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A nonlinear integral equation for the pion form factor is obtained by assuming minimality of electromag
netic interaction and employing a certain approximation. An approximate analytic solution of the equation 
is presented. The form factor is found to depend only on the pion structure constant, the pion mass, and 
the pion mass difference. The mean-square radius is 0.3 Fermi. 

1. INTRODUCTION 

AT first glance the title of this paper sounds somewhat 
paradoxical. How can the form factor, related as it is to 
the isotopic-invariant strong interaction, depend on the 
violation of that invariance? Nevertheless these ques
tions turn out to be rather closely related. In the first 
place the very concept of the form factor is inseparable 
from the existence of the electromagnetic interaction, 
which violates isotopic invariance. In the second place, 
one may mention the problem of the electromagnetic 
mass in classical electrodynamics. From the classical 
point of view we can represent the pions as balls -either 
neutral or positively or negatively charged. But then the 
difference in mass of these balls should be related to 
the radius -the charged ball will be heavier than the 
neutral one by ~m = %a/rc2• Thus, knowing the mass 
difference of the pions, it is possible to determine their 
"radius." 

This relation between this mass difference and "di
mension" of the pion is not confined to classical phys
ics only. There exists in quantum field theory as well a 
formula relating this mass difference to the pionic 
form factor, [1, 2 J although here we shall derive it in a 
certain approximation. However, in classical as well 
as in quantum field theory, we have so far dealt only 
with what might be called the global violation of isotopic 
invariance, i.e., with the simple mass splitting, con
nected with the total charge, in an isomultiplet. In such 
a situation we must not expect to learn a lot about the 
charge distribution from the one number available to 
us, namely ~m. 

In local theories, with which we usually deal, the 
violation of isotopic invariance should also be local, 
i.e., should be of the form illllll(x) = p(x), which may 
throw some additional light on the form of the charge 
distribution, i.e., on the form factor. However, what 
should be put on the right and left side of this equality 
when one is talking about violation of isotopic invari
ance? The answer to this question has in fact been 
given in a number of papers c3 - 6 l and reduces to the 
following. 

In the absence of the electromagnetic interaction the 
theory is isotopic -invariant. This means that along 
with the vector for the electric current (more precisely 
its isovector part J~) there exist local operators j~, 
for which 

iJ"j"Q(x)=O (Q=+,-,0), 
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and there exist space integrals whose time -dependent 
components represent the generators of the isotopic 
group. If we now turn on the electromagnetic interac
tion, and do so in a minimal way, then it turns out that 

iiJ"]"Q(x) = QeA"(x)J"Q (x), (1) 

where J~ denotes the current when the electromagnetic 
interaction is turned on, and All is the electromagnetic 
potential. 

In Sec. 2 we shall give a somewhat different defini
tion of the charged vector current than that given in the 
above-mentioned papers, and will find its divergence 
accurate to terms of order e 2• If we then apply the re
sultant expression to pions we obtain, within a certain 
approximation, a nonlinear integral equation for the 
pion form factor. Section 3 is devoted to the approxi
mate analytical solution of this equation by means of 
expanding it in eigenfunctions of the group of motion in 
the Lobachevsky space and asymptotic solution of the 
resultant functional equation. At the end of this section 
we give an expression for the mean square radius which 
turns out to be 0.3 F. 

2. THE CURRENT DENSITY, DIVERGENCE, AND 
EQUATIONS FOR THE PION FORM FACTOR 

As already mentioned in the introduction, the defini
tion of the charged current density in the absence of the 
electromagnetic interaction represents no difficulties. 
When the electromagnetic interaction is turned on the 
current becomes "dressed" by electromagnetic ver
tices. It is therefore natural to define such a "dressed" 
current by the "electromagnetic" S -matrix: 

]l'Q(x)= T(j,.Q(x)Sem)Sem+ 

= exp>{ ie r L~!(t)dt} j"Q(x)exp< { -ie f L: (t)dt}; 
~ ~ 

where the symbols > and < denote the corresponding 
time ordering. Expanding the right-hand side of the 
equation by perturbation theory it is not hard to obtain, 
accurate to terms of order e 2, 

J,.Q(x)=j,.Q(x)+ie S d4y[2:0,t(y),j"Q(x)]8(y0 -x0) 

1 tnt tnt (2) 
-e2 ~ d•y,d4y[~em (Y!)[Xem (y), j"Q(x)}]8(y10- Yo)S(yo-Xo). 

where e (x) is the usual sign function. 
Let us suppose now that the electromagnetic inter

action has the usual "current X potential" form, i.e., 

(3) 
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where all is the electromagnetic field operator (which 
is not renormalized by the strong interaction), and jll 
is the electromagnetic current density, consisting of an 
isoscalar part and the third component of an isovector. 

