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The possibility of a significant anisotropy in the expansion of the metagalaxy at various stages is 
currently being discussed in the literature. According to the "hot cosmological model" interaction of 
weakly interacting particles (neutrinos, gravitons) with other particles and with one another ceases 
during the expansion. Various momentum components of the freely moving particles are transformed 
differently during the anisotropic expansion, and the particles begin to move predominantly along a 
certain direction. It is shown that if such particles are taken into account, then the general pattern of 
anisotropic expansion and the physics of the processes are greatly altered at an early stage. 

1. INTRODUCTION 

RECENTLY, homogeneous anisotropic cosmological 
models have been under extensive discussion. [l-9 J 

There exists a class of anisotropic solutions, which ap­
proach the isotropic solution asymptotically during the 
course of expansion and consequently do not contradict 
the facts concerning the presently observed isotropy. 
Interest in such models is due, besides the natural ten­
dency to investigate a broader class of solutions satis­
fying the observations than the strictly isotropic one, 
also to the fact that the anisotropic solutions contain 
an additional parameter, the choice of which leads to 
essentially different consequences for the chemical 
composition of free stellar matter. [S, 6 l It may turn out 
that it will be necessary to forego a rigorous isotropic 
solution in order to reconcile the theory of the hot cos­
mological model with the data on the chemical compo­
sition of old stars. Another special cause of interest in 
anisotropic solutions is the possibility of including in 
them the magnetic field. [10• 7 ' BJ 

The purpose of the present article is to show that an 
analysis of isotropic solution cannot be made without 
taking into account the role of the weakly-interacting 
particles (gravitons, neutrinos) which are present in 
the prestellar matter. Allowance for these particles 
changes radically the picture of the anisotropic expan­
sion and the physics of the processes during the early 
stage. [HJ The cause of the singular behavior of weakly­
interacting particles lies in the fact that different mo­
mentum components of the freely moving particles are 
transformed differently in the anisotropic solution, and 
the equilibrium spherically-symmetrical distribution of 
the particle momenta is transformed into preferred 
motion along one direction (both signs of which are on 
par). In addition, it is possible that there is no thermo­
dynamic equilibrium at all in the anisotropic solutions 
at superhigh densities. The consequences ensuing 
from these phenomena are discussed in the succeeding 
sections. 

We note that if the anisotropic homogeneous solution 
really existed in the past, then as a result of all the 
processes it might turn out in particular that the mod-

ern average energy of the relict neutrinos is much 
larger than the energy of the relict quanta correspond­
ing to T = 3°K, and relict neutrinos might even be ob­
servable by modern means. 

2. ANISOTROPIC VACUUM SOLUTION 

Let us consider the anisotropic homogeneous plane 
cosmological solution 

ds• = &dt2 - ai•(t)dxi2 - IJ.}{t)dx22 - a/-(t) dxi-. (1) 

As is well known, [12 J such a solution always has near a 
singularity an asymptotic form 

.a1 = a10tP~, iZ2 = a-mtP2, a3 = a:rotPa; 

Pi+ P2 + Pa = Pi2 + P22 + Pr = 1, Pi ,;;;; P2 ,;;;; pa. 
(2) 

It follows from (1) that the co-moving volume varies 
in proportion to (a1aaa3 ) ~ t, the number of the conserved 
particles per unit volume varies like C\ and the den­
sity of the ultrarelativistic gas with P = c/3 varies like 

p = e/ c• = Kt-'1•. (3) 

The character of the expansion during the early stage 
is determined completely by specifying one exponent, 
say the smallest one P1 = -0!, for which it follows from 
(2) that 0 ~ 0! ~ %. Accordingly, the matter is com­
pressed along the corresponding axis (with the excep­
tion of the case 0! = 0). The density of the ultrarelativ­
istic gas is determined by the constant K. 

