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Galvanomagnetic phenomena in thin semimetallic and semiconducting films are considered for the 
case when the common direction of the electric and magnetic fields is parallel to the surface of the 
sample. It is shown that a change of the film thickness or magnetic field strength should lead to 
oscillations of the conductivity at the experimentally attainable parameters. The period of the os
cillations for various cases is determined. When the thickness is varied the oscillations vanish in 
thick films ( L :<: 5000 A) and the same relations as those in the Shubnikov-de Haas effect are found 
to hold. In contrast, no oscillations of the magnetic resistance occur in very thin films. In films of 
intermediate thickness the oscillations can be observed in relatively weak magnetic fields. In this 
case the oscillation period t.( 1/H) decreases with increasing field strength and approaches the 
value of the period in a bulky sample. 

1. INTRODUCTION. FORMULATION OF PROBLEM 

THE question of the resistance of thin films in a 
longitudinal magnetic field investigated in a number of 
papers [1 J, where the quantization of the electron mo
tion, connected with the Landau effect and the limited 
dimensions of the film, was neglected. Consequently, 
the obtained dependences of the resistance of the mag
netic field are naturally monotonic and do not contain 
oscillations when the magnetic field is varied. Yet if 
the distance between the discrete levels is large com
pared with n/ T ( T -electron relaxation time in the 
film) and kBT, then the quantization must be taken 
into account when considering the kinetic phenomena. 
Just as in thermodynamic phenomenaL2J, the quasi
discrete character of the spectrum can lead under 
certain conditions to oscillations of the kinetic coeffi
cients. 

The quantization due to the magnetic field was con
firmed experimentally. As is well known, it leads, in 
observations of the diamagnetic susceptibility, to 
de Haas-van Alphen oscillations (see, for example, [3 J), 
and in the case of magnetoresistance it leads to the 
Shubnikov-de Haas effectC4 J. 

The limited nature of the electron motion transverse 
to the film should also lead to the appearance of a 
quasidiscrete spectrum E = E ( kx, ky, s), where kx and 
ky are the longitudinal components of the quasimomen
tum, and the discrete quantum number s replaces the 
projection kc of the quasimomentum. At fixed s, the 
energy runs through a discrete set of values forming 
the subband. In semiconductors and in semimetals, up 
to room temperatures, the low carrier density causes 
a small number of subbands to become populated CsJ. 
For example, in the case of Bi films ( m.L ~ 0.01 mo) 
at a density ~ 1017 em -3 , only subband is populated at a 
thickness L ~ 5 X 10-6; at a larger thickness, subbands 
with large values of s become populated. On the other 
hand, in the case of a metallic film, a large number of 
subbands become populated, which, naturally, increases 
the effect of the film quantization. Therefore neglect 
of the quantization of the electron motion in metallic 

films in [1 J is justified. 
Until recently, the question of the existence of a 

quasidiscrete spectrum in a film was debatable, since 
the relatively small value of the relaxation time of the 
electrons in a thin film made it difficult, as a rule, to 
observe such a spectrum. The quantization effect could 
appear only in sufficiently perfect films with small ef
fective carrier mass. Experimental papers appeared 
only recently. Orgin, Lutski1, and Elinson [oJ observed 
oscillations due to film quantization, of the resistance, 
of the Hall constant, and of the magnetoresistance in a 
non-quantizing magnetic field (weT < 1) in Bi films 
when the thickness was varied. Subsequent investiga
tions [7J confirmed the existence of these oscillations. 
Independent experiments [8 J on the tunneling of elec
trons between Bi films through a vacuum gap also 
revealed a quasidiscrete character of the energy spec
trum. 

The quasidiscrete nature of the spectrum, due both to 
the limited dimensions of the film and to the magnetic 
field, was first taken into account by Lifshitz and 
Kosevich C9 ' 10J in an analysis of the de Haas-van Alphen 
effect in thin films. Allowance for this quantization in 
galvanomagnetic phenomena was made only in the case 
of a transverse magnetic field [uJ. It turned out then 
that the current depends nonlinearly on the magnitude 
of the electric field. On the other hand, in the case 
where the magnetic field does not lead to quantization, 
Ohm's law is satisfied[~ 13]. 