Let us further make an assumption about the charac
ter of the commutator (jll' j~], namely, we assume that 
it vanishes outside the light cone and has a singularity 
of the o -function type at the vertex of the cone. [The 
quark model[71 or the model with the non-Abelian group 
of gauge transformations (see, for example, [SJ) may 
serve to justify these assumptions.] This gives 

(4) 

The Schwinger terms, which generally appear in com
mutation relations of space and time components, are 
irrelevant for our purposes, since they appear only in 
commutators with the same isotopic indices. 

It is now sufficient to take the divergence of both 
sides of Eq. (2) and, making use of Eqs. (3) and (4), as 
well as the conservation of j~, obtain an equality which 
will be valid for any matrix elements not containing 
photons: 

fV"Q(x) =- ; Qe" ~ d4y(D"1(y- x) {jv(Y), jvQ(x)} 

+ D1 (y- x)8 (Yo- xo)Uv(Y), jvQ (x) ]), 
(5) 

where Dret and D1 are the retarded photon function 
and the vacuum expectation of the anticommutator of the 
photon fields (see, for example, [91 ). The same formula 
may be obtained from Eq. (1) by expanding J~ and All 
on the right hand side in a series in e. 

Let us consider now the question of relativistic in
variance of (5). The invariance of the first term is ob
vious, and the invariance of the second term is based 
on the vanishing of the current commutator outside the 
light cone. However, matrix elements of products of 
currents entering the commutator and the anticommu
tator will be expanded in what follows in a complete set 
of intermediate states and then that series will be cut 
off. Whereas for the anticommutators such a procedure 
offers no danger, for the commutator such a cut-off will 
give rise to violation of local commutativity and, as a 
consequence, to the loss of relativistic invariance. In 
order to avoid this we shall make use of the Dyson rep
resentation[101 and represent the commutator in the 
form 

B((x- y) 2)fjv(Y), jvQ(x)], 

realizing that such a procedure of extracting e ( (x - y )2) 

can lead, as a consequence of lack of definition of the 
product of generalized functions, to a divergence, to 
the necessity for renormalization and, as a consequence, 
to the appearance of undetermined constants. However, 
as will become apparent from what follows, this inde
terminacy is unimportant for our purposes. 

We thus obtain as a result of the Dyson procedure a 
relativistically invariant factor. 

~(Y- x) = D•(y- x)B(yo- xo)8( (y- x) 2) = D1(y- x) V+(Y- x)(6) 

in front of the current commutator. We now transform 
Eq. (5), with conditions (6) taken into account, to the 
momentum representation. By proceeding in the usual 
fashion it is not hard to obtain 

= _ e~Q ~ d3q .~ {Dret(q- p')[(p', /ljv(O) lq, n)(q, nljvQ(O) IP, i) 
n 

+ (p', fljvQ(O) lq, n)(q, njjv(O) IP, i)] 

+ ~ ( q- p') [(p', fljv (0) I q, n)(q, n ljvQ (0) I P, i) (7) 
- (p', fljvQ(O) lq, n)(q, nljv(O) IP, i)]}, 

where ~Q(O) = io llJ~(O), and Dret(k) = - (k2 - ir.ko)-1 
(see [91). 

