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A diagram technique for the analysis of branch points in the complex angular momentum plane is devel
oped from an investigation of the asymptotic behavior of Feynman graphs at high energies and fixed mo
mentum transfer. In this method the reggeon is regarded as a nonrelativistic particle characterized by 
a two-dimensional momentum k. The pole trajectory a(k2) plays the role of energy, and the angular mo
mentum j plays the role of frequency. The situation arising in the description of the diffraction cone 
under the assumption of the existence of a Pomeranchuk pole is discussed. 

1. INTRODUCTION 

lT has been shown by Mandelstam [lJ and Polking -
hornel 21 that under relativistic conditions, poles in the 
complex angular momentum plane j generate branch 
points. The branch points have been investigated in l31 
assuming a definite structure of the many-particle uni
tary conditions for complex j. In formulating this hy
pothesis, the authors of l31 started from the idea that 
such a branch point is an analytic continuation to non
integer spins of a singularity at j = a1 + a2 - 1 l4; 51 for 
ordinary particles, and from a study of the unitarity con·· 
dition for complex j on the basis of the simplest graphs 
of perturbation theory. l61 In l31 , the character of the 
branch points was determined and a unitarity condition 
for reggeons was obtained which determines the dis
continuities on the reggeon singularities corresponding 
to the formation of several reggeons in the intermedi
ate state, in terms of reggeon production amplitudes. 
The reggeon unitarity condition was found to be very 
similar to the unitarity condition for ordinary parti
cles. This gave an indication that it might be possible 
to work with reggeons as with ordinary particles. 

In [71 an attempt was made to investigate the struc
ture of the diffraction cone by taking account of poles 
and branch points. This study was based on the idea 
that the branch singularities are enhanced by a pole for 
values of j close to unity and small t, when the posi
tions of the pole and the branch points almost coincide. 
Reggeon diagrams were introduced on the basis of the 
reggeon unitarity condition. However, an incorrect 
threshold behavior was used in the reggeon production 
amplitudes, and the result derived in l71 is wrong. 

In the present paper we investigate the asymptotic 
behavior of a large class of Feynman graphs containing 
exact two-particle amplitudes (cf. below, Figs. 1, 4, 8, 
and 9). We shall find a connection between the asymp
totic form of these amplitudes and the asymptotic form 
of the graph as a whole. In contrast to the work of Polk
inghorne, l2 l we do not make use of a representation of 
the amplitudes within the graph in the form of a ladder 
or any other explicit form. 

It will be shown that if the asymptotic form of the in
ternal amplitudes is determined by a Regge pole, then 
the asymptotic form of the whole graph contains a con
tribution from branch points having a form identical 
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with that obtained in [31 . This result is of interest in 
that it is based on entirely different assumptions than 
the result of l31 and thus confirms the basic premises 
of l31. Moreover, the derivation with the help of Feyn
man graphs allows one to establish the undetermined 
factors entering in the definition of the production am
plitudes for reggeons, which heretofore prevented the 
determination of the sign of the discontinuities on the 
reggeon singularities. Another advantage of this ap
proach is that the result can be written down immedi
ately in the physical region (for negative momentum 
transfer t), whereas in [31 it was written down for pos
itive t and had to be continued analytically in t. 

In Sec. 4 we consider the case of most interest, 
where the pole and the branch points are close to one 
another (diffraction cone in arbitrary reactions). It is 
shown that in this case the pole enhances the contribu
tion of the branch points (in agreement with [71 ). 

In Sees. 4 and 5 we develop a graph technique for the 
simultaneous treatment of poles and branch points. In 
these graphs the reggeon is described as a nonrelativis
tic particle characterized by a two-dimensional momen
tum k and an angular momentum j which plays the role 
of a frequency. The trajectory of the pole a (t) is the 
analog of the momentum dependence of the energy of 
the particle. This graph technique is used in the last 
section in a discussion of the situation arising in the 
description of the diffraction cone in elastic scattering 
under the assumption of the existence of a Pomeran
chuk pole. 

2. TWO-REGGEON BRANCH POINTS 

Let us consider the graph shown in Fig. 1. For sim
plicity we assume that all particles are scalar and have 
equal masses. We calculate the asymptotic form of this 
graph for large s = (p1 + pz)2 and fixed t = q2 = (pl- p3)2 
as a function of the asymptotic form of the amplitudes 
f(kl, k, ka) and f' (p1 - k1, q - k, pz - ka), represented 
by the bubbles in Fig. 1. The four -momenta k1, ka, ~ , 
and k4 are defined in the figure, and k = k1 - k3 
=k4-kz. 

For the calculation of the asymptotic we use the 
method of Sudakov. lBJ This method is extremely effec
tive, as we shall see below. It consists in the following. 
The internal momenta k1, k, and ka are decomposed 
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FIG. I. 

into vectors lying in the plane of the large vectors P1 
and p2 and vectors perpendicular to that plane: 

k = ap.' + ~p{ + kj_, kt = a.pz' + fl!]J{ + ktj_, 
kz = a2Pz' + fl2P{ + ku; 

m• 
p{=p.--pz, 

s 

m• 
Pz' = Pz- -p.; 

s 
(1) 

k1 , k11 , and k21 are space-like two-dimensional vec
tors. It turns out that the integration over the variables 
ai and i3i in the plane of the vectors P1 and Pz can be 
carried out asymptotically, and the result has the form 
of integrals over the two -dimensional vectors in the 
plane perpendicular to the (p1, pz) plane. The fact that 
in a number of cases the asymptotic is determined by 
two-dimensional integrals was discovered by Polking
horne. [ZJ This is explained by the circumstance that 
the momentum transfer q = P1 - p3, on which the 
asymptotic form of the graphs at high energies depends, 
is perpendicular to p1 and p 2 • It is easy to show that 

q2 ( ' ') + q = - Pz - Pt qj_, 
s 

(2) 

Following Sudakov, we have introduced in (1), not the 
vectors p1 and pz, but linear combinations of them, 
p~ and p~, which have the convenient property pi2 ~ p~2 
~ 0. In the new variables 

{3) 

We now turn to the integration. We consider the left
hand part of the graph of Fig. 1, which contains an inte
gration over k1 involving the denominators 

ktz- m2 + ie = a1~1s + ku2 - m2 + ie, {4a) 

