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Wave processes which take place in a plane-parallel capillary filled with He ll are considered. The 
velocities and damping coefficients of fourth sound and the thermal wave are calculated for capillaries 
possessing different ratios of viscous wavelength to width. The relation between the amplitudes of 
first and second sound and the viscous wave in fourth sound and in the thermal wave is obtained. The 
theoretical results are compared with the experimental data. 

IN the consideration of wave processes in He IT, one 
must distinguish between the following cases: 

The dimensions of the vessel filled with He II are 
sufficiently large (so that the effects of the boundaries 
can be neglected). 

The characteristic dimensions of the vessel are 
such that the normal liquid is clamped. For this, it is 
necessary that either the length of the viscous wave "-v 
= ,J2 TJIWPn or the length of the free path of the elemen
tary excitations l be much greater than the character
istic dimensions of the vessel d. 

Finally, an intermediate case is possible, where the 
dimensions of the vessel are such that the normal liquid 
is only partially clamped. 

In the first case, three types of wave motion are pos
sible: first sound, where the superfluid and the normal 
components move as a whole -the pressure and the 
density oscillate while the temperature remains con
stant; second sound, where both components move 
against each other, so that the liquid as a whole is at 
rest, while the temperature oscillates.1 > Finally, vis
cous waves, in which only the normal component is os
cillating. The viscous waves are strongly damped 
(transverse) waves which appear on the walls of the 
vessel and which are important for the determination of 
the damping coefficient of first sound. 

The velocity and damping coefficient of these three 
types of waves are computed from the complete linear
ized set of hydrodynamic equations: [l, 2 J 

p+divj=O, 
oj; {) ( OUni OUnh. 2 OUnl \ -+ V;p = TJ-\ -+----ll;h--', at OXh oxh OX; 3 OXz I 

v, + Vf.l = 0, (crp) + crpdivvn = 0. 
(1) 

Here p is the density, a the specific entropy, p the 
pressure, T the temperature, TJ the coefficient of vis
cosity, Vn and Vs the velocities of the normal and su
perfluid components, j = Pn Vn + Ps Vs, Pn<s > the den
sity of the normal (superfluid) component, and V'IJ. 
= -avT + Vp/p. . 

From among the dissipative mechanisms, we keep 
only the first viscosity, since the clamping of the nor-

1>In this research, we shall neglect the thermal expansion, the 
smallness of which justifies the separation described above. 

mal component, which leads to the modification of first 
sound into fourth, takes place as the result of it, as well 
as modification of second sound into a thermal wave. 
Account of other dissipative mechanisms does not lead 
to additional difficulties. The role of volume mecha
nisms of dissipation (second viscosity) and thermal re
sistance of the boundary for the case of propagation of 
fourth sound were studied in [3 J. 

If the normal component is clamped (second case), 
then the character of the sound propagation in helium is 
materially altered. As Pellam[ 4J and Atkins[SJ have 
shown, in this case, wave motion is possible which is 
propagated only over the superfluid liquid. This wave 
motion is obtained from the set (1). Here the complete 
set of equations consists of the first, third, and fourth 
equations, in which Vn must be set equal to zero. The 
velocity of fourth sound, obtained in this manner, is, 
according to Atkins/5 J equal to 

u~2 = !!!._ Ut2 + Pn U22, 
p p (2) 

where u1 = ,J ilp/ilp is the velocity of first sound, and 
ua = [a2 ps1Pn (ila/iJT)]112 is the velocity of second 
sound. 

Fourth sound is essentially a modification of first 
(ordinary) sound. With decrease in the thickness of the 
capillary or decrease in the frequency, i.e., with in
crease in the length of the viscous wave, the velocity 
of first sound falls off from its ordinary value to the 
velocity of fourth sound u4o. In addition, a modification 
of second sound also takes place. Its velocity falls off 
with decrease in the dimensionless parameter dl"-v• 
while the damping increases. When the wavelength and 
the damping distance are comparable, second sound 
ceases to exist. The damped vibrations of the temper
ature have gained the name of thermal waves, the ve
locity of propagation of which was measured in the ex
periments of Pollack and Pellam. [SJ The transition from 
first sound to fourth sound and from second sound to 
the thermal waves can be followed by using the set (1), 
if we write - "PrVn in place of the dissipative term in 
the right-hand side of the second equation. [s, 7 J Here w 
is the frequency of the sound vibrations and r is a di
mensionless parameter which describes the clamping 
of the normal component; r = 0 corresponds to the 
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FIG. I. Temperature dependence of the velocity of thermal waves 
v1h(T). Powder with transverse dimension d, = 3.5 X 10-2 em, 
dyw = 6.2 X I o-2 em-sec-~ Points- experimental data of Pollack and 
Pellam; [6 ] thin line- theoretical values of Pollack and Pellam; [6 ] 

heavy line - theoretical values from Eq. (18); dashed curve - thermal 
waves for ctVW-> 00 (second sound). 