During the early stage, quantities of the form (a/a)2 

or a/a, which enter into the gravitational equations, 
are of the order t -2 , whereas c ~ P ~t - 4 /S, and the 
terms 41TGp and 47TGP/c2 , which describe the matter, 
can therefore be neglected. 1> Thus, the presence of 
matter does not influence the dynamics of the expansion, 
as is emphasized by E. Lifshitz and Khalatnikov. [l2 J 

This can be called the "vacuum" stage. 
It is easy to determine the instant t = (} of the end of 

the vacuum solution, when matter already begins to in-

!)This conclusion is not valid only for an expanding rigid equation 
of state [ 13], which is not considered here. A physical interpretation of 
the deformation in the anisotropic model is given in [.14]. 
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fluence the deformation. To this end, the terms 41TGp 
and 41TGP/c2 should be of the order of a/a~ t-2. With 
the aid of {3) we get 

9-2 ~ 4:nGKa-•t,, 9 ~ G-'I•K-'t.. (4) 

When t > e, the solution approaches rapidly the iso­
tropic solution: 2> 

(5) 

Nuclear reactions in the "hot model" under the con­
ditions of such a cosmological solution were considered 
by Thorne. [eJ He showed that the concentration of He4 
in prestellar matter is larger than 30% (by weight) when 
1 < e < 3 x 1010 sec, less than 30% when e > 3 x 1010 sec, 
and can be very small for larger e. At the same time, 
for the interval 3 x 109 sec < e < 1012 sec we obtain a 
large deuterium content: Cn i'::j 10-25%. To satisfy the 
two conditions CHe4 < 30% and Cn < 1% we must have 
e > 1013 sec. In this case there will be practically no 
He4 at all. We note that at large values of e the only 
nuclear process is neutron capture by protons. It is 
easy to show that under these conditions Cn 
= const e-1/ 2 ln (T1/Ta), where T1 is the instant when 
photodissociation stops, D + y- p + n, and Ta is the 
time of spontaneous decay of the neutron, equal to 
1000 sec. 

3. FREE PARTICLES IN ANISOTROPIC SOLUTION 

We turn to weakly interacting particles-gravitons 
and neutrinos. For neutrinos, for example, during the 
early stages of expansion at large temperatures, the 
scattering, creation, and annihilation precede rapidly 
enough to maintain complete thermodynamic equilib­
rium between the neutrinos and the other par~icles. 3> 

In particular, the neutrino density is ~TS, their aver­
age energy ~ 5 kT, and the momentum distribution is 
isotropic. We shall call this the Pascal stage of expan­
sion (the energy-momentum tensor is isotropic). Start­
ing with a certain instant t = T, the processes of neu­
trino interaction become slow compared withthe ex­
pansion, and the neutrinos are already free particles. 

Assume that during the course of further expansion, 
when t > T, the free particles interact neither with 
other particles nor with one another. We shall show in 
Sec. 5 that this assumption is not always valid for neu­
trinos, and that the picture is more complicated but the 
assumption can always be valid for gravitons. 

In the isotropic solution, the separation of the neu­
trinos from the other particles cause no violation of 
equilibrium, since neutrinos, as well as y quanta and 
e+ e- pairs "cool" in accordance with the same law 
(with kT > mec2). In the anisotropic solution, the den­
sity and the momentum of the free particles vary in ac­
cordance with the cosmological expansion; each mo­
mentum component i1, ia, is varies in inverse propor­
tion to a1, aa, as. The energy E = c IiI is determined 

2>For an exact solution with asymptotic (2) at t < 8 and (5) at 
t> 8 see [8 ]. 

3>In anisotropic models, unlike the isotropic ones, conditions are 
possible when there is no thermodynamic equilibrium at all (for details 
see the end of Sect. 5). We assume here that during the earlier stages of 
the expansion there is thermodynamic equilibrium. 

by the largest momentum component, so that the aver­
age energy is E ~ t -p1 = ta. The distribution of the 
particles in momentum space becomes all the more 
sharply anisotropic. 

