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The third critical field is calculated for a system consisting of a thin superconducting film deposited 
on the plane surface of a bulky superconductor. It is assumed that the film and backing differ only 
with respect to the electron mean free path. The two extreme cases of thin and thick films are con­
sidered. A qualitative explanation is given for the experimental dependence of the third critical field 
of the superconductor on the mechanical and heat treatment of the surface. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

THE existence of a third critical field Hc3 for super­
conductors was predicted theoretically by Saint-James 
and de Gennes; [1l later, this effect was discovered ex­
perimentally by many investigators. However, the ex­
perimentally determined ratio Hc3/Hc2 is rarely close 
to the theoretical value of 1. 69. 

Well-annealed alloys of Nb-Ta give Hc3/Hc2 
= 1. 71. [2l Gygax et al. [3l measured this ratio for an 
indium-lead alloy. It was found that for samples 
melted under vacuum and annealed for 100 days at 
room temperature, Hc3/Hc2 = 4. After pickling, this 
ratio became equal to 3, and after a 60-hour tempering 
at ll0°C, it took on the value 1.69 ± 10%. 

Thus, the quality of the surface has a great effect on 
the value of the third critical field. By the word 
"quality" is meant here the amount of impurities, 
lattice distortions, dislocations, and other defects in 
the surface layer of the sample. 

In the present work, the problem was to find Hc3 in 
the case in which the plane surface of a bulky super­
conductor is "contaminated" by atoms of a different 
type, dislocations, and distortions, which decrease the 
mean free path of the electrons. In other words, the 
problem was to find Hc3 for a system consisting of a 
bulky superconductor on which a surface film is de­
posited, where the material of this film has the same 
critical temperature and critical thermodynamic field 
as in the bulk of the substrate, but in accord with 
Gor'kov, [4 l has a larger value of the parameter K of 
the Ginzburg- Landau theory [5 l than the substrate. 

Let the parameter K for the bulky material of the 
substrate be equal to K2. A film of thickness d is ap­
plied to the plane surface. The material of this film 
has the parameter K1. In what follows, the index 1 al­
ways refers to the film and the index 2 to the bulky 
material of the substrate. The plane boundary of the 
film with the vacuum coincides with the plane z = 0. 
The film with the substrate occupies the half-space 
z > 0. All the electron characteristics of the materials 
1 and 2 are identical, except for the mean free paths of 
the electron, which are respectively equal to l 1 and l 2 • 

A very large external magnetic field H0 is applied 
parallel to the surface of the film, for which the entire 
system is in the normal state. Let us begin to de­
crease the field Ho. The problem is to find the field 
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for which the superpenetrability into the surface layer 
begins to set in. This field we shall denote by Hc3. 

Inasmuch as we shall limit ourselves to the neigh­
borhood of Tc in what follows, we shall solve the 
stated problem by the methods of the Ginzburg- Landau 
theory. [5 J Near Hc3, the value of + is small; there­
fore, we can omit the cubic term in + relative to the 
w term in the Ginzburg- Landau equation for +, thus 
linearizing the problem. 

Furthermore, if we choose (by using the gauge in­
variance of the equations) such a gauge of the vector 
potential A that + becomes real, then the set of initial 
equations takes the form 

li" d2'l' i 2e2 
----+~-A2Wi+ai'l'i= 0, 

2m dz2 mc2 

d2A - 16ne2 nr,2A -- 0, . 1 2 
T != '• 

dz2 mc2 

(1) 

(2) 

As has already been pointed out, the index 1 correspond 
to the film and the index 2 to the substrate. Here a is 
the coefficient in the expansion of the free energy in 
powers of I +1 2 : Fs = Fn + a I +12 + 1/2b I 'f! 1\ e is the 
electron charge, m the effective mass of the electron, 
and c the velocity of light. 

