ ~Ek ['3in (wpt +cr•)- sincp.]. 
Wp k=t 

(4) 

(5) 

During the saturation stage, the intensity of the high 
frequency oscillations is maximal and is determined by 
a relation derived by Shapiro, [151 

Wp2 ( Wp/k) - v1 Wp3 
IE"I 2=4n2n,m- ~4n2n1m--, (6) 

k3 Vz - v, k4vo 

where v 0 and n1 are respectively'the velocity and the 
density of the beam electrons, and v2- v1 is the width 
of the "plateau" produced on the beam-electron distri­
bution function as a result of the reaction of the excited 
high-frequency oscillations on the beam electrons 

Vz = Vo [ 1 + ( :P 0'" J , 
The wave number k varies between the limits 

-; [ np Vo J k, =12 In -- a; 
nt VTe 

VTe and np are the thermal velocity and the density of 
the plasma electrons. 

In the case when the number of terms in the sum 
N- "'• the function IJI(t) is described by a Gaussian 
distribution and we can use for the calculation of the 
correlation functions the corresponding relations ob­
tained in the theory of phase or frequency modulation 
of the signal by noise. The correlation function for a 
finite number N, without assuming a Gaussian distribu­
tion, can be obtained by direct calculation. 

It is necessary to obtain 
"" 

K(,;) = exp i<l> = ~ e"''W(<t>)d<t>, 

N N 

<t> = a ~ ¢• = a.~.!!.!':_, [sin (wkt + cpk) - sin cr•l, 
k=1 A=i Wk 

where W is the probability of 4>. 
According to the Markov's method [6, 161 

N 

K(,;) = TJA.(1), A•(p)= ~ eir$,W1 ('¢•)d'¢•· 
h=i 

Here W 1 ( IJik) is the probability of IJik· Assuming that 
all the values of the phase <Pk are equally probable, we 
have for Ak(p) the following formula: 

1"' { E } A• (p) = - S exp ipa -" [sin ( w•t + <r•) - sin <r•l dcp• 
2n 0 Wk 

= lo [zpa~sinw•t], 
Ulk 

where J 0 is a Bessel function. Therefore 
N E 

K(,;) = fT lo [ 2a-" sin Wk't J. 
A=i WA. 

(7) 

(8) 

If N is very large, then the amplitude of the field of 
each individual harmonic is small and aEk/ wk « 1. 
Expanding J 0 in a series and confining ourselves to the 
first terms, we obtain 

(9) 

or, in first approximation over the dispersion equation 
k2a 2 « 1, 

(10) 
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The same result can be obtained simply by noting that 
in the case when aEIJ wk « 1 we can confine ourselves 
in the expansion of the exponential in the integrand to 
the first three terms. Since sin <Pk = 0, confining our­
selves to quadratic terms and multiplying the obtained 
results for different aEk/ Wk, we get formula (9). 

In the case when N - oo and ~(t) is described by a 
Gaussian distribution law, relation (10) can also be ob-· 
tained by using the rather simple method of calculating 
the mean values of exp iK [x(t)- x(t')], proposed by 
Podgoretskii and Stepanovl17 ' 18 l and used by them to 
determine the Doppler width of the line of an atom exe­
cuting Brownian motion in a dense gaseous medium. 
Noting that in the case of a Gaussian distribution for 
the quantities x(t) - x(t') = ~x the odd powers in 1lliL_ 
expansion of the exponential vanish, and for even (~x)2ll. 
= (2n - 1)! !(~x)2 the authors find that 

expix[x(t)- x(t')] = exp{- ~ [x(t)- x(t')]2 }. (ll) 

In our case 

x ==a. 

When N- oo the function x(t) obeys a Gaussian distri­
bution. Substituting this relation in (11) and performing 
the corresponding calculations, we get (10). 

