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The existence of helicoidal instability of sound oscillations in conducting solids is predicted. The insta­
bility is due to a Lorentz force in the presence of a stationary current and does not depend on the condi­
tion that the drift velocity be greater than the velocity of sound. The increment and amplitude of the 
stationary waves under nonlinear conditions are found. 

1. IT is well known that weakly damped helical mag­
netic waves (helicons) exist in conducting solids placed 
in a strong magnetic field. In conductors having one 
group of carriers, amplification of these waves in an 
external electric field is impossible. Indeed, the drift 
motion of the electrons with constant velocity vo can 
be eliminated by going over to another reference frame, 
and therefore the electron drift leads only to a Doppler 
shift of the helicon w' = w- kvo (w-frequency in the 
lab system, w' -frequency in the moving reference 
frame, k-helicon wave number). The instability arises 
only when the carrier drift cannot be excluded by trans­
forming the coordinate frame. In particular, amplifica­
tion takes place in the presence of two groups of car­
riers with different mobility, or else when account is 
taken of the coupling of the electromagnetic wave with 
the lattice vibrations (sound). In the latter case there 
is a preferred reference frame connected with the lat­
tice. The instability of the electromagnetic wave in a 
conductor with two types of carrier was investigated 
theoretically by Veselago, Glushkov, and Rukhadze. [lJ 
It was observed experimentally in bismuth by Barte­
linkYJ 

The present paper is devoted to an investigation of 
the character of the instability of unstable coupled elec­
tromagnetic and sound waves in an isotropic metal or a 
semiconductor with one group of electrons, and to a de­
termination of the amplitude of the stationary sound os­
cillations in the nonlinear mode. 

2. Let us consider the propagation of transverse 
sound and electromagnetic waves along a magnetic field 
Ho II Oz. Let the constant electric field E 0 be parallel to 
the vector H0 • In the region of low frequencies and a 
strong magnetic field 

(1) 

it is possible to neglect in the electron equations of mo­
tion the inertial force m dv/dt (v-velocity, m-effec­
tive mass, n-cyclotron frequency, and T-mean free 
path time of the electrons). The complete system of 
equations takes the following form: 

crotE = -il, crotH = 4:rme(u-v.L), 

e ( 1 ' ) v-u 
-\Eo+E+-[v,Ho+HJ +--=0, 

m c ~ 

*[v, H0 + H)= vX (H0 + H). 

(2) 

(3)* 

(4) 
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Here E and H are the alternating electric and magnetic 
fields, u the transverse lattice-displacement vector, 
s the speed of transverse sound, M the mass of the ion 
with charge e, n the equilibrium energy density, and 
the dot denotes partial differentiation with respect to 
the time. The dissipative terms in the equations of mo­
tion (2) and (4) take into account the conservation of the 
momentum in collisions between the electrons and the 
lattice (ions). 

In the approximation linear in the alternatin~ field, 
it is easy to obtain a dispersion equation that deter­
mines the spectrum and the damping (growth) of the 
coupled waves: 

m ±kv0 -Q(kc/ro0) 2 
ro2- k2s2 = - -roQ (5) 

M ro-kv0 +Q,(kc/ro0 ) 2(±1+if) 

where w0 = (41Tne2/m) 112 is the plasma frequency, 
r = (nT )-1 is the relative damping of the helicon, v0 

= eE0T /m the electron drift velocity in a constant elec­
tric field E0 , and j 0 = -neTE0 /m is the constant cur­
rent. The upper sign pertains to a circularly polarized 
wave with Ex= iEy ("plus" polarization), and the 
lower sign to a wave with Ex= -iEy ("minus" polari­
zation). It is obvious from (5) that waves with "minus" 
polarization are damped for all values of v0 • 1> Insta­
bility sets in only for waves with "plus" polarization. 

Let us investigate the character of the instability in 
the region of small wave numbers 

ks<ro, lkvo-Q(kc/roo) 2l<ro. (6) 

From the dispersion equation (5) we get 

(!) = ±iy, y = (mQjM) 'l•[kv0 - Q(kc/roo)2)'i•. (7) 

Consequently, when k < ko= w~v0/nc2 one of the 
"waves" increases exponentially in time. The real 
part of the frequency w is determined by the small dis­
sipative terms of (5), which contain r. It is obvious 
that this instability is of the relaxation type (Re w « y) 
and has an absolute character. [3 J 

In order to understand the nature of this instability, 
let us consider the limiting case k « ko· The system 
(2)-(4) is equivalent in this case to the system 

I)lf we put M = oo and neglect the interaction between the sound 
and the electromagnetic waves, then the dispersion equation for the 
helicons in the moving system, w' = (kc/w0) 2 il(+l -if) has the same 
form as in the absence of drift. 
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crotE = -il:, U=VJ.., 

cE + [ v, H0 + H] = 0, jo = -nevo, 

nMii = c-1 [j0H]. 

(2') 

(3 ') 

(4') 

The growth of the amplitude of the oscillations is due 
to the Lorentz force c-1 j 0 x H in (4'), which results 
from the electron drift. The alternating magnetic field 
H produces, in the presence of the direct current j0 , a 
transverse displacement of the ions, which leads in 
turn to an increase of the magnetic field. The amplitude 
of the circularly polarized oscillations increases, form­
ing a peculiar helical structure. Therefore we shall 
call an instability of this type helicoidal, in analogy with 
the helicoidal plasma instability considered in [41 • This 
instability should obviously take place also in an ordi­
nary electron-ion plasma (s = 0). 

