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The effect of elastic interaction between dislocation loops on the plastic flow velocity is taken into ac
count. It is shown that in this case the plastic flow depends on the square of the load. 

IN an earlier paperr11 (henceforth cited as I) we con
sidered a diffusion-dislocation mechanism of crystal 
flow, in which no account was taken of the elastic inter
action between dislocation loops. If the plastic flow is 
sufficiently well developed, this interaction becomes 
significant under certain conditions. 1> Then the dislo
cation loops no longer grow during the course of plastic 
flow to dimensions equal to those of the crystal, but to 
dimensions determined by this interaction of the dislo
cation loops with one another. Thus, in the kinetic equa
tion derived in I it is necessary to take into account this 
interaction of the dislocation loops, which leads to the 
cessation of their diffusion growth. This signifies that 
segments of the dislocation loop will have neighbors in 
front of them and the interaction with the neighbors will 
stop the diffusion growth of the loop. 

In an isotropic crystal, when the dislocation loops 
can grow in all planes, this will be the main mechanism 
limiting the growth of the loops. 

In an anisotropic crystal, when the dislocation loops 
can grow only in a small number of selected planes, the 
principal role is assumed by the diffusion interaction of 
the loops situated in parallel planes. In this case the in
teraction of the loops not only stops their diffusion 
growth, but also leads to the appearance of neighbors 
with opposite Burgers vectors in the same plane. In
deed, if a certain loop has been stopped by interaction 
with loops in a parallel plane, then in the course of 
time the sources operating in this plane will be dis
placed and will emit loops situated in the same plane. 
The main qualitative result in all these cases will be 
the appearance of a certain average dimension, up to 
which the loops grow during the course of their evolu
tion; this dimension is determined by the number of 
sources per unit volume or plane and by the distance at 
which the loops interact. The possibility of dislocation 
gliding under the influence of an external load will be 
neglected throughout. 

Let us consider the case of an isotropic crystal and 
let us supplement the kinetic equation derived in I by 
a term that takes into account the possibility of stopping 
the loop as a result of its interaction with other loops. 
This term is the analog of the collision integral and is 

lYfhis circumstance was pointed out to us by A. L. Roitburd. 

a functional of the distribution function of the moving 
loops f(R, t, cp). We denoted by J{f}. 

Thus, the kinetic equation describing the interstitial 
vacancies or vacancy loops can now be written in the 
form 

:~ + v :~ = v p(R~<p) B(R-Rcr(<fl))-/U},B(x)={ ~: =~~ .(1) 

The notation here is the same as in I : f = fi or fV is 
the distribution function of the interstitial or vacancy 
loops, respectively, and p(R, cp) is the volume density 
of the sources of dislocations with dimensions R and 
Burgers -vector orientation cp (for example, dislocation 
segments), Rcr(cp)-dimension beyond which a loop 
with orientation cp can grow (see I), v-diffusion rate 
of growth of the interstitial or vacancy loops, 

R~(<p)= a a•G {In~+ 1\} • 1 , 
4n(1- v)kT· r0 1'1 - )G cos2<p 

i a3G {R} 1 
Rcr(<fJ)= a 4n(1-v)kT In-;:;;-+~ -1'1' +)Gcos2<p ~· 

vv= a2D'A(R) (1'1' -)Gcos2<p), vi= a2D'A(R) (-1'1' + xcos2<p), 

D' = CovDv+CoiD'i x= a•o • Co•f1vD•-Coif1iD'"'" 
' kT' 1'1 = D' ' 

8R 
A(R)=2n/a31n-, 

a 

where C~, C~, Dv, Di, D. v, and D.m are respectively 
the equilibrium concentration, the diffusion coefficient, 
and the supersaturation of the vacancies and of the in
terstitial atoms, R is the radius of the dislocation 
loops, a is the lattice constant, r 0 ~a, a is the exter
nal load (a = azz), the crystal is assumed isotropic, 
G is the shear modulus, v is the Poisson coefficient, 
K > 0 corresponds to tension, K < 0 to compression, and 
cp characterizes the angle between the direction of the 
Burgers vector of the dislocation loops and the load di
rection. The range of the angles cp for the vacancy and 
interstitial loops is limited to the definite regions that 
defin.ed, as is well known, by the conditions vv > 0 and 
by v1 (see I). This means that we take into account 
growing loops. D.* is a constant determined by the total 
balance of matter. 