If the field amplitudes are the same Ek = E, then the 
correlation function is equal to 1 > 

r 2na' l 
exp Ll- wp' npk(T.-T.o)(1-coSWp't) J' (12) 

When Wk = Wp the function K( T) is a periodic function 
of T ; to obtain the contour of the spectral line it is then 
necessary to expand K( T) in a Fourier series. Per­
forming the required calculations, we get 

where 

K('t) = e-610 (6) + ~e-6/n(ll) cosnwp't, 

_ 1 (l'iw\2 
6-- -; 

2 Wp ' 

n=1 

N_ IJ 

l'iw =a ( ~E.•) '. 
k=i 

(13) 

Assuming that ~ w/ wr » 1 and using the asymptotic 
form of the Bessel func ion for o » 1, n » 1, and 
n ~ o, we get 

(14) 

Thus, the spectral line in the case of a linear Stark 
effect, due to stochastic high frequency fields splits 
. ' mto a whole series of satellites, spaced wp apart. The 
maximum of the intensity decreases away from the cen­
ter of the line like 

1 
l(nwp) ~ ---o=e-n'M. (15.·) 
- . ~ l':rt6 

The half-width of the envelope, determined from the 
relation (14), is equal in this case to 

1>We have used here the fact that in our case t Ek 2 /47r"" 
npk(Te - Te 0 ). 

(16) 

It is interesting to compare the obtained line con­
tour with the line contour due to the Stark effect in an 
alternating field in the case when the electric field is a 
monochromatic oscillation with fixed phase E 
= E 0 cos WT. [1, 2 J We recall that the intensity of the 
satellite nw is in this case proportional to J~ (x) (J -
Bessel function); x = ~ wof w. Here J~,x (x)/J~ « x&) 
"" 0.65x113 and the intensity of the satellite is minimal 
for small n. It increases with n to values nmax "" x, 
and then decreases exponentially when n > x. At very 
large values of x, the unshifted frequency w0 vanishes 
and lines symmetrical about w0 appear, shifted by 
amounts ± ~w0 , that is, as expected, the shape of the 
contour coincides in this case with the shape of the 
contour in the static Stark effect. 2 > 

With decreasing x, the intensity of the satellites lo­
cated between these lines increases, so that when x"" 10 
the contour of the spectral line is a rectangle of width 
2 ~w0 ; the intensity of the satellites is constant within 
these limits. In our case of stochastic high-frequency 
oscillations, the maximum intensity occurs at the un­
shifted line (w0 , n = 0); with increasing n it drops like 
An~ exp [-n2/4o], which differs appreciably from the 
preceding case up to values n ~ x. 

The shapes of the spectral line differ appreciably 
from each other in both cases. This enables us to de­
termine from the shape of the spectral line the degree 
of stochasticity of the high frequency oscillations. We 
have obtained the form of the contour of the spectral 
line under the assumption that Wk = w . Actually, as 
follows from the dispersion equation (~), the wk are 
different, although the width of the spectrum with re­
spect to w is small. Let us find now the form of the 
line contour with allowance for the dependence of w on 
k, in accord with (4). 

We need to calculate 

Replacing the summation by integration with respect to 
k and then changing over to the variables Wk, and also 
recognizing that in accordance with (6) 

we obtain 
P(t) =- 2n'l•a2n 1mv02~ r (1- cos w•t) 

Vo 

"'' 

- [ npi v0 J L='f2/ln -- . 
n1 VTe (17) 

2>We have considered the change of the Stark contour due to high 
frequency stochastic fields, for the case of only two components of a 
static Stark structure of the lines. Actually, the spectrum is char­
acterized by a larger number of components. Therefore, to construct 
the real line contour it is necessary to take into account the contribu­
tion made to the intensity by all these components. 
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Calculating this integral under the assumption that 
a 2 n1mvVw:P » 1, we obtain in the first approximation 
in this parameter P(t) = -% 1Tll! 2 n1mvge. 