first case and r = oo to the second. Naturally the pa
rameter r must depend on the dimensions of the capil
lary and the quantities which characterize the helium. 

Partial clamping of the normal component in the ex
periments of Pollack and Pellam was brought about by 
placing the helium in a volume filled with fine powder
rouge. A different degree of clamping of the normal 
component was achieved by a change in the transverse 
dimensions of the powder (from dr = 2 x 10-3 em to 
dr = 3.5 xl0- 2 cm). 2 > Eliminating (each time) the de
pendence of the velocity of thermal waves as a function 
of temperature for powders of different transverse di
mension, Pollack and Pellam obtained a series of 
graphs Vth(T) (for constant frequency w and dr). Un
der the assumption that the parameter r does not de
pend on the temperature, the theoretical curves of v 
Vth(T) were constructed (for r = const). Each time the 
constant was so chosen that the theoretical curve best 
corresponded to the experimental results. It was shown 
that the lower the temperature and the more strongly 
the normal component is clamped (i.e., the finer the 
powder), the better is the agreement between theory 
and experiment. In the case of sufficiently coarse pow
der and high temperature, the agreement of theory with 
experiment has a more qualitative character (Figs. 1, 
2, 3, 4). 

Such a theory is inadequate in that the parameter r 
remains undetermined. For the determination of the 
explicit form of r, a more detailed consideration is 
necessary. For large r, this has been done in our 
work (with Sanikidze)Y 1 The propagation of sound in 
an isolated capillary and in a system of identical capil
laries parallel to one another was considered. The ve
locity and the absorption coefficient of fourth sound 
were considered under the assumption that ;\v » d » l. 
By comparing the results obtained in l31 with the re
sults of l61 , one could determine the parameter r, 
which was shown to be equal to 31)/wpd2• As to the 
thermal waves, it was shown that they are very rapidly 
damped in the case considered ( "Av » d) and their ve
locity is very small. 

2lWe note that the clamping of the normal component can also take 
place in a thin film of He II (sound in a thin film of He II is known as 
third sound). [ 5 ] The approach to the solution of this problem is simi
lar to that described above. [ 8 •9 ]. 

(t, !.5 1,5 1.7 !.B 1,9 Z.O 2,1 T,'K 

FIG. 2. The same as in Fig. I, ford,= 1.5 X 10-2 , dyw = 4.3 X 10-2 

cm-sec-Y2 • 

In the present work, wave processes are considered 
for a plane-parallel capillary of width 2d, filled with 
He II. It is assumed that the hydrodynamic case is re
alized (d » l). The set of equations (1) is solved with 
the corresponding boundary conditions. The absorption 
coefficients and the velocities of fourth sound and the 
thermal wave are obtained for capillaries of arbitrary 
width. Consideration is given to the dispersion of the 
sound and thermal waves brought about by a change in 
the ratio of the length of the viscous wave "Av to the 
thickness of the capillary d. Results are obtained 
which, strictly speaking, are applicable only for 
plane-parallel capillaries. However, one can make 
some generalization also to the case of a system of 
curved capillaries (which is the volume filled with 
rouge), introducing an effective d and taking it into ac
count that the sound travels along the curved channels. 
The resultant data are in excellent agreement with the 
experiment of Pollack and Pellam. l61 

The capillary is unbounded in two directions; we 
choose the z axis along the third direction, while the 
x axis is along the direction of propagation of the 
wave. The boundary conditions on the walls of the cap
illary (for z = ±d) in the given case are the vanishing 
of the velocities: 

Vn = 0, Vsz = 0. (3) 

The deviation of the quantities from their equilibrium 
values will be sought in the form 

Vn =LtV Q, +L2 V 02+ U, 

where Qi and U are functions of the coordinates and 
the time; the time dependence is chosen in the form 
e-iwt; Li and Ni (i = 1, 2) are amplitudes. 