The boundary conditions of the problem are 

aw. / - =0, 
dz z=O 

(3) 

Moreover, we must also state the conditions of joining 
together the functions 'f! 1 and 'f! 2 on the boundary 
separating materials 1 and 2. For this purpose, we 
use for z = d the boundary conditions for + and 
d'f! jdz obtained by Za'ftsev: [s] 

1 1 -aw. -aw, 
-=-- w. =-=.. w,, rx.- = f)(2-. 
YX• YX2 dz dz 

Here x is the dimensionless function of the mean free 
path of the electrons, introduced in the work of Gor' 
kov. [4 l It is equal to unity for l - oo and tends to zero 
as l- 0. The constants of the Ginzburg- Landau 
theory-K for the alloy and Ko for the pure metal (here 
the alloy differs from the pure metal only by the short 
free path of the electrons)-are connected by the relation 

x = xo I X· 

In the zeroth approximation, 'f! = 0 and Eq. (2) is 
solved with account of the boundary conditions (3): 

A=Ho(z~zo), 

(4) 

( 5) 
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where z 0 is the constant of integration. 
We simplify Eq. (1) by transformation to dimension­

less units. As was done by Abrikosov in [7 l, we choose 
the quantity ( nc/2eH0 ) 112 for the unit of length: 

s = 12eH0 I ftc z. 

We now turn our attention to the fact that this unit of 
length depends only on the magnetic field H0 but not on 
the material of the sample. We transfer the origin of 
the coordinates to the point z = z 0 • Now Eq. (1) takes 
the particularly simple form: 

i = 1,2, (6) 

where 
~ _ mlaic 12x,Hcm H,z(i) 
' - enHo = H0 = --n;;- (7) 

Here Hem is the critical thermodynamic field, Hc2 ( i) 
is the second critical field of the ith material. The 
boundary conditions and the joining conditions are 

aw, I - = 0, '¥zlo-+ro = 0, fk'¥d<=·-~ = '¥zl<=•-n• 
d£ •=-~ 

-~ d'¥, I = aw,l . (8) 
1 k d£ <=•-n d£ <=•-n 

Here TJ = ( 2eHo/nc )112zo, s = ( 2eHo/hc )112 d, i.e., TJ 
and s are equal to z 0 and d, but expressed in dimen­
sionless units; furthermore, we have introduced the 
notation k = K1/K2. 

The general solution of Eq. (6) will be: 

w,=e-<'''[c,<D( 1 ~~· .+;s')+c,;<D( 3 ~1'-.f;s')]. (g) 

'¥z=e-<'t'[ C,!D( 1 ~~::._, ~; s')+C,£!D( 3 ~~2 .f; !;2 )] . (10) 

Here \I> is the confluent hypergeometric function, and 
C1, ... , C4 are arbitrary constants. The four conditions 
(8) permit us to eliminate these constants and establish 
the functional relation between the parameters f3i and 
TJ. The critical field for the appearance of surface 
superconductivity Hc3 will correspond (see [7 l) to the 
maximum value of the external field for which there 
still exists a nontrivial solution of Eq. (6). As in [7 J, 
this field is determined by ascertaining whether the 
function f3i ( TJ) has a minimum, since f3i = Hc2 ( i )/Ho. 
Simultaneously, the equilibrium value of TJo at which 
f3i reaches a minimum is determined. Getting ahead of 
ourselves, we can state that TJo is the expression, in 
dimensionless form, for the distance between the 
boundary with the vacuum and the place where the 
density of the superconducting electrons in the super­
conducting surface layer is a maximum. 

Using the condition (8) and the asymptotic expansion 
of the confluent hypergeometric function for large ~. 

we eliminate all four coefficients C and obtain the 
following equation: 

[ 1kFa(s!)'¥/(£,)-i'k£,Fa(£,)'¥v(£,)-1_ Fa'(£,)'¥v(si) (11) 
yk 

+ i~!;,F a(£,) '-l'v(£1) }so2<Da(so)- <l>a(so)- su<Da' (so)] 

- 1 1 1 
= 1--= IDa(£,)'¥,(£,)+ --=s•ID•' (si) '¥v (£,) - --=s•'<l>a(s.) '¥v (£,) 

-ik yk yk 

- yk sr<D•(W '¥/ (s.) + )'k £,'<1>" (s.) '¥v (£,)][Fa' (so)- soFa (~o) ]. 

The prime denotes the derivative of the corresponding 
function with respect to ~ at the points ~0 and ~ 1 . 

Here we use the following notation: 

(1-~1 1) Fa(t) = o:IJ·_ -·- ___ . t2 
S I 4 ! 2 ' ~ ! 