To determine the line shape due to the Stark effect 
in alternating stochastic electric fields of high­
frequency oscillations excited by an electron beam 
passing through the plasma at the saturation stage, it 
is now sufficient to substitute (17) in (9) and to find with 
the aid of the so-obtained correlation function K( T) the 
spectral radiation density I(w), which is connected with 
K( T) in the case of a continuous spectrum by the rela­
tion: [13, lBJ 

1 00 

J(ro) =- ~ K(t)e-i"<dt. 
2n_~ 

As a result of the calculations we get 

J(ro) ~:::: exp {-ro2 / 8ro2}. {18) 

Therefore the width of the contour of the spectral line 
is in this case ~w =2a[%1Tn1 mvg]ll 2 • 

The ion-acoustic oscillations which are excited when 
large currents flow through the plasma also have an ap­
preciable intensity. The intensity of the ion-acoustic 
oscillations and the spectral distribution under turbu­
lent-plasma conditions were obtained by Kadomtsev and 
Petviashvili [19 l and are given by the relation 

{19) 

where f:k is the spectral energy density, f:k = Minpv~ 
~ Minpv~k-\ v0 and np are the directed velocity and 
the density of the plasma electrons, Te and Ti are 
respectively the temperatures of the electrons and ions, 
VTe and Vs are the thermal velocity of the electrons 
and the speed of sound in a two-temperature plasma, 
and Mi is the ion mass. It is assumed that the waves 
build up in a relatively narrow cone of the directions k, 
where t1o is the vertex angle of this cone. Since the 
quantity 6 Ek may turn out to be quite appreciable, we 

k 
shall also consider the Stark effect due to ion-acoustic 
waves. 

To estimate the Stark broadening due to the electric 
fields of ion-acoustic oscillations, it is sufficient to use 
relation {19), the dispersion equation for these oscilla­
tions, and to calculate the sum 

a2 Ek2 
P(t)=--~-. (1-cosrokt). 

2 k ffik2 

As a result of the calculations we get 

P( ) a2 kT T. Vo n "k 2 2 t =--np e---a maxt, 
2 Ti VTe 7 

(20) 

where kmax ~ 1/a. At sufficiently high plasma electron 
temperature and plasma density, P(t) may turn out to 
be quite large. The line width determined by the ion­
acoustic waves is equal to 

(21) 

Very frequently the alternating electric fields which 
cause Stark broadening in a non-equilibrium plasma are 
superpositions of regular and random high frequency 
oscillations. It is therefore necessary to determine the 
form of the Stark contour also in this case. If it is as-

sumed that the electric field in the plasma E(t) and the 
function zp{t) are of the form 

N 

E(t) = Eoc05 rott + ~Ek cos (rokt + «pA), 
k=l 

aE NE 
..,(t) = 1jlp(t) +WN(t) =-0 sinro1t+ a~ _A [sin (roAt+cpA) -sin cpA], 

Wt k=l Wk (22) 

then the determination of the form of the Stark line in 
this case reduces to a solution of the problem of deter­
mining the spectral density of radiation of a signal 
whose carrier frequency is modulated by a regular 
signal and by noise. The mean value 

exp i [ zp{t + T) - zp{t)] , which we need to calculate the 
line -contour form, will be obtained by using the fact 
that l/!p(t) and lJIN(t) are independent of each other. 

Then exp i[ zp{t + T)- zp{t)] = exp i[ 1/lp(t + T) -1/!p(t)] 

x exp i[ IJ.N(t + T) -IJ.N(t)], and, by using (7) and replac­

ing Wk by w1 in one of the factors, we get 

[ Aro1 ro1-r ] ~ aZ N 1 K(-r) = / 0 2-. -sin-- exp --~ (1-cosroAT) . 
ffit 2 2 A-I 

(23) 

The same relation can be obtained from the expres­
sian for the characteristic function in the case of a su­
perposition of regular signals and noise. According 
to [12l, it is equal to 

expt[VIjl{t +-r) + u-op(t)] = / 0 [ 
800'yu2 + vz +2uv·c~J 
ro, 

•exp [- <ll(O)(u• + v•)- <ll,uv1 <1>(0)= :,j,>;{t), !IJ, = ¢(t + t)ljl(t). 