Vth• m/sec 

------------

(t, !.5 1,5 1,7 !.B 1,9 2.0 2.1 T,'K 

FIG. 3. The same as in Fig. I, ford,= 4.4 X 10-3 em, 
dyw = 2.1 X 10-2 cm-sec-Y2• 

(4) 
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FIG. 4. The same as in Fig. I, for dr ~ 2.0 X I o-3 em, 
dyw = 1.5 X 10-2 cm-sec-¥2. 

Substitution of (4) in the set (1) leads to the system of 
equations for Qi and U and to a coupling between the 
amplitudes: 

!J.Q, + k,•Q, = 0, /I.Q2 + k22Q2 = 0, 
/1. U + k:i'V = 0, div U = 0; (5) 

N; = P;L;, M; = D;L; (i = 1, 2). (6) 

Thanks to the smallness of the dissipation term, Pi and 
Di can be written down in the following way: 

P, = 1 + 4i1JW ' p2 = - E2:. + 4i1JW 
3pn (u,2- u22} p, 3p,(u,2- u22} ' 

D, = 4T)ro2p,a , 
3ppnUt2(u12- u22) 

. wa [ 4i1Jro (p,u12 - pu?) ·l D•=£- 1+ .. 
u22 3ppnu22(u,2- u22) ·~ 

(7) 

Here k~ is the square of the wave vector corresponding 
to first sound, k~ to second, and k~ to the viscous 
wave: [2 ' 10 l 

(8) 

According to (4)-(8), the wave motions in the capil
lary can be regarded as the Superposition of three types 
of oscillations: first sound (the first components in (4)), 
second sound (the second components in (4)), and the 
viscous wave (the third component in (4)). The contri
bution of each of the three oscillations is determined 
by the relations between the amplitudes, which are in 
turn determined by the boundary conditions (3). 

We now turn our attention to the fact that the vis
cosity TJ enters twice: in the expression for ki-in the 
denominator, and in the remaining quantities- in the 
numerator, in the form of small additions. In the latter 
case, it describes the volume mechanism of absorption 
and, strictly speaking, the corresponding components 
should be omitted, since they are of the same order as 
the terms containing the second viscosity, which have 
already been omitted. In the derivation of the disper
sion equations (see below), we shall take this into ac
count. 

We shall seek solutions for Qi and U satisfying the 
set of equations (1) and the boundary conditions (3) in 
the form 

Q; = ei(kllx-wt) cos k.~_;z, 

U (k k U A kll . k (9) 
x = Aiei ux-wt) cos ...L3z, z = - et(kux-mt) sin .J.aZ. 

k.~_. 

It should be noted that generally the solutions for Qi 
and U in the form 

already satisfy (1) and (3). However, such solutions 
are of no physical interest. The fact is that in capil
laries whose transverse dimensions are much smaller 
than the sound wavelength (we shall be interested in 
just this case in what follows), such solutions actually 
reveal an almost complete absence of wave motion, 
since the amplitudes of the oscillations of all quanti
ties are equal to zero on the axis of the capillary. 

Substituting (9) in (4), taking (6) into account, and us
ing (3), we get a set of homogeneous equations in the 
amplitudes Li and A. The condition of compatibility of 
this set of equations is the vanishing of the determinant 
of the coefficients. Expanding this determinant, and re
placing kli and k13 in these expressions by k 11 through 
(8), we get an equation in k 11 • We shall now consider the 
solution of the resultant equation for different relations 
between d and i\.v· 

We shall be interested in those cases in which the 
ratio d/i\.v changes from zero to values of the order of 
and greater than unity, while the sound wavelength is 
much greater than the transverse dimensions of the 
capillaries. Such assumptions are valid since 

lica/'-;1 2 = WT)/u;2 Pn ~ 1. 