Assume that at the instant of separation t = T the 
particle energy density 8 * was a fraction {3 of the 
total energy density. During the course of expansion, 
in the vacuum stage, we have 

(6) 

(n* is the particle density). Consequently, when t > T 

we have 

(7) 

Here p* becomes the principal term in the total den­
sity, and the energy-momentum tensor is quite aniso­
tropic: 

(8) 

The presence of free particles, whose energy den­
sity decreases more slowly than that of the interacting 
particles, reduces appreciably the period of the appli­
cability of the vacuum solution. Preceding in analogy 
with the determination of e in Sec. 2, let us obtain this 
instant t = q {using (7)): 

q = e (-r/9)(7-3a)/(9-3a) j3f/(a-3). {9) 

The ratio of the free-particle energy density 8 * to 
the energy density of all other particles 81 at the in­
stant of termination of the vacuum solution is 

• _. p ( q \ a+'l• ~2(•-aa)/3(3-a) / T \2(3a+f)j9(a-3) 

e /e1 ;..;:;--1-) = \-) 
1-~\ -r 1-~ e {10) 

Consequently, inasmuch as {3 is not particularly 
small, the effects under consideration shorten the dura­
tion of the vacuum solution and bring about 8* » 81 at 
the end of the vacuum stage. 

4. COSMOLOGICAL SOLUTION WITH ANISOTROPIC 
ENERGY-MOMENTUM TENSOR 

In the model without free particles, the vacuum stage 
was followed by a rapid isotropization of the solution at 
t >e. In the model under consideration here, the vac­
uum stage is followed when t > q by a stage in which 
the dominating influence in the dynamics is played by 
the free particles which have a highly anisotropic 
energy-momentum tensor: -Tg~T~>>T~, T~ 

The cosmological solution with such an energy mo­
mentum tensor is of the form 

-T0° = T11 =e. T22 = T33 = 0; 
at= a1o yP'-'h. eY, ll:2 = a!l y'/2-P, aa = aao y'!:+P, 

t =To ) yP'-'1• eYdy, %8 = To-2y-'/.-2P'e-2Y, (11) 

X= 8:nG/c2, 0 ~ p ~ 1/2. 

The asymptotics of this solution as y - 0 and 8 - oo 

are described by the vacuum solution (2), and the con­
nection between a and P 2 is given by the expression 
a = {1- 4P2)/{3 + 4P2). The instant of termination of 
the vacuum solution q corresponds to Yo= Y4 - P 2• 

When y > Yo, the gravitation of the particles comes into 
play: compression along the x axis is replaced by ex­
pansion, and on the other hand the expansion along xa 
and X3 slows down. When y » 1 we have 
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a1 ~ t, a2 ~ (In t) '!.+P,. a3 ~ (In t) '/,-P; 
e' ~ t-2(Jnt)-'i•-2P', n ~ t-l(ln t)-P'-'1•, E' ~ t-l(Jnt)'i•-P'. (12) 

Thus, the free particles whose energy E* increased 
during the vacuum stage upon compression along x1, 
give rise when t > q to such a realignment of the solu­
tion, as to cause their energy to begin to drop rapidly. 4 ) 

The change in the energy density of particles whose 
momentum is directed essentially along the j axis is 
determined by the relation r-j ~nij ~ nat. The change 

in the density of the interacting particles is determined 
by the relation £1 ~ n 413. Using these relations and (2), 
(9), (10), and (12) we can find that particles whose mo­
menta are directed along the x1 axis will play a domi­
nating role up to the instant t = t1: 

t1 ;:::; 8BP-'/, /)'/,P(Jn(B-lll-'i•)]'i•-P, ll = r:/8. (13) 

By the instant t1, the energy density of the particles 
whose momenta are directed primarily along x1 and x2 
become equalized, and greatly exceed the energy den­
sity of all other particles: £~1 :::;; £~2 » £~, £1' 

After the time tu the principal role is played by par­
ticles with momenta along x2 : £~ » £~ , £~ , £u 

2 1 3 

and the solution (11) is again valid, except that a1 is 
along the x2 axis and other values of the parameters 
are used. Now the expansion proceeds along the earlier 
axis Xa , and the expansion in the x1 and x3 directions. 
is weak. Such a realignment of the solution causes, af­
ter a certain time, a rapid drop in £~ and an instant 
when r-i :::;; r-i again is reached. Thu~, the two axes 

2 1 
will interchange roles and the anisotropy will be "vi-
brational" with decreasing amplitude and frequency, 
until all the energy densities become the same order 
of magnitude: £ * ~ £ * ~ £ * ~ £ (we assume {3 to x1 x2 x3 1 
be of the order of unity), after which isotropization of 
the solution begins. 

