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The oscillatory properties of a plasma in the presence of a periodic plasma wave of finite amplitude 
are investigated. A dispersion equation for the frequency of long-wave oscillations in such a plasma 
is derived by means of the asymptotic method of averaging. If the amplitude of the background plasma 
wave is high enough, one finds the excitation of ion oscillations (drift waves, ion acoustic waves and 
others) which propagate in the opposite direction to the propagation direction of the background plasma 
wave. 

1. The properties of a plasma in which there exists a 
wave of high amplitude have not been investigated to 
any great extent in plasma theory to date. Many work
ers have investigated the propagation of small pertur
bations ("second sound") against the background of a 
weakly turbulent plasma. For example, inP 1 the 
authors have investigated small perturbations in the 
plasma in the presence of random plasma oscillations 
of low amplitude characterized by a stationary uniform 
distribution. The results of this work apply only to 
low-amplitude perturbations against a low-amplitude 
background. Some of these results are discussed in 
Sec. 6 of the present work. 

It is well known that the plasma equations allow a 
particular solution in the form of a one-dimensional 
periodic wave of arbitrary amplitude. [2J In the absence 
of absorption a reference system exists in which the 
profile of the periodic wave is fixed. In this system the 
equations for the periodic wave in the plasma reduce to 
the equation for a one-dimensional nonlinear oscillator. 
It is evident that the behavior of small perturbations in 
a plasma environment in which the periodic wave prop
agates will differ from the behavior in a uniform 
plasma. 

In the present work we investigate small perturba
tions in a plasma in the presence of a periodic plasma 
wave of finite amplitude. The wavelength of the pertur
bation is assumed to be much greater than the wave
length of the plasma wave so that one can apply the 
method of averaging to the plasma equations; this is 
a well-known asymptotic method in the theory of non
linear oscillations. Expressions are found for the 
electron velocity and density in the periodic plasma 
wave in terms of a specified periodic function 
f ( x + u1t + x 0, a) of the time t and coordinate x ( u1 
is the phase velocity, a is the square of the non
dimensional amplitude of the plasma wave, and Xo is 
the phase constant). 

If such a plasma supports the propagation of a small 
long-wave perturbation, the electron velocity and 
density are not periodic functions but can be expressed 
as functions of f in which the parameters Xo and a are 
taken to be slowly varying functions of the coordinate 
and time (van der Pol method). [3 J The problem contains 
a small parameter, this parameter being the ratio of 
the wavelength of the background plasma wave to the 
wavelength of the perturbation. An expansion is made 
in powers of this small parameter and in the zeroth 
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approximation we obtain the dispersion relation for 
low-frequency plasma oscillations with the periodic 
plasma wave from which it is possible to determine w, 
the oscillation frequency. If the amplitude ra is suf
ficiently large, the root w becomes complex, corre
sponding to the excitation of a hydrodynamic instability 
(excitation of low-frequency oscillations by the plasma 
oscillations). 

2. We consider an infinite plasma in a strong uni
form magnetic field directed along the x axis. It is 
assumed that the electrons oscillate along the mag
netic field and that they satisfy the hydrodynamic equa
tions 

av av a e acp 
-+v-+vx2-1nne=--, at ax ax me ax (1) 

an. an.v 
---at+~=O, (2) 

a'cp 
ax'= 4ne(ne- n;). (3) 

Here, v is the hydrodynamic velocity, VT is the 
thermal velocity, ne is the electron density, ni is the 
ion density and cp is the electric potential. We now 
transform to the new variables 

(4) 

where u1 and u2 are fixed velocities. (It will be found 
below that u1 is the phase velocity of the periodic 
plasma wave while u2 is the phase velocity of the long
wave perturbation.) Then, substituting acpjax from (1) 
in (3) we have 

(~ +~ \{ a(v + u,)' + a(v + u,)' + 2vr2 (~+~)Inn.} 
ax·, ax, J ax, ax, ax, ax, 

8ne2 
=--(n.-n;). 

me 

In the new variables (2) assumes the form 

an.(v+u,) -1- an.(v+u,) =0 
ax, ' ax, . 