In this paper we consider longitudinal galvanomag
netic phenomena in semiconducting and semimetallic 
films (parallel electric and magnetic fields lie in the 
plane of the film), with allowance for the magnetic and 
film quantization. This quantization, of course, be
comes manifest if the scattering is not very large (see 
the criterion (6) below). The analysis in the article is 
based on the kinetic equation, the applicability of which 
in our case is proved in the Appendix. 

As was already noted, the experimental investiga
tions [s-8 ] prove the quantization of transverse motion 
of the electron in thin Bi films in the absence of a 
magnetic fieldo This means that random scattering by 
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lattice defects, including diffuse scattering from the 
boundary, is weak. Therefore we can introduce a sta
tionary potential to take into account the limited di
mensions of the film. In terms of quasiclassical ap
proximation, the introduction of a stationary potential 
is equivalent to the assumption of specular reflection 
from the boundary. The specular character of the 
electron reflection from the boundaries in the Bi films 
was also observed earlier (see, for example,C14J), prior 
to the observation of the quantum size effects. 

To take into account the influence of the limited 
nature of the film we choose, just as in [9J, a model of 
a film potential in the form of parabolic potential well, 
making it possible to obtain an exact solution of 
Schrodinger's equation. However, the choice of the 
model does not affect the results substantially. 

Notice should be taken, however, of the fact that 
when considering quantum size effects one takes into 
account lower levels of the energy, for which quasi
classical concepts are not applicable. Therefore the 
introduction of the concepts of specular and diffuse 
reflections from the film boundary is not valid, strictly 
speaking, in this case. 

2. EXISTENCE OF QUASIDISCRETE SPECTRUM IN A 
LONGITUDINAL MAGNETIC FIELD 

The complete single-particle Hamiltonian will be 
written in the form 

ctf = :fi:o + V- eEx. 

here 
Px2 (Pv- eHz/c) 2 p,' mj_w02z2 

:!Ito=-+-----+-+---, 
2m11 2m11 2mj_ 2 

(1) 

(2) 

V is the scattering potential, H and E are directed 
along the x axis and the normal to the film is parallel 
to the z axis; m.L and m11 are the transverse and 
longitudinal masses. 

The value of wo does not depend on the magnetic 
field and is determined by the thickness of the film. In 
order that the chosen model describe better the lower 
quantum levels, Wo must be determined from the un
certainty relation 

wo ~ (It I mj_) (n I L) 2, (3) 

and for levels with larger quantum numbers it is better 
to use the relation m.tw~L2/2 ~ TJ ( TJ-Fermi energy). 

The normalized solution and the spectrum of the 
Schrodinger equation with Hamiltonian (2) take the 
form 

1 1 (z- z~ ) 
IJlMk = IJla = IJlMkxky = lf£J"!/ exp (i (k,.T + kyy)) V ['PM -,-" (,4) 

1 ) - li2kx2 Wo2 li2ky2 

EMk = Ea = EMh k. =( M +- liw+--+-;::---. (5) 
x Y ' 2 2m11 w2 2m11 

here M is the magneto-film quantum number, kx and 
ky are the longitudinal components of the two-dimen
sional wave vector k, Lx, Ly are the linear dimensions 
of the film, the cyclotron frequency is we 
= eH/ c ~, and the magneto-film frequency Js 
(l:j = ,; w~ + w~ ; !_he center of the oscillations is aky 
= (cn/eH) (wc/w)~y; <PM is a Hermite function of 
order M; the "magneto-film" length is l = ( n/m.Lw )112 • 

The singularities of the spectrum (5) consist in the 

manifestation of a system of equidistant magneto-film 
discrete levels with interval nw, which are due to 
simultaneous influence on the transverse motion by the 
magnetic field and by the limited dimensions of the 
film, and also in the appearance of the dependence of 
the energy ky, which is due to the lifting of the de
generacy by the film potential. In the plane of the film, 
the motion turns out to be quasiclassical, and the ef
fective mass is anisotropic, its component normal to 
the field depends on the intensity H and on the thick
ness L(mf = w2m 11/w~). 