(p1 - k1) 2 - m 2 + ie =- a1s- ~1m2 + at~ts+ku2 + ie, {4b) 
(k- kl) 2 - m2 + ie =(at- a) (~t- ~)s + (ku- kj_) 2 - m2+ie, 

(4c) 
(p1 -k1 + k- q) 2 - m2 + ie = 

=-(at- a)s-(~t- ~)m2 +(a•- a) (~t- ~)s + 
+(ktj_- kJ_ + qj_) 2 -q2 (1- ~·+ ~). (4d) 

We assume that the amplitudes f(k1, k, kz) and 
f' (p1 - k1, q- k, pz - kz) are large when their energy 
variables S1 = (k1 + kz) 2 ~ Zk1kz and Sz = (p1 + Pz 
- k1- kz) 2 ~ 2(p1- k1) · {pz- kz) are large, i.e., of 
order s, and. the momentum transfers k2, (q- k) 2 and 
the masses kL kL (k1 - k) 2, (kz + k) 2, ••• are of order 
unity. If any of the last variables becomes of order s 
the amplitude becomes small and the corresponding re
gion is unimportant in the integral. Under these as
sumptions it follows from (4) that the region of interest 
for us must be 

ku_2,...., m2, k.l.2,...., m2, Clt,...., m2/s, 

a~m2/s, ~~;::;;1, (3~1. 
(5) 

If we write down the formulas analogous to {4) for the 
right-hand side of the graph containing the integral over 
kz, we find 

ku2 ~ m2, kj_2 ~ m2, ~2 ~ mZ/s, 

~ ~ m2 ! s, a2 ;;;;; 1, a~ 1. 
(6) 

We have used the condition that the variables corre
sponding to masses and momentum transfers are of or
der unity (of the order of the mass). The condition that 
the energy variables be large gives 

2ktkz ~ ~tazs, 

2(Pt- kt, Pz- kz) ~ (1- flt) (1- az}s, (7) 

Thus 

kj_2 ~ ku2 ~ k~J_ ~ m•, a~ m2/s, ~ ~ m2/s, 
at ~ m2 Is, ~2 ~ m2 Is, ~~ ~ 1, a~ ~ 1. 

Using {3 « {31, we may neglect {3 in {4) and the quantity 
a in the analogous equations for the right-hand part of 
the graph. 

We now assume that the amplitudes f(k1, k, kz) and 
f' (p1 - k1, q - k, pz - k2) factorize under asymptotic con
ditions, i.e., have the form 

f(k., k, kz) = g1 (k12, (k- k1)2, k'). 
gz(kz2, (k + kz} 2, k2 ) G(k', 2k1k2), (Sa) 

f (pt - kt• q - k, Pz - kz} 
=g{((Pt-k1} 2, (p.-k,-q+k} 2, (q-k)") 

XK.'( (pz- kz)", (Pz- kz + q- k) 2, (q- k)2) 
XG' ((q- k) 2, 2(p•- k,, pz- k2) ). {8b) 

The relations (8) are in any case true if the asymptotic 
form of the amplitudes f and f' are determined by a 
Regge pole. We shall see below that they are also ef
fectively true when the asymptotic is determined by 
the branch points under consideration. 

We write the functions G(k2, Zk1kz) and 

G'((q- k) 2, 2(p,- kt,Pz- kz)) 

in the form of a Sommerfeld-Watson integral: 

(9a) 

{9b) 

~l and ~z2 are factors defining the signature. Substi
tuhng (8) and (9) in the Feynman integrals correspond
ing to the graph of Fig. 1 and using 

k2 = a~s + kj_2 ~ kJ_2, (q- k) 2 ~ (qj_- kj_)", 

we see that the integrations over a1, {31, a, k 11 and 
kz1 , a 2 , {32 , {3 can be carried out separately. The re
sult of the integrations can be written in the form 

{10) 

(11) 

:\ is a coupling constant corresponding to the vertices 
in Fig. 1. 
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Before investigating (10), we consider the quantity 
Nh z2and show that it is correctly determined by (11) 

and is independent of s for s - co. 

We note first of all that in the integration over a 1 , 

the singularities of all four denominators in (11) lie on 
different sides of the real axis only if 0 < {:3 1 < 1. [This 
is easily seen from (4).] Thus, if we neglect the singu
larities of g1 and g~, the integral over a 1 differs from 
zero only if 0 < {:3 1 < 1. The singularities of g1 and g~ 
do not alter this result, since g1 and g~ depend on the 
same quantities 

k,2, (kt- k) 2, (p,- kt) 2, (p,- kt + k- q) 2, 

as the denominators in (11), and the rules for passing 
the singularities are the same as for these denomina
tors. Hence the quantities [:3{1 and (1- {:31)l2 are uniquely 
defined. 

We show now that the contribution of the considered 
region of small a 1 also remains non vanishing in the 
integration over a. If it is to remain different from 
zero, one must require that after integration over a 1 

the integrand has singularities in a on both sides of the 
real axis. It is easily seen from (4) that the singulari
ties of the integral over a stemming from the ''pinch
ing" of the integration contour between two singulari
ties in the a 1 plane [ (4a) and (4d) or (4b) and (4c)] are 
indeed located on different sides of the real axis. 

Thus the contribution of the region of small a is 
nonzero even without account of the singularities of g1 

and g~. We note that in this connection it was essential 
that the parts of the graph of Fig. 1 to the right and left 
of the bubbles, which determine N1 1 12 , contain inter-

secting lines. If they did not do so, the singularities in 
a would lie on one and the same side of the real axis 
and the contribution of the region of small a would be 
zero. This corresponds to the circumstance that branch 
points occur only in graphs having a third spectral func
tion.r1 - 33 We note that N1 1 12 is real for t = q2 below the 

thresholds. 
We now turn to the consideration of expression (10) 

for the scattering amplitude. It follows from (10) that 
the signature of the amplitude F(s, q2) is determined by 
the product of the signatures of the amplitudes f and 
f', since the quantity Is I arising from the Jacobian 
transformation does not change sign when s is replaced 
by -s. If F(s, q2) is written the form of a Sommerfeld
Watson integral, 

(12) 

then fj(q2) is determined by an integral over the ab
sorptive part, rsl which has the following form near the 
singularity: 

2 .. 
/;(q2)=- ~ ds'(s')-<H•>F,(s',q2), 

1t .. (13) 

To obtain F1(s, q2 ) we use the explicit form of ~1 1 
and ~z 2 : 

6z = ~ exp{- i i( l + 1 -; p )} , 

{ sin(ln/2), P = 1 
~~= cos (ln/2}, P =- 1 

(14) 

FIG. 2. 