(5) 

(6) 

3. We first consider the solutions of (5) and (6) hav
ing in view the periodic plasma wave. It is assumed 
that all quantities depend only on x1 and that ni = const 
= n0 • Under these conditions (6) is replaced by 

(7) 

whence 
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ne(v + Ut) = const = noUt. (8) 

According to (8) the flux density of electrons in the 
reference system that moves with respect to the ions 
with velocity Ut is1 constant and equal to n0u1, the flux 
density of the ions in this same coordinate system. 
Assuming that VT << u1, in (5) we neglect the pressure, 
thus obtaining 

4ne2no 
ko2=--. 

Here, we have introduced the notation 

v+u, = udf 

and have substituted ne from (8). 

meu12 (9) 

(10) 

Multiplying (9) by f', where the primes denote dif
ferentiation with respect to x1, and integrating, we 
have 

't.f2 = 2k02(2Yf- f- 1 +a) == F(f, a), (11) 

where the constant of integration is written in the form 
-1 + a, in which u1 ..fa is evidently the amplitude of the 
oscillations of the velocity v. The relations (9) and 
(11) are the equations for a one-dimensional oscillator 
with a potential energy F (f) in which the role of the 
time is played by the variable Xt. When 0 < a< 1, 
(11) exchibits a periodic solution of the form 

r at 1 i/-1 1 -
x1 +x0 = ± J -==-arcsin--_-±-[a-('//-1)2]'1•, (12) 

'/2F (f) ko '/a ko 

where Xo is a constant of integration. It is evident 
from (12) that f executes oscillations at a fundamental 
frequency kou1 equal to the plasma frequency w 0 

= fue2no/me and at higher frequencies which are 
harmonics. Assuming that the amplitude is small, 
from (12) we have 

17 = u,-•(v+ u,) ~ 1 +l'asinko(x,+xo) + acos2 k0 (x1 +xo) + ... 
In the general case, for an arbitrary amplitude (12) 
gives f as a function of a and as a periodic function 
Of X1 + Xo = X + Utt + X0 : 

f = f(x, + Xo, a). (13) 

Thus we have obtained a particular solution of (5) 
and (6) in the form of a periodic plasma wave that 
propagates with velocity u1. The length of this wave is 
determined from (12): 

Averaging (9) with respect to x1 we have 

(1/17> = 1, 

where the angle brackets denote the average value. 
Multiplying (9) by ff and averaging we find 

(14) 

(15) 

2ko2 (1- (l'Jl) = -•t.<t"f1f>. (16) 

Now, substituting f' from (11) and taking account of 
(15) we have 

<1"1>=1+a/2. (17) 

In similar fashion we obtain the relation 

<t> = 1 + 3/2a. (18) 

We now consider the average of the electron flux 
density nev and the flux density of electron kinetic 
energy nemcv3/2 in the rest frame of the plasma. 
Substituting (8) and (10) and taking account of (17) and 
(18) we find that both of these quantities vanish. This 
means that in the absence of thermal motion the group 
velocity of the plasma wave, which is equal to the 
transport velocity of the energy of the electron oscilla
tions, also vanishes. 

4. So far, we have only considered the electron 
plasma oscillations under the assumption that the ion 
density is constant because of the large ion mass. Now 
let us assume that the plasma containing the periodic 
plasma wave also allows the propagation of a weak ion 
wave and that the ion density is a function of time and 
the coordinate in the form ni ( x + u2t) = ni ( x2) with a 
wavelength much larger than the wavelength of the elec
tron plasma wave. Under these conditions, ne and v, 
in addition to depending on x1, will also depend on x2 
and will thus satisfy the general nonstationary equations 
(5) and (6) which differ from (7) and (9) by small terms. 
We seek a solution of these equations in the form 

v = ql'f- u, (19) 

as a function (13) of x1 and the parameters q, a, and 
xo, assuming the latter to be functions of x1 and x2. 
The solution ne is written in the form 

ne = ni(X2)j--'1'(Xt + Xo(Xt, X2), a(Xt, X2)). (19a) 

Now, (5) and (6) are replaced by 

(__!!_ +~){· dq2f +d(ql'f- u)2 }= 8ne2ni ( ~- 1 ). (20) 
dx, d~ dx1 dx2 me r'f 

d;;~ + d:,(niq- ;}1 )=0, u==u,-u2. (21) 

In (20) we have again neglected the electron pressure, 
assuming for simplicity that vg << u2, where vg 
= v~ju1 is the group velocity of the plasma wave; the 
quantities djdx1 and d/dx2 represent total derivatives 
taking account of the dependence of x 0 and a in f on 
x1 and x2 respectively. 