For another choice of the film potential, the fore
going singularities will also take place, but the con
crete form of the dependence of w on L and on the 
magnetic field will change, the energy spectrum will 
become nonequidistant, that is, a dependence of w on 
the quantum number M will appear. The anisotropy in 
the longitudinal motion will remain in this case. 

The scattering of the electrons leads to a smearing 
of the levels, therefore, the quasidiscrete character of 
the spectrum must be taken into account only under the 
condition 

(6) 

For any form of the film potential, the distance be
tween the magnetic-film levels is larger than the dis
tance between the discrete levels in the film in the 
absence of a magnetic field. Therefore the criterion 
(6) will certainly be satisfied for films with parameters 
such that quantization is observed. As will be shown 
below, this will bring about a situation wherein oscilla
tions of magnetoresistance in the film can appear in 
relatively weak magnetic fields. 

3. GENERAL RELATIONS FOR THE CURRENT: 
LIMITING QUANTUM CASE 

The current density, as is well known, can be 
represented in the form j = env, with the average 
electron (hole) velocity v = Tr ( vp) with normalization 
of the density matrix Tr p = 1, where n is the number 
of carrier per unit volume. 

It follows from symmetry considerations that the 
average velocity along the y axis is equal to zero. 
Since Vx = ili- 1 [.7tx] = px/mll> the matrix element in 
the :Jt 0 representation are equal to 

likx 
(vx)Mk,M'k' = --1\MM'I\kk'• mu 

from this follows an expression for the current 

enli""' 
j =- LJ kxfMk, 

mil Mk 
(7) 

where the distribution function fMk is a diagonal 
element of the density matrix. Thus, the current in the 
film is determined only by the diagonal matrix ele
ments of the operator p. It is shown in the Appendix 
that for weak scattering, when the criterion (6) is satis
fied, the diagonal elements of the density matrix satisfy 
the kinetic equation. In the approximation which a re
laxation time exists it takes the form 

E "j(O) j(t) 
e U Mk + Mk _ Q 
fl Okx <(EMk)- ' (B) 

where f~k is the distribution function in the zeroth 
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approximation in the electric field, fMk is the first
order correction in E, and the relaxation time is de
termined by the expression 

(9) 

We shall first stop to discuss the case when only one 
magneto-film level is filled ( M = 0). The problem then 
becomes two-dimensional in the quantum-number space, 
and only transitions with change of kx and ky are 
possible. 

In the kinetic equation ( 8), the relaxation time de
pends in this case only on the longitudinal-motion en
ergy ck, equal to tnk~ + ( Wo/w )1l:~ ]/2mu. Substitut
ing into the expression for the current (7) the magni
tude of the correction to the distribution function f~1k_ 
and confining ourselves to the degenerate case, we ob
tain the Drude formula j = Ee2Tn/m 11 • 

To calculate the relaxation time it is necessary to 
propose a definite scattering mechanism. We shall 
assume first that the scattering of the electrons is due 
to randomly distributed impurities. In the case when the 
scattering potential of the impurity is 6-like 
(Vi = V o 6 ( r - ri )) , the matrix element can be easily 
calculated C15J: 

2 n, V0'1 (z"~) (z~v) I' I Vok, Ok' I = LxLyl 'P T 'Po l (10) 

( n0 - number of impurities per unit volume). Substitut
ing the expression (10) in (9) and going over from sum
mation to integration over the energy of the two
dimensional motion Ek and over the angle between the 
directions k and k', we obtain after simple calcula-
tions 

where the density of the states per unit volume at a 
fixed magneto-film number M is equal to 

mu ;;; 1 
NM = nh2 Wo L' 

(11) 

(12) 

Io ( t) is a Bessel function of imaginary argument of 
zero order, t = (wc/w0 ) 2 Ek/tiw. The state density (12) 
is a direct consequence of the dispersion law ( 5). It 
does not depend on the quantum number M or on the 
energy Ek. 