(P is the signature; P = 1 for an amplitude with posi
tive signature, and P = -1 for an amplitude with nega
tive signature). From this we find for F 1> the imagi
nary part of the amplitude for positive s, 

yz,z, = Re 6z,6z, ;= ~~.~~.cos[~ ( l, + l2 + 1-p, t p 2 ) J . (16) 

Substituting (15) in (13), we obtain 

If 

2 _ i dl1 i dl. iN2 Gz,(k2)Gz,'((q-k} 2} d"k (17) 
/;(q}- J 2in J ~Yz,z, J 1' 1' j + 1-lt -l. (2n) 2 

1 
Gz,(k2)= z,- a(k2) ' 

1 
G1,'((q-k)2)= 12 _ ~((k- q)•), (18) 

then 

(1~) 

Expression (19) agrees with the result found in r33 • In 
r31 the factor 'Ya{:3 was included in the reggeon produc
tion amplitude. 

Formula (17) can be rewritten in a somewhat differ
ent form if the integration is done, e.g., over 12• If we 
recall that the integration contour of integration in the 
Sommerfeld-Watson integral (9) passes to the right of 
the singularities of G1 or G1' and (13) holds for Re j 

1 2 

> Re (l 1 + 12 - 1), then it is clear that the pole j + 1 
-11 -12 = 0 in (17) lies to the right of the contour of in
tegration. Calculating the residue of this pole, we find 

i dl, i d"k ' .2 (20) 
/;(q2)= J 2i1t J (21t)pz,(k2)GHt:..z,( (q- k) 2)Nz,;+t-!,V!,j+t-1,· 

The contour of integration in (20) lies to the right of 
the singularities of G and to the left of the singulari
ties of G'. 

The expression (20) corresponds to the Feynman 
graph shown in Fig. 2. The wavy lines represent the 
reggeon Green's functions Gz (k~) and G1'(~); the mo-

l 2 
mentum q = k1 + ~ is conserved in the vertices; the 
quantity j + 1 corresponds to the energy and is con
served in the vertices: j - 1 = 11 - 1 + l2 - 1. It follows 
from the expression (16) for yz z that the denominators 

1 2 

t1 and t1 can be included in the Green's functions and 
1 2 

the numerators sin (1T j/2) or cos (1T j/2) can be in
cluded in N or can be regarded as common factors re
flecting the fact that the branch points do not make a 
contribution for physical values of the angular momen
tum. We can therefore write 

t;(q2J=- sin (~(i -+-1- P, +P•)]S~ r aok, 
2 · 2 2in J (2n) 2 

X gz, (kt2}gf+l-l, ( (q-k,) 2}Nz~.Ht-ln 
gz(k2}= Gz(k2}/7;,z. 

(21) 
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All the results above were obtained from a study of 
the simplest graph, Fig. 1. It seems reasonable to us 
to assume, taking into account the analysis of [a, 63 , 
that the inclusion of other graphs leads only to a change 
in the expression for Nz z • 

1> 2 

3. MANY -REGGEON BRANCH POINTS 

The results obtained in the previous section allow 
us to find the contribution of many -reggeon branch 
points. Let us assume that the amplitude 

f'(Pt- kt, q- k,pz- kz) 

has the previous form (8b), (9b), whereas the amplitude 
f(kl> k, ~) is determined by a two-reggeon branch point 
and has the form 

in S dlt S d~ S (!J.k1.' /=-21 I -2.--:-2 -(2 )• Nz,z,(k12,(k1 -k)2,kJ..,kJ..') 
s !1t 111: 1t (22) 

·Gz, (k1.'2)Gz,'( (k1.- k1.')2)Nz,z,(~2, (kz+ k) 2, k1., k1.') (a:,f11s)H~~.s1, 

(here G' and G refer to different reggeons). Expres
sion (22) differs from (10) in that a product of produc
tion amplitudes appears instead of a square, since the 
squares of the masses of the virtual particles are dif
ferent in the integration, and q is replaced by k, k by 
k', and s by 2k1~ = a 2 (31s. The generalization of (10) 
to the case of unequal masses, used in writing down 
(22), is trivial. 

Substituting (22) and (Sb), (9b) in the integral corre
sponding to the graph of Fig. 1 and interchanging the 
order of integration we obtain 

(23) 
XN1,~,z,(q, k1., k1.')G1, (kJ..'2)G1,'( (k1.- kJ..')•)Gz."( (q- kJ..)2)sz.+z,+z.-z. 

In substituting (9b) in the integral we have replaced l2 
by l3• The expression for Nz z z is obtained from (11) 

1 2 3 

by replacing g1 by Nz1z2, l 1 by l 1 + l2 - 1, and Z2 by Z3. 

It is clear that the signature of F(s, q2) is given by the 
product of the signatures of G z , G'z , and G'z' •. 

1 2 3 
Calculating the partial wave amplitude fj(q2) in analo

gy to our previous procedure, we obtain 

/; ( q2) = S dl1 dlz dl• (!J.k1 (!J.k.yz,z,z,Nz~z,z, · 

X Gz,(k,•)Gz,'(k,Z)Gz."((q- k,- k,)•) 
i+2-l,-l.-l. 

1 (24) 
Yz,z,z, = Im ~.6z,~, = ---;:-;::-;=:-:

~h'="z"'s 

X sin [i(4 +~+l•+.f- Pt +~z+Pa) J. 
Here and in the following the following substitutions 
are implied: 

dl. 
dl-+-

2in ' 

(!J.k 
(!J.k-+-(2n)2 · 

Performing the integration over l 3 , we have 

~ 
~ 

i+Z-l1-l1 , q-k,-kz 

FIG. 3 

xgz,(k,•)gz,(k.•)g;-t-Z--lo-1,( (q- kt- k2)2). 

This expression corresponds to the graph of Fig. 3 
with the same conservation laws in the vertices as be
fore. 

Analogously, one can obtain the contribution of the 
branch point corresponding to n reggeons: 

/;(q2)= (-1)"-1i(2n) 3 sin(i(j- .~ P;;- 1 ) H dl1 ••• dl,.(!J.k1 ••• (!J.k,. 
t=1 

xll( q -.:3 k;) ll( j +n-1- _:3 l; )N~ .. .zn (k1 ••• k,.) 