Thus, using (13) and (19) and (5) and (6) we replace 
the two unknown functions v and ne by three new 
unknown functions q, a, and x0 • As a result we obtain 
(20) and (21). In order that this substitution be unique 
we must impose on the new functions additional condi
tions similar to those that follow in the theory of non
linear oscillations. (3 J These conditions must be ex
pressed in a form such that the second-order system 
(5) and (6) with respect to the functions v and ne re
duces to a system of three first-order equations with 
respect to the functions q, a, and x0 • It will be seen 
below that this requirement is met if 

dq2j d(qi'F- u)2 --+· =q2f', 
dx, dxz (22) 

where the primes denote the derivative o/ox1 only for 
the explicitly contained variable x1. 

When (22) is taken into account, (20) assumes the 
form 
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( d d\, 8ne2n;(1) n;, -+- q'f =-- --=---1 =-ut2/'. 
dxt ax,!. me if 1lo 

(23) 

Here, we have used the definition of f" from (9). Ex
panding the derivative djdx1, we write (22) and (23) 
in the form 

d -
q2faa'+q'fxo'+2q(q'+ti)f+q'i-2u-d (qif)=O, (24) 

x, 

q2fa'a' + q'f'xo' + 2q(q' + q)f' + q'i' =( ~o u12 - q2 )r. (25) 

The subscript on fa denotes the derivative with respect 
to a and the dot al;>ove a symbol denotes d/dx2, the 
total derivative with respect to x2. 

We now solve (24) and (25) with respect to a' and 
x6. The determinant of this system is [cf. (9), (11)] 

t'fa'- f'fa = ~~ /'2 - fa OF = dF -!!_fa= 2ko2• 
2 da 8f da 8f 

(26) 

Using (24), (25) and (26) we have 

2ko"q'a' = 2q ( q' + !i) (ff' - f''H q~ Ut" - ff') 

- 2uf" (ti ii + q d'il\1 + (~ u1'- q' )rr. <27) 
dxz no . 

+ 2uf.' (ti{f+ q itff)- 2ko'(~u~2 - q'\)(\_ ~- -1)fa. (28) 
dx2 no lf 

Assuming that n! = 0, we can write (21) in the form 
1 

q'+ti=~( ~-q)+u~ ~ · 
n; if - dxzl/f 

Now, we substitute q 1 from (29) and f" and F from 
(9) and (11) in (27). In this case we have 

(29) 

2 n; ( u ) - 2uq -a'+a=-- --=-q (f-31/f+2-2a)--(1-if) 
q n; 1/f q' (30) 

2u i 2u d 1 ( n;Ut2 ) - , +----(1-a)----=-+ ----1 (2if-/-1). 
q f q dxz if noq2 

We recall that f is a function given by (12). 
Thus, we have obtained a system of first-order 

equations (28)-(30) which describe the oscillations of 
the parameters q, a, and xo about their fixed values 
in the unperturbed periodic wave ( q oscillates about 
u1 ). These oscillations describe an ion wave, that is, 
to say, the dependence of ni on X2. It is evident from 
these equations that because of the explicit dependence 
of f on x1 the oscillations of the parameters depend 
on x1, in which the period of the dependence of the 
parameters on Xt is of order A, the period of the de
pendence of f and x1. We have assumed that the wave
length of the perturbation (period of dependence of n1 
on x2) is much larger than A so that the dependence 
of q, a, x0 , and f on x1 is a rapidly oscillating func
tion as compared with the dependence on x2. 

We can now make estimates of each term in (28)
(30) by means of (12), (13) and (18). For example, the 
last term on the right side of (30) is of order 

_!a+ (n; -1 )<a'+ koXo'). 
q _ no 

It is not difficult to show that the derivatives of each 
of the parameters with respect to x1 and x2 are of the 

order of 

q'- q, , . ' . a ,._ a, xo ......., Xo. 