In the limiting case H- 0, expression (11) goes 
over into T-1 = 2ti-3V~muno/L, which coincides, accu
rate to a numerical factor, with the results of 
Sandomirski1 [16J (the difference in the coefficient is 
due to a different choice of the film potential). On going 
over to a bulky sample ( Wo - 0), using•the asymptotic 
expression Io ( t), we obtain the well known dependence 

Formula (11) has a specially simple form in the region 
w >>we, when the quantization is due primarily to the 
film potential. Since Io( t)e-t- 1 as t- 0, we have 

-r-1 ~ wo'i>[1 + 3!.{w, I wo) 2]. 

We see that the relaxation time will decrease both when 
the magnetic field increases and when the thickness of 
the films decreases. 

In the case of scattering of electrons by acoustic 
lattice vibrations at high temperatures (a tempera-

ture above 1 °C in a semiconductor or a semimetal can 
be regarded as high [17J), we obtain for the relaxation 
time a formula similar to ( 11): 

~= (2n)''• czkBT _!:_NMio(.!_) e-•1•, 
T h pc12 l 2 (13) 

where C is the deformation-potential constant, cz the 
longitudinal speed of sound, and p the density of the 
film material. When the field H tends to zero formula 
(13) goes over into the expression obtained in l1aJ for 
T-1. 

The carrier density in the degenerate case is equal 
to n = NM ( TJ - nw/2 ). Substituting in the Drude for
mula, we find that the conductivity does not depend on 
the state density and is determined by the expression 

l ( h~) 1 
a~L '11-z J;(t);;=l' 

In the region wo >>we, the a ( L, H) dependence 
becomes simpler, a~ lL-1 ( TJ- nw/2). We see there
fore that the conductivity decreases with increasing 
magnetic field and with decreasing L. 

4. CONDUCTIVITY OSCILLATIONS UPON VARIATION 
OF THE MAGNETIC FIELD OR THE FILM 
THICKNESS 

When the magnetic field or the film thickness 
changes, the number of populated magneto-film levels 
changes. This causes the quantities n and T in the 
conductivity a= e2 Tn/m11 to vary nonmonotonically in 
the degenerate case. The carrier density will in this 
case be a continuous function and its oscillations will 
be insignificant. In this case the carrier density will 
be a continuous function and its oscillations will be 
insignificant. Indeed 

~ 

n= ~NH,Lde, 
0 

where the total density of states is proportional to NM 
and to the number of populated levels. In the chosen 
model it is equal to 

(14) 

(The number of populated levels ( E/ nw + %] is the 
integer part of the argument). Substituting ( 14) in the 
expression for the concentration, we obtain 

n = ~ ;;; _!_ [_2!, + __1_] {'11- _!__ [ ~ + ;_] nw} (15) 
n!i Wo L !iw 2 2 !iw 2 

As follows from (15), the dependence of the concentra
tion on the magnetic field is a continuous function. A 
plot of it is shown in the figure, under the assumption 
that the Fermi level is constant (see below). The de
pendence of n on L is also continuous. 

The relaxation time (9) depends on L and H via the 
density of states and the matrix element of the scatter
ing potential. The matrix elements are monotonic 
functions, and therefore the oscillatory character of 
the T ( L, H) dependence will be determined for all the 
scattering mechanisms by the jumps of the state 
density (14), which arise when the number of populated 
magneto-film levels changes. With increasing film 
thickness or decreasing magnetic field, the state 
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Dependence of the electron density of states NH,L in Bi films on the 
magnetic field H: a- thickness of film L = 2000 A. For the same 
thicknesses we show, in an arbitrary scale, the dependence of the elec
tron concentration on H (curves a and (3). 

density will decrease until a new level begins to be 
populated. This is accompanied by jumplike increase 
ln the density of states by an amount NM, and then 
NH,L will again start to decrease. Thus, the function 
of the density of states, and with it the conductivity, 
will oscillate. 

