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The mechanism of heat exchange between a solid body and He II filling a narrow gap is considered. It is 
shown that the heat exchange significantly depends on the relation between the phonon mean free path l 
and the gap width d. The heat flux between the solid body and liquid helium below 1 °K is calculated for 
d « l. 

IT is known that heat transfer between a solid and liq
uid helium below the A point has a number of unique 
features due to the large thermal resistance of the in
terface between these two media. 

The main mechanisms of heat transfer between he
lium and a solid are elastic and inelastic scattering of 
rotons from the interface. The probability of the roton 
becoming transformed into a photon of the solid is 
practically nil, and that of the phonons differs from 
zero in a relatively narrow cone close to the normal 
to the interface. The transformation of a helium pho
non into a phonon of the solid is in fact elastic scatter
ing of the phonon from the helium-solid interface. The 
probability of elastic scattering vanishes when sin Xb 
= c/cs, where c and cs are the sound velocities in the 
helium and the solid, respectively. As a rule c/cs « 1 
and therefore Xb ~ c/cs « 1. At the maximum (when 
x = O) we have Wei = 4 pc/ PsCs llJ ( p-density of the 
helium, Ps -density of the solid). 

Although W el « 1, it is nevertheless larger than the 
inelastic-scattering probability W inel, which tends to 
zero rapidly with decreasing temperature. According 
to l2 J, the mean value of Winel is (T/Mc 2)(T/6)\ where 
M = Psa3 (a-distance between atoms of the solid, e
Debye temperature). However, the inelastic scattering 
has no restrictions with respect to the angles. Since 
the difference between W el and W inel is quite appre
ciable, the following situation can arise relatively 
easily: The path covered by the phonons that move al
most perpendicularly to the boundary, u prior to their 
"escape" to the wall, turns out to be much shorter 
than their mean free path l; the analogous path of the 
remaining phonons is much larger than l, i.e., 

(1) 

where d is half the width of the gap filled with the He II. 
The phonons in He II interact with one another and 

with the rotons. Accordingly, there are two mean free 
paths, lpp and lpr· According to l3 l, the mean free 
paths are (the temperature is in degrees) 

lpp ~ io-•T-9 em, 'lpp ~ 10-•T-''•ea;r em. (2) 

Owe shall call them "normal." 
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In (1), l must be taken to mean the smaller of the two 
paths. The inequality (1) is realized only in the case of 
sufficiently narrow gaps and at low temperatures (for 
d ~ 10-5 em and 0.1 °K :5 T < 1 °K). We note that the 
mean free path of the relative small-angle scattering 
can be of the order of the dimension of the gap or even 
smaller. 

Let us consider a plane-parallel capillary of width 
2d, filled with He II. Assume that at the initial instant 
of time the temperature of the He II is T and that of 
thecapillarywalls T'(T*T' and IT-T'I«T). The 
heat exchange between the solid and the He II cause the 
He II temperature to become equal to the wall tempera
ture after a certain time teq· 

We assume that inequality (1) is satisfied. The first 
to become equalized is the temperature between the 
"normal" phonons and the wall. In other words, the 
phonon temperature becomes dependent on the direc
tion of the momentum. The situation described here is 
similar to that considered by Khalatnikov and Cherni
koval4J and has the same nature-a sharp difference 
between the phonon-phonon scattering cross section at 
large and small angles. 

Further equalization of the temperature (energy ex
change between the solid and the helium) is effected 
either by collisions between the "normal" phonons and 
the remaining quasiparticles, or by inelastic collisions 
with the walls. The latter mechanism was considered 
in detail by Khalatnikov, l2J who showed that the energy 
flux between the wall and helium due to the inelastic 
collisions is equal to qinel = ainel (T - T'), where 

O!inel is the sum of the phonon (afnel) and roton (afnel) 
terms (in cgs units): 

(3) 

(T is in degrees). 
Let us calculate the energy flux q connected with 

the scattering of the "normal" phonons. We assume 
that q, like qinel> is calculated per unit area and per 
unit time; then it is obvious that 

q =dQ, (5) 

where Q is the energy transferred from one subsystem 
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to the other in a unit volume per unit time. The value 
of Q is governed here by three scattering mechanisms: 
spin-roton collisions, large angle phonon-phonon scat
tering, and collisions between phonons with close mo
mentum directions. The latter, in accordance with the 
energy and momentum conservation laws, are not ac
companied by noticeable changes in the directions of 
the momenta of the colliding phonons, but occur very 
frequently (tpp « T PP• where tpp and T pp are, in ac
cordance with the notation of l3 J, the times characteriz
ing the phonon scattering at small and large angles). 