It must be noted that the elastic force Ms26.u and 
the Lorentz force c -l j x Ho stabilize the helicoidal in­
stability. If the inequalities (6) are reversed, there is 
no growth of the oscillations. 

When v 0 > s an oscillatory instability sets in, with 
Re w * 0, connected with the possibility of resonant in­
teraction between the sound and helical waves. Accord­
ing to [SJ, resonance occurs when 

k = k, == k0 (1- s/vo), 

Near resonance we have 

oo = k,s ± i(mQk,s/M)'''· 

It is easy to show that in this case the instability is 
convective. 

(8) 

(9) 

The helicoidal instability of the relaxation (7) and 
oscillatory type (9) is not connected with dissipative 
effects, since it exists also if the quantity ir is neg­
lected in the dispersion equation (5). If account is taken 
in (5) of the electron collisions, then the oscillations 
whose wave numbers and frequencies satisfy the in­
equalities (see the figure) 

oo/Max(s, vo) < k.;;;; ko. (10) 

will also grow. Far from resonance, the change in the 
spectrum and the growth increment of the sound wave 
are described by the formula 

mQ k0 -k 
/)(I)=:(J)-kS=- (11) 

2M ko(s/v0 -1)+k(1+if) 

In this case the growth of the oscillations is due to col­
lisions between the electrons and the lattice: Im ow 
~ r. We shall call this a dissipative helicoidal insta­
bility. The figure shows the boundaries of the instabil­
ity regions. 

It must be emphasized that the occurrence of the 
helicoidal instability is not connected with any definite 
relations between the drift velocity v0 and the phase 
velocity of the wave. In the case considered by us the 
instability condition 

ko > k for vo > kQc2/oo02 (12) 

corresponds to the requirement that the Lorentz force 
c-1 j 0 x H be larger than the force c-1 j x H0 • It can 
therefore be observed not only in semiconductors, but 
also in metals in which it is impossible to create a 
large drift velocity.[31 

w 

a b 
Regions of helicoidal instability (horizontal shading - without 

allowance for dissipation, vertical - with allowance for dissipative 
instability). k0 = w02vofilc2; a) v0 < s; b) v0 > s, kr = k0(1 - s/v0). The 
horizontally shaded region near krs corresponds to resonance. 

3. When the amplitude of the wave increases strong­
ly, an important role is assumed by nonlinear effects 
that limit further growth of the oscillations. We are in­
terested in the question of establishment of a stationary 
oscillatory mode, when a plane monochromatic wave of 
constant amplitude propagates in the conductor. The 
main nonlinear mechanism determining the stationary 
state is the nonlinear part of the Lorentz force ec-1 v 
X H in the equation of motion of the conduction elec­
trons (3). Since the wave is transverse and circularly 
polarized, the nonlinear interaction does not lead to the 
appearance of higher harmonics. All that changes is the 
average drift velocity V. Indeed, from Eq. (3) for the 
z-projection of the electron velocity it follows that 

V= vo-!'J.v, (13) 

The quantity 6. v represents the change of the drift ve­
locity of the electron as a result of the alternating elec­
tric and magnetic fields. Using Maxwell's equations (2) 
we obtain 

k c2 

!'J.v = Re-- (Ex2 +Ey2 ). 
oo Ho2 

(14) 

In the case of a circularly polarized stationary wave, 
Ex= A cos (kz- wt). Ey =A (sin kz- wt), the nonlin­
ear "renormalization" of the drift velocity 6. v depends 
only on the amplitude A of the oscillations. In the sta­
tionary state, the growth increment vanishes. Replacing 
in the dispersion equation (5) the drift velocity v0 by 
the "renormalized" velocity V and equating the growth 
increment (11) to zero, we obtain an equation for the 
stationary amplitude: 

(15) 

From this condition and Eq. (5) it is obvious that the 
stationary wave represents transverse sound with a 
dispersion law w = ks and with an amplitude 

(16) 

Let us consider the evolution in time of an initial 
perturbation with a given wave number k « ko· At first 
the amplitude increases rapidly with an increment y 
= (mnkv0 /M)112 , and the drift velocity V decreases 
(see (14) and (15)). Accordingly, a decrease takes place 
in the nonlinear increment 

1 m \''• [ ( kc )• ]''' VA=\ M Q / kV- ooo Q • 

The growth will continue until YA vanishes. When YA 
= 0 there propagates in the conductor an undamped 
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sound wave with amplitude u0• Since the nonlinear in­
crement y A is smaller than y , the establishment of 
the stationary state is "soft". ?61 Consequently, this 
stationary state is stable. 

It is possible to determine in the same manner the 
stationary amplitude of electromagnetic wave in con­
ductors with two types of carrier. [1• 21 

We present a numerical estimate for a typical method 
with electron density n ~ 1022 cm-3 and collision fre­
quency v ~ 109 sec-1• The inequality (12) for the current 
density j 0 can be represented in the form 

io > Hocffi/4ns. (17) 

For Ho ~ 103 Oe {U = 1010 sec-1) and w ~ 27T x 106 the 
critical current density (17) is of the order of 105 A/em 2, 

and the power dissipated per unit volume is of the order 
of 0.1 W /cm3 • The drift velocity v0 is then of the order 
of several em/sec. 
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