The period of the oscillations will obviously depend 
on how the Fermi level position changes with changing 
L and H. For a quantitative analysis of the indicated 
oscillatory dependence we shall assume that the Fermi 
energy is constant. This situation takes place, for 
example, for an isotropic dispersion law in a semi
metal Lla], in which the concentrations of the electrons 
and holes are equal. This will also occur in the pres
ence of anisotropy, if the mass of one of the carriers 
is much larger than the mass of the other (for exam
ple, mh >>me). In this case the hole Fermi energy is 
1Jh « 7Je, since 7) ~ ( m1m2m3) 113 , and can be neglected. 
Since the overlap of the electron and hole bands is 
constant (this takes place when the film potential and 
the magnetic field do not change appreciably the effec
tive masses), then the Fermi energy of the electrons 
will not depend on L and H. 

Calculations of the density of the electronic state by 
formulas (12) and (14) for two values of Bi film thick
ness lead to the curves shown in the figure. For thick 
films ( L ~ 5000 A), since we » Wo, the period of the 
oscillations t. ( 1/H) does not depend on the magnetic 
field and is eqt:al to 

~(1 I If) =en I 1'JCfmllm_L. 

It turns out to be the same as in the case of a bulky 
sample. The difference would occur only in weak 
fields, but in this region the criterion (8) of the quan
tizing field is violated. For very thin films 
( L ;::; 500 A ) , the change of the magnetic field affects 
the energy spectrum little and no oscillations arise at 
attainable fields. 

The most interesting region is that of intermediate 
thicknesses, 1000-3000 A. For these thicknesses, the 
quantization criterion (see Sec. 2) is satisfied for 
fields exceeding several kG. In such magnetic fields, 
as seen from curve b, oscillations arise in the state
density function, and this should lead even in the case 

of weak fields to the Shubnikov-de Haas effect. It must 
be noted, however, that the period of the oscillations 
A ( 1/H) will be larger than in a bulky sample. With 
increasing field H, the period of the oscillations will 
decrease and in the limit of strong magnetic fields it 
will tend to the value of the period for a bulk sample. 

The oscillatory dependence of the relaxation time 
and of the conductivity upon change in film thickness 
will also be determined by the state density function. 
The period of the oscillations will depend, naturally, 
on the value of the field H, and, as seen from (14), will 
increase with increasing magnetic field. This is con
nected with the fact that the influence of the limited 
size of the film will be weaker in the strong field. 

The relations obtained for the oscillations of the 
conductivity with variation of L and H do not pretend, 
of course, to be in exact quantitative agreement with 
experiment. This is conneCted primarily with the fact 
that the chosen parabolic potential in our paper does 
not coincide with the true potential in the film. How
ever, even for another choice of the film potential, the 
dependence a( L, H) retains its oscillatory character. 
All the quantitative relations obtained above also re
main in force, since the form of the potential was not 
used at all in their derivation. 

The quantization criterion (6) can be satisfied not 
by turning on a strong magnetic field, but by preparing 
a sufficiently thin film. In this case Wo »We, and the 
magnetic field leads only to a perturbation of the film 
levels of the energy. The change of the period of the 
oscillations with increasing H can be readily deter
mined by recognizing that the number of the populated 
magneto-film levels is determined by the condition 
M = [7J/nw + :Ya] (the square brackets denote the integer 
part of the argument). For an arbitrary Wo ( L) depend
ence we have 

!::.: = ( !::.: ) H~o [ 1 + ~2( M + + )' Jl2 J , ( 16) 

where the constant {3 = ln/7)cv'mllmJ.. Thus, the period 
of the conductivity oscillations with change in the film 
thickness will increase with increasing H. 

The conductivity oscillations can arise, of course, 
only in the presence of strong degeneracy, when the 
condition 

(17) 

is satisfied. 
The criterion (17) is not a strong limitation on the 

temperature. In weak magnetic fields, for thicknesses 
smaller than L < 5 x 10- 6 em, at mJ. ~ 0.1 m 0 (for 
example, bismuth), the criterion is satisfied already at 
nitrogen temperatures. An increase in the magnetic 
field leads to satisfaction of (17) at higher tempera
tures or else for thicker films. 