Hence, the ratio of the amplitude of the dependence on 
x1 to the amplitude of the dependence on x2 for any 
parameter is of the order of the ratio of A to the 
period of the dependence on x2, that is to say, a very 
small quantity. Thus, in the zeroth approximation, to 
which we limit ourselves here, in which case there is 
no differentiation with respect to x1, in (28)-(30) we 
can neglect the oscillations of qf a, and xo, assuming 
then to be functions of x2 alone. 3 1 

We now average (29) with respect to Xt for fixed x2, 
taking account only of the explicit dependence of f on 
x1. The average of q 1 vanishes and we have 

(31) 

In averaging (30) with respect to Xt it should be re
membered that the last term on the right side, after 
differentiation by parts, is found to be proportional to 
q 1 so that we cannot neglect the dependence of q on Xt 
in this term. After averaging we have 

2ri;((u ) - 2uq -a=- --=--q (f-31/f+2-2a) )--(1- (if)) 
qn; 1/f q• 

2u< I) 2u d '( 1) ( q' - ) +- _ --(1-a)-,-= +2 -(2i/-f-1) '(32) 
q I q dx, if q 

In the last term of (32) we have neglected terms that 
are not linear in the amplitude of the longwave oscilla
tions. In (31) we can substitute the mean value (15) in 
the unperturbed periodic wave. Thus we find 

(33) 

In (33) we have carried out a linearization process, that 
is to say, we have neglected terms that are not linear 
in the amplitude of the oscillations of the parameters 
and the quantity n1. 

In (32) we now substitute q' from (29) and the 
average values obtained from (15), (17), and (18) thus 
obtaining 

·( u) an; aq(u ) a 1-- =-(5q-4u)-- --1. 
q I qn; q q (34) 

If the electron pressure is considered in going from 
(5) to (20) the calculations proceed in the same fashion. 
After a somewhat more complicated calculation (which 
makes use of an expansion in powers of v~) and after 
substituting q from (33), we find that (34) is replaced 
by 

(35) 

where vg = v;./u1 is the group velocity of the plasma 
wave. In this equation we have neglected terms con
taining higher powers of av;.. We have also neglected 
terms that are not linear in the amplitude of the oscil
lations of the parameters and the quantity ni. 

Thus, we have obtained an equation that relates the 
infinitesimal longwave oscillations of the ion density to 
the amplitude of the periodic plasma wave. This equa
tion holds for an arbitrary amplitude of the periodic 
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plasma wave. Equation (35) shows that when the ions 
are fixed ( ni = 0) the plasma can support the propa
gation of free oscillations of the amplitude of the 
plasma wave with a phase velocity u2 = v . A wave 
packet of plasma waves propagates with t'he same 
velocity. 

Averaging (28) over x1 we obtain an equation which 
gives x0 as a function of q - u1. 

5. The long-wave oscillations of ni are accom
panied by long-wave oscillations of the potential cp 
along with the plasma oscillations. We express the 
oscillations of the parameters of the plasma wave in 
terms of the longwave oscillations of the potential. For 
this purpose we average equations (1) written in the 
variables (4), (19), and (19a), this averaging being car
ried out over x1. The average of the total derivatives 
with respect to x1 is zero and we find 

d(1 - n1 ) ed - - q2f- uq if+ vT2 ln-= = --- (rp). 
dx2 2 Yf - me dx2 

(36) 

We neglect the oscillations of q, a and x0 and make 
use of the average value as ·obtained from (17) and (18) 
in (36). In this way we find 

d [ (u- q)2 3 uqa 1 J e 
- ---+-q2a--+vT2!nn1--vT2(!nf) =-(<j>). 
dx2 2 4 2 2 me 

(37) 

In (35) and (37) we neglect small terms defined by 
the inequality u2 « VT « u1. Then, eliminating a and 
q from this system by means of (33) we have 

(38) 

Here we note that ( ne) = ni; ( cp) is the potential which 
acts on the ions. In addition to depending on x2, the 
quantities ni and ( cp) can depend on the coordinates y 
and z. Because of the strong magnetic field the elec
tron motion remains one-dimensional and the electron 
equations, in particular (38), remain unchanged. 
Linearizing the ion equations of motion in the magnetic 
field we obtain the relation 

;,, = L(~), (39) 

where L is a linear operator that acts on ( cp). For the 
ion-acoustic wave, and drift wave, and other familiar 
forms, the quantity L is well known. 

Equations (38) and (39) form a closed linear system 
that describes the interaction of the periodic plasma 
wave with phase velocity u1 and the sinusoidal ion 
wave with phase velocity (along the magnetic field) u2 • 

Since these equations are linear the condition that all 
quantities depend on x and t only through the combina
tion x2 = x + u2t is not limiting. If ni = ikxnk 
exp{i ( k · r- wt )} where k is the wave vector, w is the 
frequency and nk is the amplitude, we have w = -kxu2. 