Let us calculate now the distances h(cp) at which 
loops with a Burgers vector, making an angle cp with 
respect to the external load, interact strongly with the 
nearest loops. 

552 
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Since the work needed to produce a point defect de
pends on the average stress field, which is determined 
by all the dislocations, this field can be included in the 
definition of the equilibrium concentrations of the point 
defects. This means that to calculate h(cp) we need to 
take into account only the "close collisions," that is, 
the interaction of the loop with the nearest one. The 
quantity h(cp) is determined from the condition that the 
rate of diffusion growth of the loop by interaction with 
the neighboring loop vanish. For the vacancy and inter
stitial loops we have respectively 

b,a,mbm • bzazmbm (2) 
~·-xcos2 <p- kTb' a3 =0, -~ +xcos2 q;-~a'=O. 

For the vacancy loops b = -bn (b-Burgers vector). 
For the interstitial loops b = bn (n-vector normal to 
the dislocation loop, defined in the circuiting direction). 
The bar denotes averaging over the positions of the 
neighboring loop, and crzm is the stress field produced 
by the nearest dislocation loop. Since the curvature of 
the dislocation loops is on the average sufficiently 
large for a developed plastic flow, R» h(cp), the stress 
field produced by it will differ little at a distance h(cp) 
from the stress field of a linear dislocation. 

The greatest contribution to the deceleration of a 
given loop is made by like loops moving head on towards 
another source, whose axes are almost parallel. As a 
result we obtain 

hn 
h•(m)= , 

T ~·- xcos2 q; 
a3G 

h- b p 
n- 2n(1-v)kT ' 

(3) 

where p is a number of the order of unity. 
We note also that the dislocation loops emitted by 

one source move with equal velocity. This means that 
the number of loops per unit volume, with which a given 
loop can interact, is equal to the number of sources of 
a given type: 

Ro 

n0 = ~ p(z,q;)dz, 

(R0 -dimension of the crystal). If p(z, cp) = p(z) is a 
sharp function near a certain value z = l, which is a 
fairly natural assumption, we can assume approximate-
ly that ncp = n = const. _ 

We can now obtain the average loop dimension R(cp), 
beyond which a loop with a given orientation grows. To 
this end we note the volume allotted to each loop after 
it is out of the plastic -flow process is determined by 
the number of sources with which the given loop can in
teract. From this we get 

1 -
V=-= nR2 (q;)h(q;), 

n 

- 1 R'(q;)---
- nnh(q;) · 

(4) 

We shall see subsequently that segments that inter
act elastically most strongly with one another have al
most opposite Burgers vectors and are dislocations of 
the same type. The elastic field of such a complex de
creases like a dipole field. Thus, these complexes, 
which accumulate in time, will not interfere appreciably 
with the operation of the sources of the dislocation 
loops, all the more since each succeeding dislocation 
loop emitted by the source moves in a succeeding atom-

ic plane. In addition, in our problem the distribution 
function is encountered only under the integral sign, 
therefore a detailed knowledge of this function is not so 
important, especially since it will differ little from the 
distribution obtained in I in the hydrodynamic approxi
mation in the main interval of its variation R/R "" 1, 
where the "collisions" have still little effect. 

Consequently, we can replace the "collision inte
gral" (1) by an effective boundary condition. This re
duces to a situation wherein the upper limit in all the 
integrations with respect to R is not R0 but R(cp ). It is 
clear that the interaction of the dislocation loops will be 
appreciable if R(cp) « R0 (R(cp)-value of R(cp) averaged 
over the angle cp, and R0 is the dimension of the crys-
tal). R 

The function F(cp) = 21T J 0 f(R, cp)RdR introduced 
0 -

in I will now take the form (t » R/v) 

R(O) 

r p (z) 
F(q;}= nR2 {<p) J ~-dz. 

z 
Rcr(<P) 

(5) 

The equation of material balance, which determines the 
range of angles in which the dislocation loops can grow, 
will now have a somewhat different form as compared 
with formula (22) of 1: 

~ Rn2 (<p)v•(q;)F•(q;)sin<pd<p= . ~ Ri'(q;)vi(q;)Fi(q;)sinq;dq;. (6) 
v v (cp)>O v 1 (qJJo>O 

If we introduce the notation used in I, namely cos cp = u, 
~ * = ug K, and 0 < ug < 1, then (6) takes the form 

uo 1 

~ (u0'- u2 ) 2 tjJ(u02 - u2 )du = ~ (u2 - u0") 2 tjJ(u2 - Uo2)du, 
0 Uo 

R(O) 

r p (z) 
1jl(uo2 -u2}= J --dz. 

z 
ncr(cp) 

(7) 

Equation (7) differs from formula (24) of I in that 
the factor u2 - ug under the integral sign goes over into 
(u2- ug)2. 