If gzi (ki) = tzt[li - ai (kf)] - 1, then (26) leads to 

/;(q2)= (-t)n-t S (!J.kt ... (!J.k,.N~, ... a.,. (2n)2ll( q- :3 k;) 

(26) 

r .. J--t " p 
><Li+n-t-:3ai(kt2) sin[i(i-] 1

2-
1)]TI-f.-. (27) 

t=f i=1 i i 

We verify that (27) gives a result which coincides 
with the one obtained in [33. In the physical region of 
the s channel (t < O) we have, according to Frois
sart/103 Re a (t) « 1. Therefore Re E ai (kD ~ n, and 
the real part of the denominator in (27) is smaller than 
or equal to 1- j. This means that the singularity of 
fj(q2) lies in the region Re j ~ 1. We assume that all a 
are real in the physical region of the s channel. Then 
the singularity of fj(q2) will occur for real j, and the 
discontinuity on the singularity is equal to 

L\f; = (-i)"nsin[i( j- ~ P; ~ 1 ) H (!J.k1 ••• (!J.k,.(21t)"ls( q-~ k1) 

' 
xll( j + n -1- _:3 a;(k;2)) N!, ... a.,.f fl ~ •. 

If the poles are equal, Cli (ki) = a (kt), t;is expression 
is easily calculated near the singularity. The position 
of the singularity is determined by the minimal value of 
L:)a(kf), which is attained for ki = q/n and equals jn 
= na (q2 /n2) - n + 1. For j close to jn the region of in
tegration is concentrated around the point ki = q/n. 
Expanding a (ki} in powers of Xi = k- q/n and choosing 
the 1 axis in the two-dimensional space along the direc
tion of q, we obtain 

L\f;(t[z} = (- 1)"n sin [ %( j- p-; 1 n) J S (!J.z, ... (!J.x,. (2n)2o( :3 Xt) 

Xll (i- in+ (a'+ ~~2 a" ),:3 xu2 +a' .:3!x2;2 )N2 (~)__, 

[a'= da(x)/dxlx=q2/n2]. Introducing the variables 

( 2q2 )''• 'fa' 
Zfi = Xfi a' +-n2 a" /(in -i), Zz; = Xzt-.--. 

]n-J 

and taking N2 (ta)-n outside the integral sign, we have 

L\f;=(i-j,.)n-2nsin[ 1(j-P-;1 n )]B,.N! ... a.(~)-n 
X [a'( a'+ 2:.• a") rn-tl/2 ' 

B,.= S;p.zt···;p.z,.(2lt) 2ll(~z1 )ll(t+:3z12)= n- 1 , (28) 
· · (4lt)" 1nl 

a'"" a'(q2/n2), a""" a"(q2/n2). 
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4. ENHANCEMENT 

Let us now investigate how, for example, a pole and 
a branch point influence each other when they are close 
to one another. To this end we consider the graph of 
Fig. 4b, which can contain poles as well as branch 
points. It is not essential to consider the graph of 
Fig. 4b; one may at once consider the graph of Fig. 4a, 
of which the graph of Fig. 4b is a special case (the am
plitude f2 is determined by the branch points). 

Setting, in analogy to the foregoing, 

k, = aapz' + ~gp{ + ka.L, 

we analyze the character of the integration over Is1, 
0' 3 , and (33 in the graph of Fig. 4a. We have 

ka2 = aa~as + k3.L2, (q- ka) 2 = aaj3as +'(q- k3.L) 2; 

(PI- ka) 2 = -aas- ~am• + k3.L2 + a3~3s + m•, 

(Pz + ka) 2 = ~as+ aam• + aa~as + k3.L2 + m2• 

(29a) 

(29b) 

From the condition that the masses of the virtual par
ticles k~, (q- k3 )2 in the amplitudes f 1 (p 11 k3 , q) and 
f2 (p2 , Is, q) are of order m2 , we obtain 

(30) 

It is seen from (29) and (30) that the energy varia
bles in these amplitudes, s 1 = (p1 - k3 ) 2 and s 2 = (p2 + k3?, 
cannot, in contrast to the previous situation, both be of 
order s. If 0' 3 ~ 1, then s 1 ~ s, but then {3 3 ~ m2/s and 
s 2 ~ m2 ; if (33 ~ 1, then s 2 ~ s, but s 1 ~ m2 • Each of 
these regions gives a contribution, which is determined 
by the magnitude of the amplitudes f 1 and f2 • If f 1 

~ sf!<q2 > and f2 ~ sf<q2 >, the region s 1 ~ s, s 2 ~ m2 will 
be most important in the integral for a(q2 ) > (3(q2 ), and 
the region s 1 ~ m2 , s 2 ~ s will be most important for 
a(q2 ) < (3(q2). The asymptotic form of the amplitude F 
corresponding to the graph of Fig. 4a will be 

2 (3 2 s mq > for a(q2 ) > (3(q2 ) and s <q > for a(q2 ) < (3(q2). The 
integral over Is1 will in these cases determine either 
the contribution to the residue of the amplitude F, if 
the asymptotic of f1 (f2 ) is determined by a pole, or the 
reggeon production amplitudes, if the asymptotic of 
f1 ((f2 ) is determined by a branch point. 

The case of most interest is that where a(q2) and 
(3(q2) are close to one another (pole and branch point are 
close). In this case the maximal contribution will come 
from the region 

m2 / s <I aal ~1, m2/s<l ~·I< 1. (31) 

Calculating the integral over this region, we determine 
the effect of the branch singularity and the pole on one 
another. 