Let us proceed now to the calculation of ~ (k). By 
simple integration it is not hard to find for the Fourier 
transform of the characteristic function of the upper 
cone V+ 

00 

= -8n ~ daaexp[i(p2 -iep0 )a], 
0 

and folding the resultant expression with the Fourier 
transform of D\ we obtain 

~(k)=--1 - )a•pD1 (p)V+(k-p) 
(2n) 4 

i r da ( ) 
k2 • k 2 j -exp[ia(k2 -iek0 )]. 8 

n( -zeo) 0 a 

However, the expression written by us is meaning
less since the integral is divergent. In order to give to 
the function ~ some sort of meaning we note that for
mally expression (8) satisfies the differential equation 
(here and in the following we omit instructions about 
how the pole is to be treated, since they are immaterial 
for us) 

d~lk2) 1 i 
~= -kz~(k)-~(k2)2, 

whose solution is 

~(k)= n(k:)2(Inlk2 1 +C), 

where C is an arbitrary real constant. Such a proce
dure for redefining ~, as is not hard to understand, is 
equivalent to the usual subtraction procedure. Thus as 
a result of the Dyson procedure an undetermined con
stant appears in the term with the anticommutator of 
the currents. However, as will be shortly seen, in the 
case of interest to us there arises a condition which 
makes it possible to eliminate this indeterminacy. 

Let us pass now directly to the derivation of the 
equations for the pion form factor. To this end we take 
as the initial and final states in (7) one -pion states with 
charges s and s ', and in the sum over the intermediate 
states we also stick to one-pion states only. Then the 
matrix elements of the current on the right hand side 
can be replaced according to a well known formula by 
the form factor: 

(p', s'lj"Q(O) IP, s) = (p' + P)" T,,,QF(p, p'), (9) 
(2n) 3 Y4PoPo' 

where TQ (Q = -, +, 0) are the isotopic matrices for 
the triplet. However, in the matrix element 
(p', s I.2JQ(O) I p, s) on the left hand side we cannot make 
use of isotopic invariance. In accordance with our ap
proximation, we shall keep in that matrix element only 
terms of order e 2 and terms proportional to the mass 
difference. If one now makes use of the transformation 
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properties of (p', s I$Qip, s) with respect to the oper
ations T, C, and complex conjugation, and also take in
to consideration the law of conservation of the electric 
current ($ 0 = 0) and the fact that the antiparticle of the 
1f + meson is the 1f- meson, then it is not hard to obtain 

<P' s'l .2)Q I p, s) = - Q (2mt-.m{T0, TQ},,,F(pp') 
(2:rt) 3 l'4PoPo' 

+ ia(To, TQ],,,G(pp')), (10) 

where .6.m = m1f±- m7ro, and a = e 2/41f is the fine
structure constant; the functions F and G depend on a 
product of 4-vectors. 

There is no difficulty in establishing the relation be
tween the functions F and G and the invariant functions 
of the matrix element of J~, which, accurate to terms 
whose contribution to the divergence is of order e2, has 
the form 

<p',siJ~Qip,s)= 1 (T,~(P+P').F(pp') 
(2:rt) 'l'4PoPo' 

+ laiQ I T,~(p~- p~') G(pp')). 

From this we conclude that the function F(pp') in Eq. 
(10) represents the me sonic form factor, and G(m2) = 0. 

Substituting now expressions (9) and (10) into Eq. (7) 
we see that on the right and left sides there appear two 
terms, which transform differently under rotations in 
isotopic space: one as the antic om mutator {T0 , TQ}, 
and the other as the commutator [T0 , TQ], Moreover, 
the first of them is purely real and the second purely 
imaginary. This makes it possible for us to equate 
such terms and obtain two equations: 

a rd'q(p+q)~(P'+q)~F(')F() 
F(pp') = 32:rt~mt-.m J qo · p'q- m• p q qp ' (11) 

G(pp')= __ 1_) d3q (p+q).(p'+q)~ 
16:rt3 qo p'q- m2 

[tn( p~z -1) + C ]F(p'q)F(qp) (12) 

with the additional conditions G(m2) = 0 and F(m2) = 1, 
the first of which makes it possible to determine the 
constant C. 

In this fashion we have obtained a nonlinear integral 
equation for the pion form factor, whose study will be 
taken up in the following section. The second nilation 
connects the radiative correction to the pion f3 decay 
with the form factor; it is not clear to us at this time 
whether any useful information can be extracted from it. 