Assuming that a/l » a/G (l-ave rage dimension of 
the created loops), l/J (ug- u2) will depend little on its 
argument, for under this condition we have approxi
mately 

H(O) 

S p(z) dz ~_!_I p(z)dz 
Rcr<•l z l o 

(p(z) is a sharp function near z = l and p(O) = p(oo) =0). 
If a/l » a/G, then £zz = 0, for otherwise the 

sources cannot operate (see 1). When a/l « a/G, Eq. (7) 
simplifies to 

Uo 1 

~ (u02 ~u2) 2du= ~ (u2 -uo")'dzL. 
0 ~ 

Its approximate solution is ug = 0. 3. 
We now express the rate of plastic flow in the same 

approximation, by substituting in the ex;act formula (28) 
of I the altered values of Fv(cp) and F1(cp): 

ll/2 ~I) 

i, = 2a{- ~ v•(q;)F•(q;)cos2 q;sinq;dq;+ ~vi (<p)Fi(<p)cos2 q;sinq;d<p} 
0 
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8.R ~ 1 ~ ( ) uo 

= 2n(ln-nh0 ) p(z)dz f D'x{-) ~dz) u2(u2 - u0') 2 du 
a I z 

0 0 0 

~ ( ) 1 M D' z + ~ .!:...:.__dz~ u2 (u2 -Uo2 ) 2 du}= (<ra"), 
0 z u, ln(8R/a) n0l kT 

[ cra• I r J''· R= kT rthoJ p(z)dz 
0 

M~4rt. 
7 

Thus, allowance for the interaction reduces to re
placing R0 by R with some numerical coefficient in 
formula (32) of I. 

(8) 

The applicability of (8) is determined by the obvious 
relation 

R = [xI nhonJ'f' ~ Ro, 

and can be rewritten as follows: 

cr I G ~ Ro'na I 2 ( 1 - v). (9) 

In the opposite case, the rate of plastic flow tzz is 
determined by formula (32) of I. We note that if the 
sources of the dislocation loops are the block bounda
ries, then the number of sources of the loops 
n = 6k8 /l 2 a (B-angle of block disorientation, l-linear 
dimension, the factor k is the relative number of dis
locations on the block boundary, which can serve as 
sources of dislocation loops), and the inequality (9) 
takes the form a/G « ekRg/l2• If a/G » ekRUl2 then, 
substituting this value of n in formula (32) of I, we get 

. 24rt k R02 aa3 

£zz=- D'-8-. 
45 ln(8R0/a) l"a kT (10) 

We note that if the dislocation loops require, for some 
reason, a greater activation energy in order to grow 
through the block boundaries, then R0 must be replaced 
by l. In this case the dependence of tzz on a changes 
in the region a !::! Ge (a transition takes place from a 
quadratic to a linear dependence). 

Generally speaking, dislocation loops can grow in 
real crystals only in selected directions. This can lead 
to an appreciable quantitative change in the expressions 
derived above, but only in the case if the number of 
these selected directions is small. Allowance for 
these circumstances reduces to the substitution 27T J ••• 
sin cpdcp- ~,where ~ denotes summation over all 

1 1 
possible dislocation-loop growth directions determined 
by the same conditions as obtained above. 

In conclusion we note that if we consider an aniso
tropic crystal we obtain for homogeneous external 
stresses a homogeneous elastic state regardless of the 
anisotropy of the elastic constants. The anisotropy of 
the crystal comes into play only when we try to deter
mine the elastic energy connected with the dislocation 
loop (this determines Rcr(cp)), but since the loops are 
sufficiently large, automatic averaging takes place 
over the arrangement of the dislocation axis relative 
to the g crystallographic axes; we thus obtain a cer
tain average elastic energy per unit length of disloca
tion. The diffusion fluxes per unit length of dislocation 
loop are also averaged for the same reason. This 
means that in such a crystal plastic-flow mechanism it 
is always possible to characterize an anisotropic crys
tal by means of certain average elastic constants of the 
isotropy crystal, and the loops can grow only in definite 
planes. 
. In conclusion, I am grateful to I. M. Lifshitz and 

A. M. Kosevich for a discussion and advice. 
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