Thus, in thin semimetals and degenerate-semi
conductor films, one can expect the appearance of con
ductivity oscillations both when the film thickness is 
varied and when the magnetic field is varied. Although 
the condition for the existence of Landau levels in the 
not too strong magnetic fields is, as a rule, violated in 
a film as a result of the small carrier mobility, the 
aforementioned oscillations will take place, since the 
criteria (6) and (17) are not stringent in a thin film. 



564 M. Sh. ERUKHIMOV and B. A. TAVGER 

The authors are deeply grateful to Mo Ya. Shirobokov 
for continuous interest in the work and for a useful 
discussion and V. Ya. Demikhovski1 for a number of 
valuable remarks. 

APPENDIX 

The quantum equation for the density matrix is 

iniJp I at= [iit'p], (A.1) 

where !it' is the complete Hamiltonian (1). We confine 
ourselves to the calculation of the density matrix in 
the linear approximation in the electric field, that is, 
to a calculation of the magnetoresistance in the ohmic 
region. This is always possible, at least for weak 
electric fields. Then the release of Joule heat can be 
neglected, and the electron-gas temperature can be 
regarded as constant. 

Following the method of Kohn and LuttingerC19J, we 
represent the density matrix in the form 

p =Po+ Pe, (A.2) 

where p0 is the density-matrix operator in the ab
sence of an electric field and Pc is matrix correction 
term which is linear in the field. 

Substituting (A. 2) in (A.1) and linearizing with re
spect to the intensity E, we obtain 

. iJpo 
<n-- = [!it' o + V, Po], 

i)t 

in ~[le = - eE [xpo] +[!it' o + V, p,]. 
f!t 

(A.3) 

(A.4) 

The condition (6) allows us to regard the potential V as 
a perturbation to the Hamiltonian iit'o, we therefore get 
from (A.3) 

a'=a 
a' =1= a. (A. 5) 

Here the equilibrium function of the electron distribu
tion 

fa"= [1 + exp(ea- '1) I knT]-'. 

Substituting the matrix elements (A.5) in (A.4) we 
obtain the equation 

iJ(a'IPola> , 
(Ea•- ea- ins)(a'IP•I a)= ieE-. -.--+(a llPeVJia>, (A.6) 

dkx 

The small parameter s indicates the rule for circuit
ing around the poles. In determining the first term of 
(A.6), we used the form of the operator x in the repre
sentation :Hp(x = i1l/1lkx). Let us write out separately 
the equation (A.6) for the diagonal and the nondiagonal 
matrix elements: 

. , . iJ \a' I Pol a> 
(Ea•- ea- <ns) (a I Pel a)= <eE iJkx 

+ (a'l VI a) (\a'l P•l a')- (a I Pel a)) 

+ ~ {(a' I Pel a") (a" I VI a)- (a' I VI a") (a" I Pel a)} (A. 7) 
a"=l=a,a! 

for a' f a and 

-itzs(alpeia) = ieE!fao + ~ {(alpela') (a' I VIa) 
8k.,. a'=l=a 

-(a I VI a') (a'l pel a)}. (A.8) 

in formula (A. 7) we left out the terms containing the 

diagonal matrix elements of the scattering potential V, 
which lead to a shift of the levels Ea by an amount 
( a 1 V I a ) . This quantity does not depend on the states 
a if V does not contain differentiation and integration 
operators. By varying the reference level from which 
the energy is reckoned, we can exclude this shift with
out loss of generality. 

We seek a solution of (A. 7) and (A.8) in powers of 
the potential V. It is easy to see that the diagonal ele
ment of the matrix, as in the ordinary kinetic theory, 
are of the order of V-2 • Consequently, the principal 
role in the right side of (A. 7) is played by the second 
term. Retaining only this term, we get from (A. 7) an 
expression for the nondiagonal elements and substitute 
it in the (A.8). We then get 

iJ/a0 ""' , (t) (!) ( ) eE ~ + 2n LJ I (a I VI a) 121\(ea- Ea•) (fa - /a• ), A.9 
iJkx a'(a'ofoa) 

where f~> =(a IPE I a). We have taken here the limit 
as s - 0. Expression (A.9) is the usual kinetic equa
tion, which includes the field and the collision terms. 
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