We write the amplitudes f1 and f2 in factorized 
form: 

(32a) 

fz(pz,.ka, q)=- g,(q2 )gl"(ks2, (q- ks) 2, q2) S ~~; sz•G\~> (q2)sz1• (32b) 

Using (31), we write instead of (29b) 

s1 = -aas, Sz = ~aS. (33) 

In the integration over a 3 the singularities ~ - m2 + if: 
= 0, (q -ls)2 - m2 + if: = 0 and the singularities of g~ 

~'~~ 
PJ q-kJ P, P, P; 

b 

FIG. 4. 

and g~ have the location a 3 = (c- ii:)/(33s (c is real). 
The singularities of f1 corresponding to its right-hand 
cut are located at a 3 = (c' + ii:)/s, and the ones corre
sponding to the left-hand cut at a 3 = (c"- ii:)/s. It fol
lows from this that for (33 > 0, only the right-hand cut of 
f 1 gives a contribution, and for (33 < 0, only the left-hand 
cut does. In both cases the contour may be closed 
around the singularity of f1 and an integral over Im f1 

is obtained. If the amplitudes f 1 and f2 have different 
signature, the contributions of the two cuts cancel. For 
amplitudes with equal signature they add. Taking this 
into account, we obtain the contribution corresponding 
to the graph of Fig. 4a: 

dl dl' -m'Js 1 

F(s,q2)=-gl(q2)g,(q')S----:- S--:-sz' S da,) d~, 
41 41 _1 m'/s 

X(- aas) 1 (~3s) 1'G\1> (q2)G\7> (q2) (34) 

X 2 JsJ \ d'k3 g{(k32, (q- ka) 2, q2 )g{'(ka2, (q- ka) 2,q2 ) 

) (2n)' (k32- m2)[(q- ka) 2- m2] 

Since the last integral in (34) depends only on a 3 {33s 
and ~1 1 We can introduce the variable X = - 0'3 {3 3S and 
can perform the integration, e.g., over {33 • For s- ""• 
l -l', we have 

, 51 d~a , ( X )l xl , sl -~i - =-,-(sl-sl), 
m'/s ~3 ~3 l - l 

(35) 

and we find 
n S dl S dl' s1' - s1 (I) e>> F(s,q2)= -- -. -. sz•--Gz (q2)G1· (q2}gl(q!)rz(q')g,(q2), 
2 2m 2m l' - l 

(36) 

1 s d'k, g{(ka2, (q-k3 ) 2,q2)g{'(k3', (q-k,)',q') 
r1(q2)=- --dx x1• 

2 (2n) 3 (ka2 -m2)[(q-k3 ) 2 -m2] 

(37) 

Calculating the partial wave fj (q2 ) with the help of (36), 
we obtain 

= gi( q2) G;<1> ( q2) r; ( q2 ) cr> ( q2) g, ( q2). 
(38) 

The expression (38) can be represented by the reggeon 
graph of Fig. 5a which has the character of a correc
tion to the poles a(q2 ) and (3(q2 ) owing to the transition 
from the state a to the state (3. 

The formulas thus obtained are immediately carried 
over to the case where a pole and a branch point are 
present. If we substitute (10) [instead of (32b)] in (34), 
replace there N2z z (q, k 1 ) by N z z (k~, (k3 - q)2 , q, k 1 ) 

1 2 1 2 

x Nz z (k11 q), and interchange the order of integration, 
1 2 

then we obtain instead of (36) and (38) 

~~><>-<~ 
b d 

FIG. 5. 
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._.lt 5!!._5~C~ r~G •r F(s, q)- t-2 gl 2' 2' ~ z· ~r.sr, ~ (2 )2 r(q ) I,!,!, m m z.rt, lt 
1 (39) 

· G1.' (k2)G1," ( (q- k) 2)Nr,r,(q, k) l, +I. _ 1_ 1 (s1•H-'- s1), 

1 5 d2ka d g,'(k3,q)Nr,r,(ka,k,q) 1 (40) 
rlll =~ --X- x, 
'" 2 (2:t) 3 (ka2 -m2)[(q-ka) 2 -m2] 

or, going over to the partial wave, 

!;( q•) = g1G;(q2 ) ~ 2d~1 5 (2d2k) 2 vr,r,r;.~,r.Gr.' (k2) Gr," ( (q- k) 2)Nr.r, (q, k), 
m lt (41) 

where l 2 = j + 1 -l. The expression (41) evidently cor
responds to the graph of Fig. 5b. 

We may now go further and determine the contribu
tion of the graph of Fig. 4c. If, instead of (32a), we sub
stitute in the expression for the graph of Fig. 4a an am
plitude of the form (39) and (40), we obtain 

/;(q2)= g1G;(q2) ~ ::~ 5 (~~2 r;,r,r,Gr,'(k2)Gr,"((q- k) 2)r;,r,r,G;(q2)g2, 

(42) 
where l 2 = j + 1 -l11 this corresponds to the graph of 
Fig. 5c. 

It is easy to obtain also the contribution of an en
hanced three -reggeon branch point corresponding to the 
graph of Fig. 5d. 

Of great interest for the investigation of the diffrac
tion cone for small t, where the pole and the branch 
point are close together, are the graphs of the type of 
Fig. 6. These graphs depict the enhancement of branch 
points by other branch points. It is easy to draw Feyn
man graphs corresponding to these reggeon graphs and 
to calculate their contributions. Repeating almost liter
ally the derivation above we obtain, e.g., for the graph 
of Fig. 6a: 

/;(q2) = g,G;(q2 ) 5 dlrd2k1 S dl,d2karr,l,'Yl,l,Gr,( (q- kt) 2)Gr, (kt2) 

><;rr,r,yr,r.CI, (k32) G1,( (kr- ka) 2)rr,r,Gr, (kr2)rl,r,G; ( q2) g2, 

dl-+_!!!_, d2l'-+ d2k l•=f+i-l, 14 =11 +1-12• (43) 
2in (2n)2 

Graphs of the type shown in Fig. 6 may be called 
completely enhanced, since they do not contain bubbles 
which can be enhanced by introducing a pole. By their 
structure, they represent the contribution to the Green's 
function of the reggeon caused by the possibility of de
cay of the reggeon into several others. However, these 
graphs do not contain the contribution to the Green's 
function from the change in the vertex part due to the 
contribution of the branch points. 

The problem of the vertex part will be discussed in 
detail below. For the present we formulate the rules 
of calculating graphs without vertex parts (of the type 
of Fig. 6), which follow from the preceding considera
tions. 

Each reggeon line corresponds to a Green's function 
Gz (k2)/(21T )3 i which depends on the angular momentum 
l and the square of the two-dimensional space-like mo
mentum k. All lines have the same direction, cf. Fig. 7. 
A conservation law of the form (21T )SiD ( l 3 + 1 - l 1 - l 2 ) 

x 6 (k3 - k1 - k2 ) holds in each vertex. The contour of 

b 

FIG. 6. 

FIG. 7. 