To estimate the isotropization time t 2 , let us con­
sider two limiting cases. 

1. Assume that the axes Xa and x3 in the solution (1) 
are equivalent, that is, P = 0. Then already at the end 
of the first period of the "oscillations," when t = tu 
we get £* :::;; £u after which rapid isotropization begins. 
Consequently, for a close to 1/3 , the isotropization 
time t2 can be obtained from (13) with P = 0 

(14) 

2. Another limiting case corresponds to a = 0. In 
this case we have in the vacuum stage 

e1* ~ e2* = .const, (15) 

After the vacuum stage, the dominating role is 
played by particles with momentum not along any one 
axis (as in (11)), but on the x1, X2 plane with equal proba­
bility along any direction in this plane. The energy­
momentum tensor of the particles is in this case 

(16) 

4> An analogous re-arrangement of the solution with the magnetic 
field under anisotropic axially-symmetrical compression leads to limita­
tion of the growth of the field, as noted in [ 6 ] and [ 8 ]. This phenom­
enon is connected not with the pressure gradient (the medium is ho­
mogeneous), but with the relativistic effect of the gravitational influ­
ence of the anisotropic pressure. 

Neglecting the energy of all the other particles, we 
obtain the exact solution 

a1 = a2 = a10 (1 + t/to)'l•, a,= aao[1-(1 + t/to)-'h]; 

xe = 4/9 t 0- 2 (1 + t/to) -'1•[(1 + tjt0 ) '!.- 1]-1• 
(17) 

The effective instant of the essential change in the 
vacuum solution is t 0• It follows from (15) that by the 
instant to:::;; {3-1 eo 113 we shall have r-t = £[ » £t' £1. 

When t >to the expansion, in analogy with (11), again 
proceeds in such a way that the energy density of parti­
cles whose momenta lie in the plane decreases more 
rapidly than r-i and £1' By the instant 

3 

(18) 

we have r-t = £l:::;; £:':::;; £1 ({3 is on the order of unity), 
and isotropization sets in. 

Thus, when a is close to zero, when the more rapid 
expansion occurs alternately along the x1 and x2 axes, 
but r-t, £[ » r-t, £1, we can use (18) to estimate the iso­
tropization time. Consequently, in this case 

(19) 

In the general case, the isotropization time lies be­
tween the values (14) and (19). The isotropization of the 
solution has in the general case a vibrational character, 
and when the anisotropy is already small, the solution 
is written in the form 

a;~ a;0t't•{t + b;t-'l•sin [~3ln(c;t) ]+ ... }. (20) 

This means that the isotropic expansion of the free par­
ticles is stable. 

We note finally that for gravitons the "separation" 
occurs under conditions when quantum gravitation ef­
fects are significant. l 15 J Therefore the gravitons may 
not be in equilibrium with the other particles at the in­
stant of "separation." 

In the presence of equilibrium {3 ~ 10-2, but if there 
is no equilibrium, then {3 can differ even more from 
unity. If {3 « 1, then we should have after isotropization 
at any rate £* :::;; £1, that is, a contemporary graviton 
energy density on the order of the quantum energy den­
sity 1 amounting to approximately 10=12 erg/cm3 or 
~ 10-33 g/cm3. This means that when {3 «1 the distri­
bution of the graviton momenta is anisotropic, and if at 
the instant of "separation" their average energy was 
of the order of the energy of the other particles, but 
their density was small, n* « nu then at the present 
time we also have n* « nu and E* » Ey. 

So far we have disregarded the possibility of insta­
bility of the described processes. The anisotropic vac­
uum solution itself is exponentially unstable. l 12J If the 
initial perturbations are small, then this instability may 
not have time to develop. But isotropization of a strict­
ly directional particle beam can occur as the result of 
collective interaction. We shall not consider this here. 
We note only that if such isotropization occurs during 
the stage E* » E, then the graviton energy is larger 
than the y -quantum energy even at present. 