- ( 3- ~. 3 . ') <t>a(s)- <t>\ - 4-, 2, s . 

!Dv(s)=o:IJ( 3 ~~2 '%; S2 )• so=-t], Sl=S-t], 
1 

'¥, =- I;(2y + 1) Fv(s)+ IJlvs<Dv(s), 

1Jlv=2y-;:;e-pv __ Y __ p=2ln2. (12) 
r 2 (y + 1) • 

Equation (11) will be fundamental for all the subse­
quent exposition. In it is also included in implicit form 
the connection between f3i and TJ which was mentioned 
above. 

Our task reduces now to obtaining this connection in 
explicit form. In the general case (it suffices to con­
sider (11)), this is not feasible. However, there is a 
possibility of completely solving this problem by the 
method of successive approximations for two limiting 
cases s << 1 and s >> 1. The analysis of these cases 
gives a qualitative answer also for the intermediate 
case. For both limiting cases, it is assumed that TJ is 
a small parameter. As will be seen in what follows, 
this assumption is correct. 

2. THE CASE s « 1 

In this case, ~ 0 and ~ 1 are small parameters. The 
functions Fw \I>a, \[ly and their derivatives are ex­
panded in power series in ~- We seek a and y in the 
form of power series in ~o and ~1: a = O!o + a1 + 0!2 
+ ... , y = Yo+ 'Y1 + 'Y2 .... The index denotes the order 
of smallness of the corresponding term. Substituting 
these series in (11) and separating the terms of equal 
order of smallness, we can compute an and Yn, where 
n = 0, 1, 2, ... Carrying out the calculations up to third 
order, we get 

1 1 1k-1 k2 -1 
y =--= '1 + -(p- 4)1] 2 + ftJ" + _ -~-(stj2 - 1JS2 ) + -=--- s" 

2l'n 4n 2·, Jt k G1n k 

(13) 

where f = ( 1/ahr-312 ( 2d2- C2 - 12p + (%) p2 + 16) 
~ 0.0134. Here C ~ 0. 577 is Euler's constant, d2 
= 1/2 ( C2 - l: ( 2 )) ~ -o. 656, ?;(X) is the Riemann zeta 
function, and p = 2 ln 2. 

It has been said above that it is necessary to test 
{32 ( TJ) for a minimum; but y = ( 1 - {32 )/4, therefore, 
this is equivalent to a test of y ( TJ) for a maximum. Up 
to now, TJ has been a free parameter. That value of 
TJo which corresponds to the minimum of {32 (maximum 
of y) will correspond to the minimum of the free en­
ergy of the system. [7] Hence, precisely this value will 
also be realized under equilibrium conditions. 

Limiting ourselves to the linear approximation in s, 
we find TJo: 

Dy 1 1 1 k -1 
-- = -=+-(P- 4)tJo+ 3/t]o2 + ---=---St]o = 0. 
D11 21n 2n yn k (14) 

Solving this y_uadratic equation relative to TJo and ex-
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pressing y from (13) in terms of ~2,. and ~2 in terms 
of H0 , we find the maximum possible H0 , i.e., Hc3 as 
a function of the parameters of the material k = K1/K2 

and the thickness of the film s: 
k-1 k-1 

t]e ~ 0,37 + 1.2-/;-· -s, V(tJo)= 0,100+ 0.15-k-s. 

Thus, the maximum value is obtained for y. The 
minimum value of {32 corresponding to this value will 
be, according to (12) and (7), equal to 

~2min = .1 - 4Vmax = H,, (2) / H,a. 

We then immediately obtain the desired expression for 
Hc3: 

n~(~J ~ 1.67 ( 1 + k ~ \). 

In ordinary units, this formula has the form 

~ ~ 1.6711 + :K,- )(z aV 3.4H,,(2Je). 
Ho2(2) \ :>t1 fzc , (15) 

This formula can be written in another way. Inas­
much as it follows that 

:>tz=2y2e6oo2Hcm/fzc, H,z(2) =iZ:>t2Hcm 

H,z(2) = x2,2fzc /2e6022• 

Here 6 0 is the penetration depth of the weak magnetic 
field. Substituting this Hc2{2) in (15), we get 

H,a ( :>t1 - :>tz - d ) --2-""1.67 1+---l'1.7:>t2 - • 
Ho2( ) :Kt lloz (16) 

From the result obtained, it is seen that as K1 - K2 

or d - 0, Eq. (16) goes over into the formula Hc3 
= 1.67 Hc2, which differs but slightly from the formula 
of Saint-James and de Gennes, He = 1.69 Hc2. This 
difference is explained by the fact we have solved Eq. 
{11) approximately, limiting ourselves to the third 
approximation. In the fourth approximation Hc3/Hc2 
was shown to be equal to 1.68 for the pure surface. 