The collisions between phonons with close momen
tum directions leads to unique diffusion of the phonons 
in the space of the angles x. Knowing tppl3 J it is easy 
to obtain the diffusion coefficient D characterizing this 
process. Indeed, from the energy and momentum con
servations laws it follows that in collisions at zero an
gle the phonons are deflected from their initial direc
tion by an average t.x = kTc -l,ry (where y is a par am
eter describing the deviation of the phonon dispersion 
from linear). Then the order of magnitude of the diffu
sion coefficient is 

D ~ (t.x) 2 I tpp .. 

From this we get for the energy flux qd = dQd con
nected with the diffusion mechanism2 > 

qd ~ (t.x)' Cpd(T- T'). 
tpp 

Substituting in (7) the numerical values of all the pa
rameters (in cgs units) we have 

( 6) 

(7) 

ad~ d·10'0T12• (8) 

Let us calculate now the energy flux q connected 
with the large-angle spin-phonon scattering and with 
the phonon-roton collisions. If we denote by I(n) the 
phonon collision integral, then 

Q = ~ I(n)ed,;,, (9 ) 
X 

where £ = cp, dTr = p2 dpd0/(21TnY, the symbol X de
notes that the integration is carried out in the narrow 
cone X < Xb, and I(n) = Ipr(n) + Ipp(n). 

Assuming that the phonons have a Planck distribu
tion (with temperature T') and the rotons a near-Max
wellian distribution (with temperature T), and recog
nizing that when a phonon is scattered by a roton the 
energy of the latter remains practically unchanged, we 
get 

(10) 

where Nr is the number of rotons per unit volume and 
apr is the phonon-roton scattering cross section. [31 

Substituting the expression for Ipr into (9) we get the 
part of the energy flux due to scattering by the rotons: 

(11) 

where Cp is the specific heat of the phonon gasl31 and 
T pr is tlie phonon-roton relaxation time: 

2>we note that D does not depend on the parameter 'Y· This is con
nected with the fact that both (t.x)2 and tpp are proportional to 'Y· 

1 
't:pr 

where 

A= _t_[ {)'1'. + .!_1 {)Po)'] , 
P0c {)p' 11 \ {)p · 

and t., P 0 , and JJ. are the parameters of the energy 
spectrum of the He IT excitations. Using the numerical 
values of all the parameters in (11) we obtain (in the 
same units) 

(12) 

To calculate the phonon-phonon part of the flux, qPP' 
we use the relaxation-time approximation, [41 i.e., we 
write 

lpp(n) = -6n/'t:,pp, (13) 

where on= -(T- T') on/oT. Hence 

(14) 

Substituting in (14) the numerical value of all the pa
rameters, we get 

(15) 

Comparing (8) and (15), we see that ad and a~l have 
the same temperature dependence and are of the same 
order of magnitude. 

Comparison of formulas (8), (12), and (15) with for
mulas (3) and (4) shows that in the temperature inter
val 0.6°K < T < 1°K it is necessary to take into account 
the energy transfer mechanisms; at lower temperatures 
the principal role is assumed by inelastic scattering of 
the phonons from the interface. 

The obtained formulas for the heat flux allow us to 
determine the effective temperature equalization time 
teq = Cpd/aeff• where a~ff is the thermal resistance 

of the interface (aeff = ~j aj , where the sum is taken 
over all the heat-transfer mechanisms). The tempera
ture relaxation time in the capillary, which is one of 
the kinetic characteristics of the helium in the capil
lary, can determine in a number of cases the magnitude 
of the damping of the fourth sound. 

We have slightly "oversimplified" the entire analy
sis. The equalization of the helium-phonon and wall 
temperatures is actually described by an integra
differential equation that takes into account simultane
ously two circumstances: the smearing of the step 
(gradual equalization of the temperatures of the "nor
mal" and remaining phonons) and the indirect transfer 
of energy from the "normal" phonons to the remaining 
ones by scattering through large angles. 

Our analysis enables us only to estimate the role of 
the different mechanisms and to determine the temper
ature dependence of the corresponding coefficients. The 
agreement of the temperature dependences of ad and 
of aP shows that a more accurate analysis can only 

el 
refine the numerical factors. 

In conclusion, the authors are grateful to I. Lifshitz 
for useful remarks in the discussion of the paper, and 
also to A. Andreev who called their attention to the role 
of the diffusion mechanism. 
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