As to the results of Thorne on the chemical compo­
sition of prestellar matter, lSJ they are valid without 
stipulation only in the case when all the processes oc­
cur during the vacuum stage. For other values of the 
anisotropic parameter it is necessary to take into ac-
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count the fact that there are periods when the volume 
density during the phase of the nuclear reactions does 
not vary in the same manner as in Thorne's calcula­
tions. Thus, for exam~le, in the model (17) and in the 
time interval to= eo 1 3 < t < eo -2/\ the volume density 
varies like n ~ t-413• 

5. NEUTRINOS IN THE ANISOTROPIC SOLUTION 

The behavior of the neutrinos differs from that con­
sidered above in that in the case of anisotropy that is 
accompanied by compression along one of the axes dur­
ing the early stage, a fraction of the neutrinos and the 
antineutrinos traveling opposite to them acquire an en­
ergy such that under certain conditions the probability 
of their irreversible transformation into electrons and 
positrons again becomes noticeable. This does not take 
place for gravitons, since the graviton interaction cross 
sections do not depend on the energy. [l6J 

We shall assume at first that there are no gravitons 
at all, 5 > and consider for concreteness the behavior of 
electronic neutrinos. The combined behavior of the neu­
trinos and the gravitons will be considered later. 

The instant of "separation" of the neutrinos T will 
be determined from the condition that the relaxation 
and hydrodynamic times be equal, which yields 

f=crnCT=1. (21) 

Here a is the cross section of the interaction e + + e-
~ lie+ ile; a~E2, and if E < 300 GeV we shall assume 
this condition to be satisfied (the case E > 300 GeV will 
be discussed at the end of this section); n is the con­
centration of the particles and c is the velocity of light. 

We shall assume that T < e, for otherwise the neu­
trinos become separated after isotropization of the 
solution and no anisotropy effects occur. Up to the in­
stant T, during the Pascal stage, we have a ~ E2 ~ t - 2 / 3 

and n ~C1• In the isotropic Friedman model a~ E2 

~C1 and n ~t-3 12• Knowing that in the Friedmann 
model the instant of separation (the separation temper­
ature is ~3 MeV) T'~ 0.1 sec for6 > lie or T'~5 
x 10-3 sec for 11 J.l• and using the relations written out 
above, we express T in terms of T' and e. We get 

(22) 

The instant of separation is determined by the energy 
density and by the rate of volume expansion, and since 
these quantities do not depend on a, it follows that T is 
likewise independent of a. 

When t > T, the average energy of neutrinos with 
momenta along x1 increases, E11 ~ h ~ ta, 0 ~a ~ %. 
Accordingly, the interaction cross section increases. 
For the neutrino scattering process 

(23) 

the cross section a is proportional to E 11Ee. From the 
condition anct < 1 of free motion of the neutrino and 
from the relations n ~ t -l and Ee ~ t -l/ 3 we find that 

S)More accurately, at the instant of the "separation" of the neu­
trinos, the density of their energy is much smaller than e 1. 

6)The separation is considered in [!7], and for a correct conclusion 
concerning the contemporary density of v and e. in the Friedmann 
model see [!B). 

this process admits of !_growth of E11 not faster than 
e1 3 , but since a ~ %, E11 cannot increase more rapid­
ly. Thus, after the Pascal stage the neutrinos do not 
interact with other particles. 

However, the opposing streams of neutrinos and an­
tineutrinos along the X1 axis do not interact. Indeed, 
for the process 

(24) 

the cross section a ~ E~ ~ e a, and if the number of 
particles is conserved the condition anct < 1 will not 
be satisfied. Consequently, the process (24) will lead 
during the vacuum stage to an irreversible transforma­
tion of the neutrinos into e+, e- pairs which are instan­
taneously thermalized. 7 > Let us determine the rate of 
growth of the average neutrino energy E11 and the de­
crease of their concentration nv under these condi­
tions. 