3. THE CASE s » 1 

In this limiting case, we shall consider ~0 = -1] as 
the small parameter. This is validated by the fact that 
in the limit as s - oo the equilibrium value of 1J tends 
to 0. 73. We shall consider the quantity ~ 1 = s - 1J as 
large ( ~1 » 1 ). We return to our initial and very 
general equation (11). For the case under considera­
tion, it is convenient to write it differently-in terms 
of parabolic cylinder functions. If we then use the 
asymptotic expansion of these functions for large 
values of the argument, we can reduce the initial 
equation (11) to the form: 

2a 2a 
-=r:-:-:(2:---a-c+-1.,-,-) .P..Aa(sol+ f2(2a + 1) Ba(6ol+ 00 = O, (17) 

1 H" , , k - 1 l- 1 J ,,, =;c. e-J•af;1 e·•··--- ¢aAa(so)- Ba(l;o) , {18) 
l':r! k+l r(2a+1) 

where p = 2 ln 2, 1/Ja is defined in (12), and the notation 

A a (so) = so2<I>a (so) - <I>a (l;o) - so<I>a' (£o), 
Ba(so) = Fa'(l;o) -l;oFa(l;o). 

is employed. 
We can regard Eq. (17) as an implicit form of 

writing the functional dependence a= a ( ~0, ~ 1 ). Let 
us find this dependence. It is easy to see that as 
~ 1 - oo the quantity w - 0. Solution of (17) without the 
w term is already known to us. It corresponds simply 
to the case of a pure surface of a semi-infinite super-

conducting space, [1J and in our methodology, this is 
the case k = 1 of the previous section. Therefore, it 
is natural to solve (17) by the method of successive 
approximations. 

We seek a in the form 

a= eo(£,) + [b, + e!(£,) Ho + [bz + ez(s,) Ho2 + .. · . {19) 

The numbers b1, b2, ... are known from previous con­
siderations (see (13)) (b1 = - 1/2-.fir, b2= (p- 4)/41T), 
for when ~1 - 0 the quantities Eo, E1, E2 - 0, and a 
depend only on ~0 according to the already discovered 
law. We limit ourselves to the terms that are linear in 
all the E functions. We expand (17) in powers of ~o, 
and substitute the expression {19) in the first two com­
ponents in {17), and the expression a= b1~o + b2~~ in 
the component w. By comparing the coefficients for 
each power in the series, we finally obtain 

1 k-1 
e, =- ----£,(2 + C + 2lns;)e-<•', 

:rl k+ 1 

1 k -1 [ p' ez=-----s, pC-8C-C2 --+4p-8 
2:rtl':rt k + 1 4 

+ (2p -4C -16)ln ~;,- 4ln's• ]e-v. 
For the determination of the critical field Hc3, as 

before, it is necessary to find that value of 1Jo which 
corresponds to the maximum value of a= Eo 
..:. ( b1 + E1) 1J + ( b2 + E2) rf. The latter expression fol­
lows from (19), since ~0 = -1]. 

We seek 1Jo and, substituting in the expression for 
a, we get 

b,2 ( 81 ez ) 
Umax=-- 1+2--- +eo. 

4bz b1 b, 

Substituting all the necessary numerical values and 
carrying out the arithmetic computations, we finally 
obtain 

Hca 
H,,(1) =~~min= 1- 4amaoc 

= 1.62f 1- ~ k- 1£,(3.43+2.41Ins, + 1.90ln's•Je-<•']. 
L l'n k+1 (20) 

From this expression, it is seen that ~ 1 - oo as 
Hc3/Hc2 {1) - 1.62. This value differs from the value 
1.67 in (16) simply for the reason that in (16) three 
orders were taken into account, while here we have 
limited ourselves to two orders in the expansion of a 
in powers of ~0 • However, this is nol: essential, since 
we are interested in the correction term. 

