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The dependence of the energy of a Mott exciton on its transverse momentum is calculated in the case 
when the exciton is in a strong magnetic field (the distance between the Landau levels etiH/!J.C exceeds 
the Coulomb energy !J.e4/E2ti 2, where 11 is the reduced mass and E the dielectric constant). The de
pendence of the probability for exciton production on the transverse component of the photon momentum 
and on the electric field is also determined. 

THE theory of a Mott exciton in a strong magnetic field 
was developed by Elliott and Loudon(1 J and by Hasegawa 
and Howard, [2 J who confined themselves, however, to 
the case of a zero exciton momentum. We shall inves
tigate the influence of the exciton motion on its spec
trum and on the production probability. 

In a strong magnetic field, when the distances be
tween the Landau levels eHti/!J.C ( 11 = reduced mass) 
exceed the Coulomb energy !J.e 4 /E 2ti 2 (E =dielectric 
constant), the question arises of separating the motion 
of the exciton mass center. Although such a problem 
was solved in principle by Lamb, [3 J its exposition is 
very intricate. We. therefore present here a more lucid 
derivation of Lamb's result, and use the derivation to 
obtain formulas for the exciton production probability. 

We confine ourselves to the case of an isotropic dis
persion law for electrons and holes. Then the Hamil
tonian it of an exciton situated in homogeneous electric 
and magnetic fields fff and H is 

- 1- (- ihV 1 + -6-A1) 2 + - 1- (- ihV 2 - _:_A2 \
2 + e/S (r,- r2) 

2m1 c 2m2 cl 

_ e2 =it (1) 
eJr1 - r2 J · 

We introduce the vector operator 

(2)* 

which plays the role of the momentum of the exciton in 
a magnetic field. It is easy to verify that the operator 
P commutes with the Hamiltonian (1) 1> and, moreover, 
all three of its components commute with one another. 
This circumstance makes it possible to obtain the de
pendence of the eigenfunctions of iC on the coordinate 
of the center of gravity of the exciton: 

R = (m1r 1 + m.r2)/(m1 + m.). 

*[H, r1 - r2) = H X (r1 - r2). 

t>To this end it is sufficient to note that P = m1~1 + m2~2 - ec-1H 
(r1 - r2), where ~1 • 2 are the electron and hole velocity operators, and 
to write the operator equations of motion 

dv~ e A d;2 e ~ 
m1-= -e/S +-[llvJ, m2-= e/S --[Hv.], 

dt c dt c 

from which it follows directly that dP/dt = 0. 
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Without loss of generality we can choose a definite 
gauge for A: 

A= 112(Hr]. 

Then (2) takes the form 

P = - ih V p- !__ [Hr], r = r1 - r2. 
2c 

The eigenfunctions of (3) are 

(3) 

'l'P (rt,r2)=exp{i(P+ 2: [Hrl~)}wP (r), (4) 

where +p(r) is an arbitrary function of r, and P is the 
exciton momentum. Finally, substituting (4) in (1) we 
obtain the equation of relative motion of the electron 
and hole: 

r 112 ieh e2 e 
~ --l\+--yH[rVJ+--lHr)2 +-(PH]r 
l 2f.l 2f.IC 8f.1c2 Me 

e2 P2 } +e.!!'r--;-+ 2M 'l'p (r)=E'I'p (r). 
(5) 

Here 
f.l= m,m. ' M=m,+m., y=m.-m,_ (6) 

mt+m. m2+m, 

The quantity P which enters in this equation has all 
the properties of a momentum. In particular, the aver
age exciton velocity V is determined from the usual 
relation 

V=oE/oP. (7) 

For the proof we note that, according to footnote 1> 

P =MY- _t:_[Hr], 
c 

where V=dR/dt is the operator of the c.m.s. velocity. 
On the other hand, V coincides with the derivative of 
the Hamiltonian of (5), 3Cp, with respect to the momen
tum 

o3Cp =~(P+_:_(Hrl) = V. oP M c 

We shall henceforth confine ourselves to the case of 
an electric field and momentum perpendicular to the 
magnetic field; the latter will be assumed directed along 
the z axis. The transverse components will be desig
nated by the index p. 
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By using the transformation 