In momentum space, the neutrino distribution is 
represented by an ellipsoid with axes h, b and i3. 
The process (24) at each instant limits the quantity 
I i 1 l to a certain value, and the Liouville theorem is 
valid for the remaining particles with I i 1 l smaller than 
this value, and therefore nv ~ I h hb I, and the cross 
section a ~ i~. From the condition anct = 1 we get 

(25) 

From the energy conservation law we can easily 
calculate the rate of change of the total energy density 
of the e+, e- pairs and of the quanta r.y, e± (which are 
in equilibrium), with allowance for the "heating" by 
the process (24), as well as the rate of growth of the 
entropy as a result of such heating. We obtain fort» T 

Ev.e± 4a ( 't' )(1--a)/3 
--~--+- . 

8v 1-a .t 

S [ 4a { t )(1-a)/3 ]''• 
-~ 1+--\-
So 1-a 't' 

(26) 

(27) 

The instant of termination of the vacuum stage t = q is 
obtained in the same manner as in the preceding sec­
tions. It is equal to 

q ~ 8(,;' /8)9(1-<>)/4(3-a), ,;'<e. (28) 

At the instant t = q the ratio of the densities and the 
ratio of the average energies e (for small values of a, 
a > (T /q)<l-0!)/3): 

(29) 

After t = q, the expansion proceeds in all directions, 
and the neutrinos cease to interact with the antineutri­
nos. For t > q we have 

nv nv I Ev Ev \ S(t)~S(q), --~-- , --~- . 
ny,e± nv,e± t=q Ev,e± Ev,e± t=q 

For values of a that are not small, it follows from 
(26) that the energy densities of the neutrinos, the 
quanta, and of the pairs are of the same order at the 

?)The interaction of v~' and vi' leads to the production of muon 
pairs, which become thermalized and subsequently decay into e+, e-, 
iii', v., and ii0• The energy of such secondary neutrinos is- 30 MeV and 
is much smaller than the ever increasing energy of the primary neu­
trinos moving along the x1 axis. 
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instant t = q. The large anisotropy soon disappears, 
and the isotropization time is on the order of q. How­
ever, since nll « lly, e± (see (29)), we get Ell »Ell e±, 
and the distribution of the neutrino momenta is shatply 
anisotropic. 

We have likewise not considered here the possible 
isotropization of a directed flux of neutrinos. The rela­
tions written out do not take into account the factor {3, 
which in the case of neutrinos can range from 1/4 to 
10-2 (depending on T ). 

It was assumed earlier in this section that the neu­
trino annihilation cross section (see (24)) satisfies the 
condition all~ E~ for all energies. However, this con­
dition is apparently satisfied only for Ell ~ 300 GeV. 
At higher energies, the neutrino annihilation cross sec­
tion either remains constant or even decreases with in­
creasing energy. Therefore the results obtained above 
are fully applicable only when q ~ 104 sec 
(13 ~ 3 X 1010 sec, a=%). For q = 104 sec we get 
13 ~3x1010 sec, T ~ 10-5 sec,Elllt=T ~3 GeV, Elllt=q 
= 300 GeV, and S(q) ~ 103 S(T ). With this, the present­
day neutrino energy is Ell~ 104 eV. 

For 13 > 3 x 1010 sec (Elllt=T > 3 GeV), the opposing 
neutrino and antineutrino annihilate effectively into 
e+, e- pairs only so long as E ~ 300 GeV. The larger 13, 
the sooner the neutrino energy reaches 300 GeV (we de­
note this instant by t3), the sooner the annihilation of the 
neutrino and the growth of the entropy cease. For 13 
> 3 x 1010 sec, the formulas of this section are applica­
ble only for a time 

( 
,;' )(3+5«)/&e> 

t ,;;;; ts ~ 1015'"1:' e (a~ 1/s). 

When t3 ~ t it is necessary to use again the for­
mulas of Sec. 4. With increasing 13 (13 > 3 x 1010 sec) the 
isotropization time increases, and the growth of the en­
tropy during the course of deformation and the final en­
ergy of the present-day neutrinos decrease. The param­
eter 13 cannot exceed ~ 1016 sec, for otherwise the ex­
pansion would not have time to become isotropic at the 
present time (1014 with allowance for l19• 20 l ). 