Furthermore, as we shall see below, the solutions ob
tained for k~ are much smaller in magnitude than k~. 
In evaluating the determinant, we can consider the 
quantities I k lid I and I kli/ ~I to be small (i = 1, 2): 

lkidl~1, 
lklldl~1. 

lk;/kal~1, 
lk11/kaJ~i; 

(10) 

Here d/i\v = I ~d II 12 can change from zero to values 
of the order of and greater than unity. With account of 
(10), the equation for the desired k 11 can be written in 
the form 

k114 ( 1 _ tg k.d ) _ kll' [ ro2 + ro2 _ tg k8d ( Pn w• + p, w• \.] 
k 3d u12 u22 k3d p u22 p u12 / 

w• ( ) +--=0. 11 
Ut2Uz2 

When the dimensions of the capillaries are much 
smaller than the length of the viscous wave (I ~d I« 1), 
then the solution of Eq. (11), which has a small imagi
nary part, corresponds to fourth sound and can be writ
ten in the form 

k 2 W2 [ 1 + ·a- WPn2Ps (u,2 "-- u22}2 J 
II = u,02 £ 3:;jp2 U4o4 (12) 

and is naturally identical (in the corresponding approx
imation) with the results of [3 J. 

Introducing (for convenience) the dimensionless pa
rameter 

r= -t Pn tgksd 
p ksd - tg k3d ' (13) 

we can write Eq. (11) in the form 

w' ( pr ) w2 
[ ( p )] - 4 1 + i- - 2 u12 + u22 + ir ~ u12 + u.• + u12u22 = 0. 

k11 Pn k11 Pn (14) 

The latter equation is the same as the equation obtained 
by Pollack and Pellam. [SJ Thus the dimensionless pa-
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rameter r, introduced in [6 J, depends on the tempera
ture and is (mainly) a complex quantity (see (13); it 
was assumed in [6 J that r is real). 

The solution of Eq. (14) with accuracy to terms pro
portional to u~/ut (u1 » u2) can be written in the form 

1 + irp,./ (p,. + irp,) 
k11t2 = oo• - , (15) 

u12- u22fl-p,p,./ (Pn + irp,) 2 

(16) 

The first solution corresponds to fourth sound for small 
d/Av (I r I» 1) and to first sound for large d/Av (I r I 
« 1). The second corresponds to thermal waves for 
small and intermediate values of d/i\v, and to second 
sound for large d/Av. 

We now investigate the second solution. For this 
purpose, we separate the real and imaginary parts of 
the parameter r. In what follows, we shall need two 
forms of writing them: 

Pn . p,. a+i[a2 -b(1-b)] (17) 
r=-p(mt+!m•)=-p a•+(i-b)• 

where 

~U+~U ~u-~u 
b- a= , 

- 46(cos2 6 + sh211) ' 46(cos2(1 + sh2 6) 

(\=~= lk~d. 
A. l'2 

Thus a and b are functions of the dimensionless pa
rameter o. 

The dependence of a and b on o is shown in Fig. 5. 
For small o, the value of a tends to zero as 26 2/3 and 
b to unity as 1- %5 o4• For large o, both quantities a 
and b approach zero as 1/26. So far as the function 
m1(o) is concerned, when o :S 2 it is well approximated 
by the function 3/262. For large o, it approaches zero 
as 1/26. Finally, the function ma(o) for o :S 2 oscillates 
about the value -0.2 with an amplitude of the order of 
0.01 (for o = 0, m2 = -0.2), while for further increase 
of o, it approaches zero as -1/26. 

It therefore follows that for fixed values of d and w, 
the real part of r depends on the temperature as the 
coefficient of the first viscosity T}, if o remains smal
ler than 2 in the temperature range studied; the tern
perature dependence of the imaginary part of r is de
termined by the factor Pn· 

Using (16) and (17), and taking it into account that 
m~ » m~ for o :S 2, and that the inequality 21 mal 
» PsmUp for o >2, we get for the velocity and the ab
sorption coefficient of thermal waves 

(18) 

Im ku2 = 00 _ [( 1 - 2 ~ m2 + p,• m12 )"' - 1 + ~ m2 r · 
u.l'2 p p• p 

(19) 

If we set rna = 0, then Eqs. (18) and (19) are identical to 
the corresponding expressions given in [GJ. Such an ap
proximation is correct for not too high temperatures 
and not very large o, when one can assume that 
Psmflp » 21 mal. 