'l'(r) = ID(r- po)exp(iyrP'/2/i), 

where 

P'=P+ ~{Hc[J'], 

we can reduce (5) to the form 

e 
Po = eH' {HP1, 

(8) 

(9) 

(10) 

In the case of a strong field we can neglect in the 
zeroth approximation the Coulomb interaction. Then 
the dependence of the energy on P and fS is determined 
by the expression 

P2 -P'2 e Me' c[l'' 
--= --P[Hc[l']---. 

2M H2 2H2 

From this follow the physically obvious relations for 
the drift velocity 

v = ;, [c[l'H] (11a) 

and for the dipole moment of the exciton 

Me2 e 
d=-c[l' +-[PH]. 

H' H' 
(llb) 

As expected, the total effective mass of the free 
electron and hole, corresponding to motion across the 
field, is infinite. On the other hand, the nonzero values 
of the momentum (in the absence of c[l') describe the 
average distance between particles 

Po= -d/e. 

A finite transverse mass occurs only when the Cou
lomb interaction is taken into account. 

As shown by Elliott and Loudon, llJ the wave function 
of the exciton <I> from (10) can be represented in first 
approximation in the small parameter of the theory 
( p.e 4 /r. 2n 2)/(eHn/ p.c) in the form 

ID(r) =qJ(p)'lj>(z), 

where cp(p) describes free transverse motion, and 1/J(z)i 
satisfies the equation that results from the averaging of 
(10) with the aid of cp( p). 

We confine ourselves to an exciton in the zeroth Lan
dau band. Then 

1 { /P')} IJlo(p)==-exp 1- 1-· , 
l'2n r0 · '4ro2 

where r 0 = v'cn/eH. The function 1/J(z) satisfies the 
equation 

{ li' d2 } ---+U(z) ljJ=W'¢, 
211 dz2 

where 

(12) 

(13) 

U(z) = -21t~o' ~ [(p + ~;, + z']'i;-exp{- 2;.:-}. (14) 

The energy of the exciton (with allowance for the spin) 
is written here in the form 

P'- P'2 eliH 
E=~+--+-+W, 

2M 211e 
(15) 

where A 
bands. 

is the distance between the electron and hole 

Equation (13) can be easily solved by the method 
used in l21 • For the exciton ground state we obtain 

where A is the solution of the equation 

(16) 

(17) 

A(x)= S dye-Yln_:_, (18) 
0 y 

with A(x) ::::! x as x- 0 and A(x) = ln x- C as x- oo; 
C is Euler's constant. 

The excited states of the discrete spectrum are 
given by the formula ( v = 1, 2, ... ) 

li2 1 li2 1 (19) w. = ----+---v., 
2!lrB2 v2 2!lrB2 v3 

~=In( rB_::' )-'lj>(v)-_!_-~C _!_A ( ro'P'') (20) 
Vv \ }"2 r0 2v J. 2 2/i' 

with A from (18). Here 1/J( v) is the 1/J-function. 
In addition, the exciton has a hydrogen series of 

levels, corresponding to wave functions that are anti
symmetrical in z. l 21 All the states are not degenerate 
with respect to the momentum. 

At small momenta P' (r0P' /ti « 1), the P' -dependent 
addition to W 0 is equal to 

(21) 

where Ao is the solution of (17) with P' = 0. The corre
sponding addition to W v is 

(22) 

Vv0 is given by formula (20) with P' = 0. 
At large momenta (r0P'/ti » 1), Eq. (17) takes the 

form 

( rBii \ 
1..=2In 1-- -2C 

. A.ro2P'' ' 
(23) 

and formula (20) for Vv goes over into 

1 vlirB 1 
--= ln---ljJ(v) ---2C. 