_____ _;y 
~ !, 

~----~---

lz b 

integration over l passes around the singularities of 
Gz(k) counterclockwise. The singularities of the other 
quantities depending on l lie outside the contour after 
the conservation laws are taken into account. Each ver
tex represents an amplitude for the transformation of a 
single reggeon into two others, rz z ; vertices of the 

1 2 

type of Fig. 7a introduce, moreover, a factor yZ z . The 
1 2 

incompletely enhanced graphs considered above satisfy 
the same rules with rz z replaced by Nz z , Nz z z , 

12 12 123 

etc., and yz z replaced by yz z , yZ z z , •... 
12 12 123 

5. MORE COMPLICATED GRAPHS 

Let us consider more complicated Feynman graphs 
containing the contribution of several close -lying 
points. An example for such a graph is that shown in 
Fig. Sa. In the Appendix we calculate the asymptotic 
form of the graph of Fig. Sa under the condition that 
the amplitudes contained in it have the form (S) and (9) 
with the same assumptions as before, and under the 
condition that all three branch points of this graph are 
close to one another. 

The answer for the partial wave fj (q2 ) can be written 
in the form of a sum of two terms, fj (q2 ) = fj (q2) + fj' (q2 ), 

corresponding to the graphs of Fig. Sb and c, where 

fJ (q2 ) = ~ dh . .. dl5 ~ d'kld'k,Nr.r.'YL,l,rr,L,'YL,r,rl,l,Nr,r, 

xcl~) (k~) cl!l ((g- k1l'l c\~) (k~) cW ((q- k.}') ci!J ((q- k1- k,J'l 
(j + 1-11 -l3)(j + 2- l1- l, -l.) (j + 1-l, -Z.) (44a) 

.. , I \••N 'V /; ( q ) = j dll ... az. j d k,d k, r.r,vr.r,rr,r,vr,l,rl,!,l r.r, 

G\!l ((q- k3) 2) G\!l (ki) G\~l (k!) G\!l ((q- k,)') G\:l ((q- ks- k,)2) 

X v+1-l1-l3)(j+2-l3 -l, z.){i+i l, l,) (44b) 

(all quantities in these expressions have been defined 
earlier). 

The denominators in (44a) and (44b) correspond to 
the energy denominators of nonrelativistic perturbation 
theory with different intermediate states. In contrast to 
the graphs considered earlier, the graph of Fig. Sa has 
two types of intermediate states (two three -reggeon 
branch points), leading to two contributions: fj (q2 ) and 
fj' (q2). 

In analogy to the graph of Fig. Sa, one can also cal
culate more complicated graphs, for example, the graph 
of Fig. 9. This graph has six types of intermediate 
states corresponding to six expressions of the type (44a) 
and (44b). These six expressions are related to the six 
graphs of Fig. lOa. These graphs differ by the temporal 
sequence of emission and absorption of reggeons or, 
what is the same, by the various possibilities of verti
cal cuts. Each of the six expressions may be written 

FIG. 8. 
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FIG. 9. 

down without difficulty in analogy to (44a) and (44b). 
If we perform the integrations over l3 , l4 , and l5 in 

(44a) and over lu l 2 , and l 5 in (44b), we obtain the ex
pressions 

(45a) 
l3 = j + 1 - 1, Z. = j + 1 - 12, Is = j + 2 - I, - lz; 

(45b) 
I, = j + 1 - ls, lz = j + 1 -I,, Is= j + 2 -I,- 1,. 

The expressions (45a) and (45b) are in agreement with 
the rules formulated in the preceding section, which 
are now also applicable to the graphs of Fig. 8b and Be 
with the indicated directions of the reggeon lines. 

In a similar manner we can write down the graphs 
corresponding to Fig. 10. Corresponding to the graphs 
of Fig. lOa to f is one graph of the form (45). 

We cannot, of course, consider all possible graphs. 
However, the character of the calculations above and in 
the Appendix, leads one to think that the rules estab
lished here are also valid in the general case. If we ap
ply these rules, we are in the possession of a nonrela
tivistic reggeon graph technique for the account of the 
contributions of branch points in the scattering ampli
tude. 

6. BRANCH POINTS DUE TO THE POMERANCHUK 
POLE 

As is well known, [l, 3 • uJ the Pomeranchuk pole, 
whose trajectory a(t) passes through the point j = 1 at 
t = O, generates branch points jn(t) which accumulate 
in the point j = 1: 

in=na(t/n2 )-n+1, n=2,3, ... (46) 