The term in the parentheses in Eq. (20) is a slowly 
varying function of ~1· Denoting this function by K and 
assuming it to be constant, we obtain, with logarithmic 
accuracy, 

[ Y 1,7 :>t1- :>tz :>t,d J Hca(d)=H,3 (oo) 1- --------Ke-1,7(x,d/O.,)' . 
:rt :>t1+:>tz llo, (21) 

In this formula, we have already returned to ordinary 
units. 

4. DISCUSSION OF RESULTS 

It has been shown that the decrease in the mean 
free path of the electrons l in the surface layer of a 
superconductor (this corresponds to an increase in the 
parameter K in this layer) leads to an increase in the 
third critical field. According to Gor'kov, [4 l the gap in 
the superconducting alloys (when l « ~o) decreases 
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materially over distances ~ .;r;;t. The boundary condi­
tions of Za'itsev [sJ are valid in this case only up to the 
point where the thickness d > .["f;;r. Consequently, the 
latter inequality gave the region of applicability of our 
results. 

We now discuss the experimental results of [31. 
We assume that vacuum melting produces on the 

surface of the indium-lead alloy a film of thickness 
greater than ...;~ which is rich in inhomogeneities, 
impurities, and other defects that lead to a material 
decrease in the free path of the electron in the surface 
layer of the sample. This should lead to an increase 
in Hc3/Hc2. Finally, the long annealing equalizes the 
characteristics of the surface layer and of the whole 
material, the layer actually disappears, and Hc3/Hc2 
becomes equal to 1. 7. 

It is of interest to note that our calculation also 
holds in the case K1 < K2. In this case, one must expect 
a decrease in Hc3/Hc2 in comparison with 1. 7. 

We now turn our attention to another aspect of the 
study of surface superconductivity. It is well known 
that a stretched wire has a fibrous microstructure, in 
which the fibers are elongated grains. Williamson and 
Furdyana [aJ have noted recently that the critical field 
of wires made from type II superconductors is larger 
than Hc2. The authors relate this with the appearance 
of surface superconductivity inside the wire along the 
boundaries of the grains that have been stretched in 
the drawing process. It must be mentioned immediately 
here that an appreciable difference of Hcg from Hc2 
should be expected only if the superconductor borders 
on a dielectric and not on a metal. [sJ Such a situation 
can arise if, for example, oxides are separated out 
along the boundaries of the grains. On the other hand, 
the grain boundaries are enriched by impurities, dis-

locations, etc., which lead to a decrease in the mean 
free path of the electron near the surface of the grain. 
According to our calculation, this increases Hc3 and 
consequently also the critical field of the wire. 

We now note that a comparison of Eqs. (16) and (21) 
shows a monotonic variation of Hc3 with thickness of 
the film. This means that it is impossible to attribute 
the high critical field of alloys to the formation in the 
normal matrix of a filamentary superconducting struc­
ture along the dislocation lines. Such filaments will 
not have an essentially higher critical field as would be 
the case if they were in a dielectric, thanks to the large 
transmission coefficient of electrons through the 
filament-wire boundary. 

1D. Saint-James and P. G. de Gennes, Phys. Lett. 
7, 306 (1963). 

2 C. F. Hempstead, andY. B. Kim, Phys. Rev. Lett. 
12, 145 (1964). 

3S. Gygax, J. L. Olsen and R. H. Kropschot, Phys. 
Lett. 8, 228 (1964). 

4 L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 37, 1407 
(1959) [Sov. Phys.-JETP 10, 998 (1960)]. 

5 V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. 
Fiz. 20, 1064 (1950). 

6 R. 0. Za'itsev, Zh. Eksp. Teor. Fiz. 50, 1055 
(1966}[Sov. Phys.-JETP 23, 702 (1966)]. 

7 A. A. Abrikosov, Zh. Eksp. Teor. Phys. 47, 720 
(1964) [Sov. Phys.-JETP 20, 480 (1965)). 

8 S. J. Williamson and J. K. Furdyana, Phys. Lett. 
21, 376 (1966). 

Translated by R. T. Beyer 
107 