We now consider the simplest possible case of a 
sinusoidal ion-acoustic wave that propagates along the 
magnetic field. In this case (39) assumes the form 

(40) 

From (38) and (40) we obtain the dispersion equation 

(41) 

where a= auU4v~ and Cs = v'mev.j./mi is the velocity 
of propagation for ion sound. On the left side of ( 41) we 
have the dielectric constant of the plasma with accuracy 
to a positive constant. If vg is small and a > 0.4 cs, 
Equation (40) has one real root and two complex roots 
for u2. When a is somewhat greater than this critical 
value the complex roots are given by 

Cs 1/ a 
u2 ::::: - --=± 4ic, V -- 0,4. 

f3 Cs 

(42) 

Thus, we have an ion-acoustic instability which 
propagates in the reverse direction to the plasma wave. 
This instability is due to the fact that the energy of the 
ion acoustic wave is negative in the region of phase 
velocities given in ( 42) (the energy is reduced as the 
wave amplitude increases [4 J). It is difficult to estimate 
the amplitude of the ion-acoustic wave that results 
from this instability. It is probable that a high-ampli
tude wave is established. 

Assuming that cs ~ vg « u2 « vT and keeping the 
principal terms, we obtain in similar fashion the dis
persion equation for drift waves [5 J taking account of 
the effect of the plasma waves: 

1----a __ 
u2- Vg +a 

(43) 

where Vd is the drift frequency (5 J divided by kx (the 
magnetic field is along x ). When vd < 0, and 
a> -(vg- vd)2/vd, (43) has unstable solutions for the 
excitation of the drift wave. In similar fashion we can 
obtain dispersion equations for other ion oscillations. 

6. We now wish to compare the results obtained 
here with results of other workers on weakly turbulent 
plasma. Oraevski1 and Sagdeev[sJ have indicated the 
existence of an instability of a plasma wave of low 
amplitude against decay to a plasma wave with the 
same wavelength propagating in the opposite direction 
together with a shortwave ion-acoustic wave. It is dif
ficult to investigate this instability in the highly non
linear case. We can only indicate the possibility of a 
substantial modification of the results of the analysis 
of a low-amplitude wave when one considers the highly 
nonlinear case since the dispersion equation for a 
plasma with a periodic plasma wave does not allow 
longwave plasma oscillations. 

Vedenov and Rudakov [ll have investigated the inter
action of plasmons (quanta associated with the plasma 
waves) with ion sound, neglecting harmonics of the 
plasma wave. They found that the derivative of the 
plasmon distribution function with respect to the wave
number, like the derivative of the electron distribution 
function with respect to velocity, can lead to the exci
tation or damping of ion sound. 

In order to make a comparison with the results of 
the present work we reduce the width of the plasmon 
distribution function in [l 1 to zero and find that in this 
limit the plasma wave interacts with the ions only by 
virtue of the thermal motion of the electrons. It is 
evident from (41) and (42) that the thermal motion of 
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the electrons attenuates this interaction. We conclude 
that for a small width of the plasmon distribution func
tion one cannot neglect the higher harmonics [that is 
to say, the second term on the right side of (12)] since 
the instability occurs when the amplitude of the funda
mental becomes finite. Furthermore in [1 J no division 
is made of the slow oscillations of the phase of the 
plasma wave and the oscillations in amplitude, which 
also effects the results. 

Sturrock reports [7 J that the group velocity of the 
plasma wave must be supplemented, in the nonlinear 
case, by an additional term proportional to the square 
of the oscillation amplitude. This assertion is based 
on the result that the mean velocity of the electrons is 
nonvanishing in the nonlinear case. As we have shown 
in Sec. 3 of the present work, in the laboratory system 
in the absence of a current the mean velocity is non
vanishing; however, the mean electron flux and the 
mean flux of electron kinetic energy do, in fact, vanish 
if the thermal motion is neglected. This result means 
that the plasma wave does not transport energy when 
VT = 0. 

The work considered here is also closely related to 
a paper by Ostrovski'i' (a) who has considered the propa
gation of a low-amplitude wave in a nonlinear medium 
by a semiclassical method. Using the method developed 
in the present work it should be possible to consider 
the propagation of low-amplitude long-wave free oscil
lations in a nonlinear medium in the presence of a 

periodic wave of arbitrary amplitude (superposition of 
low-amplitude longwave oscillations and a periodic 
wave). 

The author wishes to thank Academician M. A. 
Leontovich and B. B. Kadomtsev for valuable comments 
and discussion. 
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