For small t the pole and the branch point are close to 
one another near j = 1. Therefore the asymptotic form 
of the total cross section, and the cross sections for 
elastic scattering and other processes proceeding via 
the exchange of a state with the quantum numbers of the 
vacuum, must be determined by the simultaneous effects 
of the poles and branch points. It is essential to take ac
count of the influence of the pole on the branch points 
and of the influence of the branch points on each other. 
An important role in the whole analysis is played by the 

~~~ 
d f 

FIG. 10. 

X>-<XK 
a b c d 

FIG. II. 

concept of enhancement, formulated in [7 J. According to 
this idea, the most important contribution to the partial 
wave for small t and j close to unity comes from the 
completely enhanced graphs, i.e., from the graphs con
taining only three-reggeon interactions, cf. Fig. 7. The 
proof for this rests on the circumstance that if some 
graph contains internally a bubble of the type of 
Fig. lla, then there exists another graph identical to 
the original one in all respects except that the bubble of 
Fig. lla is replaced by the graph of Fig. llb. This new 
graph gives a large contribution. The wavy line corre
sponds to the exact Green's function of the reggeon. In 
exactly the same way the bubble of Fig. llc at the end 
of a graph can be replaced by the graph of Fig. lld. 

This can only be correct, of course, if the amplitude 
for the transformation of a single reggeon into two 
others is not small for small t and j close to unity. 
Taking account of our previous analysis, we see no rea
son for this amplitude to be small under such conditions. 
It is also clear that the special role of the enhanced 
graphs depends on the absolute value of their contribu
tions to the partial wave amplitude. For example, the 
complicated enhanced graphs may give a smaller con
tribution than the simple unenhanced ones and vice 
versa, the complicated unenhanced graphs may give 
a larger contribution than the simple enhanced ones. 
These questions will be discussed below; for the pres
ent we consider the set of completely enhanced graphs. 

For this set of graphs the amplitude for the partial 
wave in the t channel can be written in the form 

f;(t) = g!(t)G;(t)gz(t), (47) 

where Gj(t) = G(j, k2) is the exact Green's function of 
the Pomeranchuk reggeon including the contribution of 
the enhanced branch points. The function G(j, k2) satis
fies the obvious graphic equation 

~ =---· + ---~ . (48) 

where G(j, ~) is represented by a wavy line. The dot
ted line corresponds to the pole term G0 (j, ~) 
= [j- a(k2)]-1 • The left-hand vertex corresponds to 
Y r . 

l1l2 l1l2" 

----< =yt,t,rt,r, 
(49a) 

The right-hand vertex represents the exact vertex 
part, for which, as usual, there exists no closed equa
tion, but only a series expansion: 

>=~+>--+~+··· (49b) 

where, as before, the vertices of the type of Fig. 7a 
correspond to rz z yz z and the vertices of the type of 

1 2 1 2 

Fig. 7b to r z1 z2 • 

We are interested in the case of branch points con
nected with the Pomeranchuk pole, where j is close to 
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unity and all Z11 l 2 , ••• in the integrals are, by condition, 
close to unity (otherwise the unenhanced graphs would 
also be important). Therefore we may assume that 2 

rz1z2 = r is a constant which depends on Z1 , l 2 , and ki, 
and yz z = y 11 = -1 [cf. (16)]. The equation yZ z = -1 

1 2 1 2 
implies that in such a theory the effective coupling con-
stant for three reggeons is pure imaginary and equal to 
ir. 

It is convenient to introduce instead of j the variable 
w = j - 1 and to replace a (k2) by a (k2 ) - 1. If we take 
into account that according to Froissart, [103 there can 
be no singularities to the right of j = 1 for negative t, 
we can in the integrals determining the contribution of 
the br;nch points, integrate over w along the imagi
nary axis with a definite rule for passing the singulari
ties. This rule is given uniquely if we set 

G0 (j, k•) = G0 (ro, k) = [ro- a(k2) + e]-1, (50) 

where t: is an arbitrarily small positive number. 
With these definitions equations (4S) and (49) can be 

written in the form 
ioo 

G(ro, k)= G0 (.ro, k)-_!_G0 (ro, k) ) drot~ d2ktG(rot, kt) 
2 -ioo 

XG(ro-ro~,k-k1}f(ro~,k,; ro-rot, k~kt)G((I),k}, (51) 

f(ro~, kt; roz, k2) = r- r" r droa ~ d2ksG(ros, ks) 
-ioo 

xG(ro1 -ro3, k1 -k3)G(ro1 +roz-roa, kt+kz-ks) +. 00 ; ( 52) 
dro-+ dro /2in, rl'-k-+ rl'-k I (2n)2o 

In front of the integral in (51) we have placed the coef
ficient % to account for the identity of the reggeons. 
These equations are easily obtained with the help of the 
formulas of the preceding sections. Equation (51) can 
also be written in the form 

G-t(ro, k) = G0- 1(ro, k)-l:(ro, k),, 

:E(ro,k)=- r2 ~dro1d2ktG(rot,kt) 

XG(ro-ro~,k-kt)f{rot,kt; ro-rot, k-kt)o 
(53) 

Let us now estimate the absolute value of contribu
tion of the separate graphs. This value depends essen
tially on the character of the trajectory a (k2). If we 
assume that for small k 

(54) 

i.e., G;1(w, k) = w + {3k2 + t: then we have in first ap
proximation 

""r 1 
l:o(ro,k}= -2 J d2kro+Pkt2+ fl(k- kt)•+e 0 

(55) 

The integral (55) diverges logarithmically. The diver
gence arises from the fact that we have regarded the 
quantity r as a constant and have taken it outside the 
integral sign. This is justified only for - ~ « IJ.2 , where 
ll is a charac~eristic mass, for example the mas~ of 
the 7f meson. However this in itself is not essenhal, 
since the divergent part has no singularities in w and 
must be included in the renormalization of the pole 
trajectory. 

We easily find from (55) that 
rs ro + Pk'/2 

~o(ro,/c)= 16npln llJ.t' 0 (56) 

We have found that for small w and k2 the self-energy 
part ~o(w, k) is much larger than a;1(w, k), by the 
factor r 2/w or r 2/k2 • If we were to calculate the next 
correction to ~. we would obtain a quantity of order 
r 4/w, r 4/kl, i.e., larger than G;1(w, k) by the factor 
r4jw2 or r 4/k_4, etc. Under these conditions G(w, k) 
may have very little to do with G0 (w, k), and our entire 
discussion, starting from a pole, may become question
able. Moreover, in a situation where each successive 
approximation is larger than the previous one, the in
completely enhanced graphs of higher order will be 
larger than the completely enhanced graphs of lower 
order. 

However, the situation is not necessarily that bad. 
The point is that the pole trajectory must have a singu
larity for k2 = 0, since the positions of the pole and of 
the branch point coincide for k2 = 0 (bound state at the 
boundary of the continuous spectrum). This singularity, 
if sufficiently strong, can lead to a large suppression of 
the contribution of the branch points. Moreover, in cal