(24) 

Assuming for our case u = -1 and v = 1, we get (23). 
For the case of the linear Stark effect in alternating 

fields that constitute a superposition of regular and 
stochastic oscillations, it is necessary in order to de­
termine the form of the spectral line, to substitute (23) 
in (2). K(T) is a periodic function of T in the case when 
wk= w. Expanding this function in a series, assuming 
that ~w/w » 1 and ~w/w1 » 1, we get 

K(-r) = ~l(nro) cosnro-r. 

where 

(25) 

In (2 5) we used the fact that the integrand decreases 
rapidly, and we have therefore extended the limits of 
integration to infinity. After a number of calculations 
we obtain 

1 ,n r { ny . y2 . } 
I (nro) =·2 f 1111 e-n'M J exp -26 SIDe- 46 sm2 e d6, (26) 

-<1 

6 = 1/.(Aro/ro) 2, y = Arot!.(l)t. 

In the general case the calculation of the integral (26), 
which we need to determine the form of the spectral­
line contour, is possible only by numerical means. If 
n ~ d1 / 2 and y » o1 / 2 , that is, the intensity of the reg­
ular oscillations greatly exceeds the intensity of the 
stochastic oscillations, then, as expected, I(nw)~ 1/y 
= canst, that is, the line shape is a rectangle of width 
~Wp 

Equation (26) solves the problem of determining the 
contour of the spectral line for the case of a linear 
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Stark effect in alternating regular and stochastic fields, 
when the frequencies of the regular and stochastic os­
cillations are close to each other. This is precisely 
the case which takes place, for example, in the excita­
tion of high frequency oscillations in a plasma by an 
initially-monoenergetic electron beam. In the more 
general case, to determine the form of the spectral 
line it is necessary to substitute (23) in (2) and to cal­
culate the corresponding integrals. 

In considering the problem of the form of the spec­
tralline due to the Stark effect in alternating stochas­
tic fields, we did not take into account damping effects 
due to the finite lifetime of the atom or the ion in the 
excited state, and also pair collisions of the atoms and 
the ions with the electrons and with each other. Yet al­
lowance for all these effects is essential in order to 
ascertain whether the individual satellites can be ob­
served. At large values of the pair-collision frequen­
cies or at small values of the lifetime, these effects 
can greatly change also the form of the envelope. If we 
denote by T = 1/11 the average lifetime of the atom or 
ion in the excited state or the corresponding collision 
frequency then, unlike (15), the form of the spectral 
line is determined by the relation 

J(Q) =_!_~An{ 'V + 'V -}, 
n n (nw+Q) 2 +v2 (nw-Q)'+v' (27) 

where An ~ exp [ -n2/4o]. To be able to resolve the 
individual satellites nw, it is necessary that the life­
time be sufficiently long and the collision frequency 
small, w » 11. Here, naturally, it is assumed that the 
experimental line width is also smaller than w. In or­
der for the envelope, that is, the line contour, not to be 
too strongly distorted by collisions, it is necessary to 
have ~w » 11. 

We have considered the problem of the Stark effect 
due to alternating electric fields of stochastic oscilla­
tions excited by currents or by electron beams passing 
through the plasma. The Stark effect leads in this case 
to a rather appreciable broadening of the lines, and 
therefore can be simply observed and, by virtue of 
many of its specific features, it can be separated from 
the Stark effect due to the Coulomb fields, and from 
other processes that lead to line broadening. When the 
stochastic high frequency oscillations are excited by an 
electron beam, the line width in the nonlinear stage of 
saturation of these oscillations is, in accordance 
with (17), 

In most experiments, the density of the electrons in the 
beam ranges from 108 to 1010 em-\ and their energy 
ranges from hundreds of eV to 15-20 keV. Under these 
conditions, the line broadening ~w1 changes from tenths 
of an Angstrom to several Angstroms, and consequently, 
it can be observed relatively simply. 

Thus, the use of the Stark effect in alternating sto­
chastic high frequency and low frequency fields is an 
effective means of determining the main parameters of 
an unstable turbulent plasma. 

It is my pleasant duty to thank V. D. Shapiro and V. I. 
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