3. SOLUTION OF THE EQUATION FOR THE FORM 
FACTOR, MEAN -SQUARE RADIUS 

Let us now consider the solution of Eq. (11). For 
this purpose it is convenient to transform to the veloc
ity space (see, for example, [llJ) which is the Loba
chevski space in which the absolute velocity of the par-

ticle (v IJ. = pfJjm) is represented by a point and the sca
lar product of two momenta divided by the masses of 
the corresponding particles is represented by the hy
perbolic cosine of the length of the arc between the 
points corresponding to the velocities of these parti
cles. Thus, pp'/m2 =cosh a, p'q/m2 =cosh b, pq/m2 

= cosh c, where the sides a, b, and c form a triangle 
in the Lobachevsky space (see the figure), i.e., cosh c 
= cosh a cosh b- sinh a sinh b cos . 

Rewriting Eq. (11) in terms of these variables we 
obtain after integration over the azimuth angle: 

F _ am r d b ch a + ch b + ch c + 1 F b F 
(a)- 16 'm J !!() hb-1 () (c) 

:rtu C (13) 
= e'{'l't(a)+ 'l'z(a)+ 'l's(a)}, 

where E' = m/161f.6.m, dtJ.(b) = sinh2 b sin 8dbd8 is the 
invariant measure, and 

r ch b + 1 r , 
'l't(a)= Jdf!(b) F(b)F(c)= J df!(b)(<Di(b)+<D(b))F(c), 

chb-1 

'1'2 (a) = ~ df!(b)__5_c_F(b)F(c) = ~ df!(b)<D(b)F1(c), 
chb-1 

qt3'(a) = 'l'a(a) = ~ df!(b) _!jiJ)_F(c) = ~ df!(b)<D(b)F(c). 
cha chb -1 

(The definition of the functions <1>, 4>1, and F1 is obvious 
from these equations.) We call attention to the fact that 
each of the functions + represents a contraction over 
the group of motion in the Lobachevsky space, and it is 
therefore natural to expand in terms of "radial" eigen
functions of this group[la, 13 l 

Thus, let 

'I -
P_v,~;p(cha) __ 1/ 2_ sinpa . 

pp(a)= -~==-----=- r 
y'sha :rt p sha 

~ 

F(a)= ~ f(p)pp(a)p2 dp 

and conversely 
~ 

f(p)=) dbF(b)pp(b)sh2 b. 
0 

(14) 

(15) 

(16) 

These equations, and a special case of the "multipli
cation theorem" [13 l for the functions Pp: 

~ pp (c) sin{) d'l'l = f:2:rtpp(a) PP (b), 
0 

where a, b, and c are the sides of the triangle shown 
in the figure, give us 

\jl1(p) = 12n[cpi(p)+ cp(p)lf(p), 

'i'z(P) = )'2:rt cp (p)fi(P), \jl/ (p) = )'2:rt cp(p)f(p). 

If in addition one makes use of the well-known iden
tity[14J 

1 (p+i p-i \ 
pp(a)cha = -2 --pp+i(a)+--Pp-i(a) I, 

p p I 

then one may show that 

( ::~~i) =+[e._+_!_(~~(~ :i?)+ p-i ( ~(~= :: )] , 
It (p) p t (p + i) p t (p - i) 

and 
1 (p+i p-i \ 

/(p)=- --cp(p+i)+--cp(p-i) 1-cp(p). 
:2 p p I 

(17) 

(18) 

(19) 
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If one now substitutes Eq. (17) and (18) into the obvious 
equality 

/(p) = ll't(P)+ ¢z(p)+ IJla(p), 

one obtains in place of an integral equation the following 
functional equation: 

- {p+i 2/(p) = l'2n e' -p-[<p(p + i)+ <p(p)][j(p + i)+ j(p)] 

p-i } +----p-[<p(p-i)+<p(p)][f(p-i)+/(p)] ' 
(20) 

to which it is moreover necessary to add Eq. (19) which 
relates cp and f. 

It is seen that the resultant nonlinear functional sys
tern of equations is, unfortunately, no simpler than the 
initial integral equation as far as exact solutions are 
concerned. However, it has the advantage that it makes 
it possible to study various limiting cases, and in par
ticular the case of large p, which according to Eqs. (14) 
and (15) corresponds to small momentum transfers. 