culating ~(w, k) in the first approximation we have re
placed r(w1k1, W2k2) by r. However, r is given by a 
series with ever increasing terms. It is entirely possi
ble that the sum of this series is small for small w and 
k· then the value of ~ will also be small. In other words, 
V:ords, the bad convergence character of the series for 
~ and r may be connected with the circumstance that 
we have chosen a bad zeroth approximation. Equations 
(53) and (52) may in reality have a meaningful solution. 

If such a solution exists, then all completely en
hanced graphs are of the same order for the correct 
value of G(w, k), and the incompletely enhanced grap~s 
are small compared with the former. Hence, the cho1ce 
of graphs is correct in this case, and the problem con
sists in finding the solution to (53) and (52). 

The writing of this paper was preceded by an inves
tigation of the properties of reggeon branch points 
which was carried out together with I. Ya. Pomeran
chuk and K. A. Ter-Martirosyan, and has been published 
in part in [s, 7 l • In preparing the present paper, and in 
particular in the analysis of the question of the enhance
ment of branch points, the author has received invalua
ble stimulation from the ideas of Isaak Yakovlevich 
Pomeranchuk during the preceding collaboration. 

I am grateful to K. A. Ter-Martirosyan for numer
ous useful comments. 

APPENDIX 

We shall calculate here the asymptotic form of the 
graph of Fig. Sa. The notation for the momenta is indi
cated in the figure. Each momentum is written in the 
form (1). The amplitudes corresponding to the dashed 
bubbles have the form (S). The integration over the 
variables k11 , au a 2 , and {31 are performed in the 
same way as before (Sec. 2). We have 

ku .. • ~ m2, at, az ~ m2/s, Pz < Pt < 1. 

In exactly the same fashion we perform the integration 
in the right-most bubble of the graph of Fig. Sa over 
the variables ke1 , {3 6 , {3 5 , and a 6 , where 
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There remain the integrations over ~1, {:32, ks1, as and 
ks, k..&, k.r, ks· 

In order for the amplitudes corresponding to the bub
bles to be in the asymptotic region (energies large, 
masses and momentum transfers of order unity), we 
must require 

i3taas>m•, lha.s>m•, (1-Pt)a7s>m2, (A.1) 
Ps(1- au)s>m•, (CIJ + al + a7 + CIJ) (13a + Pl + 137 + 13s)s>m2 ; 

(A.2) 

The last of equations (A.1) can be fulfilled in two cases: 

aa + a4>a7 +as, 

a7 + CIJ>aa+ Ui, 

137+Ps>P•+I34; 

13• + Pi> P7 + Ps. 

(A.3) 
(A.4) 

In the first case we have, according to the last equa
tions (A.2) 

as~aa + Ui, P•~ P7 + Ps. (A.5) 

in the second case 

(A.6) 

The character of the integration over {:32 and a 5 de
pends on the structure of the singularities of the inte
grals over ks, k..& and k.r, k8• Let us consider first the 
first case (A.3), {A.5) and the integration over {:32• We 
write down the denominators entering in the upper part 
of the graph of Fig. Ba, i.e., in the integral over ks, k..&: 

ka.L2 + aaj3aS- m2, (ku- ku) 2 + (ai- as)'P•s- m2, 

(ku- ka.L)2 + aa(f3a- P•)s- m2, 

(kn + ku) 2 + (aa + Ui) (13• + f3l)s- m2, 

ku2 + a,p,s- m2, ,A. 7) 
(ku- ku + ku- ku) 2 + (aa + Ui) (Pa +Pi -p.)s- m•. 

Here we have used a 2, {:35 ~ m2/s and a 5 « as + a 4• 
It is easy to see by considering these denominators, 

that the integral over f:3s differs from zero only if as 
and a 4 have different signs and I a 41 >I as I· [This im
plies that a 5 can also be omitted in the fourth equation 
(A. 7).] If these conditions are fulfilled, the integral 
over {:33 has, as a function of {:32, singularities in the 
upper and lower half-planes for {:32 of the order of {:34, 
m2/a4s, and m2/(as + a 4)s. The quantity {:32 also enters 
in the denominators corresponding to the lower part of 
the graph of Fig. Sa. However, because of condition 
(A.5), {:32 drops out of the integral over k.r and ks just 
the same as a 5 dropped out of the integral over ks 
and ~· Therefore the integral over {:32 can be closed 
around the singularities of the integral over {:33 , and it 
is different from zero. Analogously, the integral over 
a 5 is determined by the singularities of the lower part, 
i.e., the integral over k.r and k8 • 

The integrations over the variables corresponding 
to the different parts of the graph of Fig. Sa are now 
connected only via the amplitudes corresponding to the 
dashed bubbles. If these amplitudes are written in the 
form (5), (S), one can successively carry out all inte
grations. 

The integration over the variables k11, au f:3u and 
a 2 yields the quantity Nz Z'(q, k2 ), which coincides 

1 2 
with (11). The integration over ks1 , {:32, {:33 , and as leads 
to the integral 

1 \ d2kH das df3a dP2 
-- J --- jsj 2 (-aa) 1•(-aa+ Ui) 1'1."g.g 
4(4n)'l• (2n)' 

X{(ks"- m2)!(k2- k3) 2 - m2][(k3 + k4) 2 - m2J(k5 - k4)2- m•]}-1• 

(A.S) 

As noted earlier, a 3 and a 4 have different signs, and 
I a 41 >I a 3 1. It can be shown that the two regions a 3 < O, 
a 4 > 0 and as > 0, a 4 < 0 compensate each other exact
ly if the product of the signature of the three amplitudes 
f(ku ks, ~), f(k..&, k6 , ks), and f(ks + k..&, k.r + ks, ~ - k5) 

is equal to -1, and add up if the product of the signa
tures is equal to + 1. Assuming the latter, we consider 
the case as < O, a 4 > 0. 

In performing the next integration over k41 , a 4, and 
{:34, we note that all zeros of the denominators (A. 7) de
pending on {:34 lie in the lower half-plane of the complex 
{:34 plane. Therefore the integral can be closed in the up
per half-plane of {:34 around the singularities corre
sponding to the left-hand cut of f(k6, ~. ks). As a result 
the absorptive part of f(ks, k..&, ks) appears in the 
answer. 

If instead of as we introduce y = -as/a4 and instead 
of a 4 the variable x = -a4 {:34s, then the integral over 
ks1, {:33 , as, {:32; ~1• a 4 will have the form 

(A.9) 

where rz l l is defined by (40). 
5 2' 

Repeating the same arguments, we find that the in-
tegration over ks1, as, a 8 , {:38 ; kr1, {:37 gives 

(A.10) 

The integration over k61 , a 6 , {:3 6 , f:3s gives Nz l'. The 
5 5 

region of integration over -{:34, -a7 is defined by the 
conditions {:34 a 7s « m2, m2/s « -{:34, -a7 « 1, since 
{:34 a4s ~ m2, a7 « a4. 

Substituting all these results in the expression cor
responding to the graph of Fig. Sa and performing the 
integration over a 7 and {:34, we obtain 

XG1(q- k2 - k5')G1, (q- k{)G1., (ks')rz·,z.z,•rz,z,.zN,,,., 

X{[(l5' + l5 -l{ -l2) (l2'•+ 1-ls' -l))-l(s~+l{-1- s'•+~'-1] 

-((l{ + 1-l5' -l) (l5 + 1-l-l2)]-l(s'•~'-1 - sl+H~'-•1}. 

(A.11) 

Going over to the partial wave amplitude, we find the 
expression given in the text and corresponding to the 
graph of Fig. Sb. The expression corresponding to the 
graph of Fig. Sc is obtained by considering the region 
(A.4). 
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