It is not difficult to estimate the order of magnitude 
of o in the experiments of Pollack and Pellam. [6 J For 
fixed w and d, the parameter o depends on the tern-

FIG. 5. Dependence of the val- ~6 

ues of a and b on the parameter ~* 

lJ = d(ll. •. 

perature. We carry out the estimate for T = 1. 7° K. 
(Measurements of the velocity of the thermal wave 
Vth(T) in [6 J were carried out from 1.4 to 2.15°K.) In 
the estimate, it must be taken into account that, accord
ing to Allen and Misener, [ll l the irregularity of the 
geometry of the channels leads to an effective decrease 
in the diameter of the capillary, which is equal, in or
der of magnitude, to the transverse dimensions of the 

. h [11) rouge powder, dr. In correspondence w1t , we 
shall assume that d ~ dr x 10-1. In [6 J the frequencies 
used were ~10kHz. For powders of the order of dr 
= 10-a em, we obtain 

(20) 

The bending of the capillaries leads not only to a 
difference in the effective width of the capillary from 
the real width, but also decreases somewhat (in com
parison with calculation by Eq. (18)) the value of the 
velocity of the wave. Therefore, in comparison with the 
experimental data, the calculated value of the velocity 
must be multiplied by the transmission coefficient. For 
spherical powder, this coefficient is equal to 2/7r.[6 J 

This circumstance is taken into account in the construc
tion of the graphs in Figs. 1-4, on which are plotted 
the curves of the temperature dependence of the veloc
ity of the thermal waves for different values of d{W; 
the theoretical curves of Pollack and Pellam and their 
experimental results are also shown. The comparison 
shows that the curves obtained from Eq. (18) are vir
tually identical with the theoretical curves obtained 
from the formula of Pollack and Pellam for sufficiently 
small d/W and temperatures below 1.9°K (Figs. 3-4). 
However, even at d/W =6.2Xl0-2 cm-sec-112 (Fig. 1) 
and d/W = 4.3 x 10-a cm-sec-112 (Fig. 2) the curves 
differ appreciably, while the curve obtained from Eq. 
(18) (Fig. 1) is in excellent agreement with the experi
mental data. 3 > 

So far as the absorption of thermal waves is con
cerned, [6 l it increases with decrease in temperature 
and decrease in the diameter of the powder, which 
agrees with Eq. (19) (see Fig. 6). We now consider the 
solution (15) of Eq. (14). Taking it into account that 
uf » u~, we can rewrite Eq. (15) in the form 

Substituting in (21) the expressions for the real and 
imaginary parts of r ( 17), we get 

oo2 p-bp,. ( . ap,.) 
kll·=-p 1+!--- . 

I Ut2 (p- bp,.) 2 + a2pn2\ p- bpn 

(21) 

(22) 

From the last expression, it is seen that the damping 

3>we note that the condition d > 1 is satisfied throughout the tem
perature range in the experiments under discussion. 
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0
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of fourth sound, which is due to the slipping past of the 
normal component, increases with increase in o, 
reaches a maximum for o - 1, and thereafter falls off 
upon further increase of o (Fig. 6). For fixed d and w, 
the damping coefficient of fourth sound increases with 
increase in temperature (Fig. 7). These results are in 
agreement with [?J and [l2l, 

For the case of not very high temperatures (below 
2.1°K) and for o not too close to unity, the inequality 
apn < p - bpn is satisfied and Eq. (22) can be rewritten 
in the form 

k1112=---- i+i---. ro2 p ( apn ) 
u,2 p - bpn p - bpn 

We then obtain the following for the velocity and ab
sorption coefficient of fourth sound: 

u,2 = u,2 ( 1 - b :n ) , 
1 ro apn 

Imkn,=-----. 
2 U4 p- bpn 

Figure 8 shows graphs of u4/u1 as a function of 

(23) 

(24) 

(25) 

o (T = 2°K), while Fig. 9 gives the dependence of u4 on 
the temperature for fixed d and w (d-!W = 2.8 
x 10-2 em-sec-t; 2). For comparison, the dependences 
of Vth/Uq on o (Fig. 8) and also the curves for U4o and 
us (Fig. 9) are given in these drawings. 

In conclusion, let us consider the relation between 
the amplitudes Lt and L2 in fourth sound and in ther
mal wave. 