The maximum growth of entropy (S(q)/S(T) ~ 103) 
and the maximum energy of the neutrino today ( ~104 eV) 
correspond to values 13 = 3 x 1010 sec and q ~ 104 sec. 
It is necessary to repeat Thorne's calculationsl6 l of the 
chemical composition of prestellar matter with allow­
ance for a different time dependence of the temperature 
of the medium, owing to the neutrino effects, and to de­
termine in this manner the interval of the parameter 13, 
which is certainly excluded by an unacceptable chemi­
cal composition (large amounts of He, D). On the other 
hand, if at the instant of neutrino separation the gravi­
ton energy density becomes much larger than c 1 , then 
the kinematics of the expansion will be determined by 
the gravitons, and the processes with the neutrinos will 
be determined by this kinematics. 

Thermodynamic equilibrium at ultrahigh densities 
in anisotropic models takes place only under the condi­
tion f = anct > 1, t- 0 (21), where a is the interaction 
cross section of arbitrary particles. It is obvious that 
this is possible only if 1) the cross section does not de­
crease with the increasing energy and 2) the initial 

particle density is high enough. If a(E) - const as 
E - co, and the initial density of all the particles is not 
sufficient for rapid establishment of the equilibrium 
(f < 1), or else the cross section a(E) decreases with 
increasing energy at high energies, then obviously equi­
librium at ultrahigh densities will not have time to be­
come established. In this case all particles behave like 
non interacting ones, and the composition of matter at 
the early stages is determined by the initial conditions. 
In accordance with the results of Sec. 4, the expansion 
is determined by the particles that contain the maximum 
energy. Under these conditions, on the one hand, the 
present-day neutrino energies can be quite high (all that 
is satisfied is the condition Ellnll/c2 ~ Pm• where Pm 
is the density of matter), and on the other hand, at the 
earlier stage the important role can be played by differ­
ent collective processes that lead to rapid isotropiza­
tion.8> 

After isotropization, the energy of all the particles 
decreases rapidly and the y quanta, electron -positron 
pairs, and nucleons can enter in equilibrium. At the 
same time, the entropy of the matter increases strong­
ly. 

6. CONCLUSIONS 

1. The dynamics of anisotropic cosmological models 
and the physics of processes in them are closely con­
nected with the presence of weakly interacting particles 
and with the possible nonequilibrium nature of matter. 

2. The energy of weakly interacting particles (neu­
trinos, gravitons) can at present greatly differ from 
that predicted by the isotropic model and can be quite 
large. 

3. In anisotropic models, a strong increase of the 
initial entropy of matter can take place. 

4. It is possible that allowance for collective inter­
actions leads to a rapid isotropization of the solution. 
If the isotropization occurs at a sufficiently early stage 
(t < 1 sec), then by now such anisotropic models do not 
differ from the isotropic one. 

5. Finally, it is not excluded that further develop­
ment of the considerations advanced here will lead to 
the conclusion that the anisotropic (and inhomogeneous) 
cosmological models are incompatible with the observed 
properties of metagalaxies. 

All the possible variants of the anisotropic models, 
particularly with account taken of different instabilities, 
the magnetic field, and the possible nonequilibrium na­
ture of the initial stages, still call for an analysis. The 
main purpose of the present paper was to show that the 
role of weakly interacting particles must be taken into 
account in the theory of anisotropic cosmological 
models. 

Note added in proof ( 18 July 1967). In the time interval between 
our preliminary note [ 11 ] and the present article, notes and preprints 
were published by Misner [21 - 23] on the same topic. Without stopping 
on the common features, we note that Misner considered the stage dur-

8> In the analysis of the collective interactions it is necessary to take 
into account the fact that near the singular point the "horizon" of the 
particles tends to zero. 
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ing which the viscosity caused by the neutrinos is significant, and, in 
addition, always regards the instant of separation of the neutrino as 
corresponding to T = 2 X I 010 o K. Therefore his physical conclusions 
pertain only to the case when the anisotropy is small at the stage T 
..:.., 2 X lQIOOK. 
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