Cv ro2P' 2v 
(24) 

All the foregoing formulas are valid for momenta 
that are not too large: r~ P' /ti « rB. 

At small values of P', the part of the energy that de
pends on the momentum P and on the electric field fS 
is ( v = 0, 1, 2, ... ) 

P2 -P" P" P' 
bEv=~+ 2M.= 2M,-

( M)e 1( M)Me2 
- 1-- --{HfS]P--\ 1-- -c[l' 2 

Mv H' 2 Mv H2 ' 

(25) 

where M 11 is given by (21) and (22). For the velocity 
and the dipole moment we have 
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P t M\ c 
V=-+ 1-- '-(<l!'H], 

Mv - Mvl H· 

( M)Mc2 (. M) c d= 1-- -<!!'+ 1-- -(PH] 
Mv H Mv H2 • 

(26) 

From (26) we get the polarizability at a specified ex
citon momentum P: 

ap = ( 1 - !Y~~~2. (27) 

Its order of magnitude is crVrB, i.e., it is very small. 
The polarizability at a specified velocity 01ll, which co
incides with the polarizability of the exciton at rest, is 

(Mv- M) c2 Mvc2 (28) 
av= H2 ~w· 

Its order of magnitude is crgrB, as expected from 
physical considerations. 

We present one more formula for the addition to the 
energy, expressed in terms of V and<!!': 

1 1 1·( c2 ) 6Ev= ~MvV2 --av<l!' 2 ~ ~Mv V2 --<l!' 2 • 
2 2 2 H2 

At large values of P', the dependence of the exciton 
energy on the momentum and on W has a more compli
cated form. We present the corresponding expression 
for the ground state only: 

with .A and v_x from (17) and (20). 
P' is given by formula (9), in which we must substi

tute for P the transverse component of the photon wave 
vector :lik1: 

P' = lik.L + ~(HW]. (33) 

The dependence of I >11(0) 12 on the momentum and on ~ 
is determined essentially by the exponential factor. In 
the absence of an electric field, it takes the form ( ?1: is 
the photon wavelength) 

(34) 

where () is the angle between the magnetic field and the 
photon direction. In the optical band, the numerical val
ue of the argument of the exponential is (1- 0.5)H-1 

(H is in kOe). Thus, in fields on the order of several 
kOe and weaker, the exponential factor plays an import
ant role. 

The influence of the electric field comes into play 
for fields 

<!!' ~ 2nliH/'AMc 

or (when M is on the order of the mass of the free 
electron) 

fS [e/cM} ~ H {~<a]. 

(29) In still stronger field, the exponential takes the form 

(the formula is given with logarithmic accuracy). When 
P' « :li/rB, the principal term is the logarithmic one. 
To the contrary, when P' » :li/rB the logarithmic term 
becomes a small addition. 

In conclusion, let us discuss the dependence of the 
probability of exciton production on the electric field 
and on the momentum of the absorbed photon. As is 
well known (see, e.g., [41 ), this dependence is deter
mined by a factor I >11(0) 12, where w(r) is the wave func
tion of the relative motion of the exciton (8). According 
to (8), (9), and (12) we have in the zeroth Landau band 

1 { r02P"} ( ) l'l'v(O) 12 = <po(po) 21j]v2 (0) = 2nr/xp -2/i2 1jlv2 (0). 30 

The expressions for l/J~(O) can be readily obtained by 
the same method. [21 For the ground state we have 

(31) 

and for the excited states ( ll = 1, 2, ... ) 

(32) 

exp{--M2c3 ~2} 
2eH31i ' 

(35) 

and the intensity starts to decrease exponentially. The 
numerical value of the argument of the exponential is 
~ 0.5.W2/H2 (.Win V/cm, H in kOe, M is of the order of 
the electron mass). 

We are grateful to E. I. Rashba for valuable discus-
sions. 
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