Let us turn now to the asymptotic behavior of f(p). 
A simple integration by parts of Eq. (16) leads us to the 
result that all the coefficients in the expansion in 1/ p 
vanish. Therefore in order to determine the asymptotic 
behavior of f( p) it is necessary to know the analytic 
properties of the function F(z) in the complex a
plane. [lSJ As is well known the pion form factor is ana
lytic in the complex plane of t = -2m2 (cosh a- 1) ex
cept for the cut [4m2, co). In the a-plane this leads to 
singularities on the lines Im a = 1T ± 27T n, so that the 
maximum value through which one may shift the inte
gration contour in the expression 

1/21 .. ,(2 1 "" 
/(p_) = r--SF(a)shasinpada= v--.-~ F(a)eiPashada, 

np~ n2zp~ .. 

equals i7T. This gives rise to the following asymptotic 
behavior as p - co: 

f(p)- O(e-rrP/p). 

However, for the function 

,/2 1 ""s F(a)sha 1 cF(a)sha 
<Jl (p) = r -- Sin pada = --==- ·j --- eiPada 

n p 0 eh a- 1 l'2rrip -oo ch a- 1 

the shifting of the contour of integration results in 
semirounding of the pole at the point a = 0, which gives 
rise to behavior of the type 

(21) 

Our approximation will consist in the following: 
After substituting Eq. (21) into Eq. (20), we discard the 
exponentially small terms and arrive at a linear equa
tion for f(p): 

2p2/(p) = e[(2p + i)f(p + i) + (2p- i)f(p- i) + 4p/(p)1 (22) 

where £ = 27Tf:'. In fact this ignoring of exponentially 
small terms is equivalent to the replacing of the func
tion <l> (b) = F(b)/(cosh b- 1) in the integral equation 
(12) by 2/b sinh b. 

We look for a solution of Eq. (22) in the form .. 
/(p} = S 'I] (x)e-iP•dx, (23) 

where 11 (x), as well as its first derivative, vanish as 
x - co. As regards the limit x - - co , in view of the 

reality of f(p) the function 11(-x) = 11*(x) and, conse
quently, should also vanish. These boundary conditions 
follow immediately from the relation between 11 and F 
(see below) and the degree of decrease which is re
quired by the integral equation for F in the above
mentioned approximation. Indeed, Eq. (15) may be re
written in the form 

F(a)= v 2 _ __!___~ r dpeipa/(p)+j(-p), (24) 
n shaoa~ 2 

from which, with Eq. (23) taken into account, it follows 
immediately that 

F(a)=-~~(tJ(a) +;r~(-a) l. 
shada 2 I 

(25) 

(The numerical coefficient in front of the right hand 
side is immaterial for our purposes, since the function 
11(a) is anyway only defined to within an arbitrary con
stant.) 

In this fashion, one may conclude that 

1 ~ 1 "" 
f(p}=-:-S tJ'(x)e-iP•dx= - 0 S'IJ"(x)e-iP•dx, 

!p --oo p -oo 

and upon substitution of the above into Eq. (22) arrive 
at the following differential equation for 11(x): 

tJ"(x)- ie[2t]'(x) (chx + 1)+ tJ(x)shx] = 0. (26) 

Although no physical meaning can be attached to the 
asymptotic behavior of Eq. (26), since in accordance 
with our approximation its solutions can be believed 
only in the region of small x, it is nevertheless neces
sary to study its asymptotic behavior in order to fix the 
correct solution of Eq. (26) by an appropriate choice of 
one of the arbitrary constants. (The second arbitrary 
constant will be utilized for normalization of the form 
factor F.) 

In order to choose the correct asymptotic solution 
and to understand its behavior in the region of small x, 
we make the substitution 

(27) 

since for the two linearly independent solutions of the 
equation for ~ 

6" (x) + e2(chx + 1} 2 s(x) (28) 
we may choose solutions with a definite parity under 
the replacement x- -x: 

6(x) = Cos;,(x) + Cts0 (x}, 

where ~e(O) = 1, and ~0 (0) = 1. With the substitution 
CJ = sinh x, it is not hard to see that for x - co the two 
linearly independent solutions have the form 

1 {sin(eshx) 
~lxl~--

l'chx cos(eshx) 

and taking into account the relation (27), we conclude 
that in order to ensure that 11'(x) decreases it is neces
sary to take 

Ct= -iCo. (29) 
In this fashion the formulas (25), (27), and (28), the 

condition (29), and the normalization condition uniquely 
define the pionic form factor. However, in view of the 
fact that our approximation may be valid only for small 
x, as well as in view of the extremely poor and contra
dictory quality of experimental data on the pionic form 
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factor, we shall confine ourselves to the calculation of 
the mean-square radius. This is simplest to do by sub
stituting into Eq. (26) 

x2 x3 x(i 
1](x) = ao + a,x + a2 2T + aa3T + a, 41 ... 

and equating to zero the coefficients of equal powers of 
x, thus expressing an in terms of, say, 3.o and a 2, 

which may be taken as arbitrary. Making use of the 
substitution (27), it is not hard to establish that condi
tion (29) now takes on the form 3.o = aa/4E (1- 2E). With 
this condition taken into account 

a,= (1-1682 :...._-8-laz, 
1-28 I 

and utilizing expression (26) we obtain the first two 
terms in the expansion of the form factor: 

x2 ( a4 \ 
F(x)= 1-6 1-a;}, 

from which we conclude that 

(r)=(--8 -+ 16e2 )''•. 
1- 2e 

where E = am/8.6-m. Upon substitution of numerical 
values a = Yl37, m = 135 and .6-m = 4.6 we obtain 

(r) = 0,23m-1 ~ 0,3 F 

4. CONCLUSION 

The mean -square radius of the pion obtained in the 
previous section is based on three approximations. Let 
us discuss each of these in turn. 

The first approximation consisted in discarding 
terms of order e 2 in the derivation of the expression 
for the divergence. The validity of this approximation 
is, apparently, not to be doubted, since a similar expan
sion has worked beautifully in quantum electrodynamics. 

The situation is much more complex as regards the 
second approximation -discarding states other than the 
one -particle states -in the expansion of the product of 
currents in a complete set. Strictly speaking, this ap
proximation has no justification even of the "nearest 
singularity" or "saturation condition"type. Apparent
ly, the only justification is that one se.ts pp' = m2 in 
Eq. (11), then one arrives at the formula which relates 
the mass difference to the form factor. If one substi
tutes into this formula the pionic form factor in the p
meson approximation, then a mass difference is ob
tained in satisfactory agreement with experiment. 
This makes it possible to hope that a reasonable value 
for the form factor will be obtained also when one 
moves a small distance away from the point pp' = m 2• 

The same is indicated by a comparison of the radius 
obtained by us with the "p-mesonic" pion radius, 
which, as is not hard to calculate, equals 0.46 F. Un
fortunately, no further comparisons are possible since 
the existing experimental data[161 are, first, not suffi
ciently accurate and, second, as a rule, are related to 
assumptions of theoretical character of the type of the 
"pole diagram of Chew and Low." 

The question naturally arises of testing the correct
ness of the similar equation on the nucleon form factor, 
which is now well known. However, the utilization of 
only the law of violation of isotopic invariance in the 
form (1), for example, does not allow one to write 
closed equations for the nucleon form factors, if for no 

other reason than because the right-hand side of such 
an equation contains the scalar form factor. To close 
the system of equations we need additional ones, which 
we do not know how to find (this, of course, provided we 
make no assumption of "similar" behavior for all nu
cleon form factors). Thus the only possibility for test
ing the validity of the one -meson approximation at this 
time consists in taking into account the three-meson 
states, even if only in the form of the w meson. 

Finally, the third approximation- discarding expo
nentially small terms in p as p - oo (which corresponds 
to small momentum transfers)-may be easily over
come with the help of an electronic -computer numerical 
solution of the initial integral equation, taking as the 
starting point the solution obtained in this paper. How
ever, this seems to us premature until the question of 
the validity of the second approximation is clarified. 

In conclusion I take this opportunity to express my 
gratitude to D. I. Blokhintsev, I. T. Todorov, A. T. 
Filippov and particularly M. Mik for numerous and 
most useful discussions. 
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