As has already been said, according to ( 4)- (8) fourth 
sound and the thermal waves can be regarded as the su
perposition of three types of oscillations: first sound 
(first components in (4)), second sound (the second com
ponents in (4)) and the viscous wave (third component in 
(4)). The contribution of each of the waves (i.e., the re
lation between the amplitudes L1 , L2, and A) is deter
mined by the boundary conditions (3) and changes as a 
function of d/Av· Setting the expression for Vsz equal 
to zero, we get 

N1 kJ:J.sinkJ:J.d 
Nz =- k_usink_ud 

or, since I klid I « 1, 

N, kJ:J.2 kz2- kl~ 
Nz = - k.l.1z = - k,z- kn2' 

(26) 

In the case of propagation of fourth sound, i.e., for 
k~ = k~u taking it into account that u~ « ur and drop
ping the imaginary part, which describes the dissipa
tion, we get from Eq. (23) 

(27) 

With increase in d/Av, which corresponds to a decrease 
in b (we recall that b < 1), this ratio increases, how-

FIG. 7. Temperature dependence 
of the quantityap0 /2(p- b~) for 
dyw = 2.8 X 10"2 em-sec· . 

l!b. 
0.2 z p-bp, 

f,Ov~·~ FIG. 8. Dependence of the ~ 
quantities u4/u1 and v1h/u2 on the .0.8 

parameter 6 = d/"Av: heavy line - fl.6 

u4/u1, temperature 2°K; thin line tU 

- Vtbfu2, temperature I. 7°K. a; 
~az~a.~aa~aB~w~u~r..~t~.6~t~.a~z.&o6' 

ever, N 2 « N 1 even for b = 1. In the limiting case of 
large o = d/Av, the quantity N2- 0. Thus the contribu
tion of second sound to fourth sound is always much 
less than the contribution of first sound, and naturally 
decreases with increase in o. 

We also note that the spatial distribution (over the 
cross section of the capillary) of all three waves is 
different. The oscillations of first and second sound 
are concentrated near the axis of the capillary, while 
the viscous wave differs appreciably from zero near 
the walls: its superposition on the first sound guaran
tees the clamping of the normal component at the wall. 

It is not difficult to find the amplitude of oscillations 
of the entropy for propagation of fourth sound. Since 
M1 = 0 (we recall that we are not considering small 
effects associated with volume dissipation) we get, ac
cording to (4), (6) and (27): 

a' Mz _ p8a b. 
v,., ik 11 (N1 +N2 ) pu, (28) 

It should be noted that a change in the boundary 
conditions leads to a material change in the relation 
between the amplitudes of first and second sound. Thus, 
in the limiting case of an absolutely thermally conduct
ing wall (Kc- oo) the oscillations of the entropy in the 
capillary are absent in first approximation (a'= 0). 
Hence, since M1 = O, we have M2 = 0 (4). In this case, 
second sound is generally lacking in the capillary. The 
velocity of propagation of fourth sound also changes 
somewhat here. This problem has been discussed in 
detail in the reference cited. [3 J A similar situation 
arises in the intermediate case. For infinite thermal 
conductivity of the walls of the capillary, thermal waves 
cannot be propagated and Eq. (22) is exact (compare 
with (15)), since the components which contain u2 ar;td 
the velocity of fourth sound are due to the presence of 
second sound in the capillary. 4l 

Finally, we consider the relation between the ampli
tudes in the thermal wave, i.e., for kf1 = k~ 2 . Substitu
tion of (16) in (26) gives 

N, . rp. 
Nz =-I Pn + irp; (29) 

4>we note that the ratio of the first component to the second in Eq. 
(2) is again identical with (27) for b = 1. 
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FIG. 9. Temperature dependence of the 
velocity of fourth sound for various values 
of dy'W: thin line- u40 , fourth sound as 
dy'W-+ 0; heavy line - u4 , fourth sound 
for dy'W = 2.8 X 10"2 cm-sec-Y:z; dashed 
line - u 1 , fourth sound as dy'W -+ oo 

(first sound). 

With increase in o = d/A.v (decrease of r) this ratio 
approaches zero, i.e., the contribution of first sound to 
the thermal wave decreases. If now o ~ 0 (r- co), 
then Eq. (29) gives NdNa = -1. Thus, in the limiting 
case of small o in the thermal wave, in first approxi
mation, the normal and superfluid components are mo
tionless while the oscillations of temperature and pres
sure propagate with small velocity and high attenua
tion. 

Note added in proof (July 4, 1967). For the case of a cylindrical 
capillary, the dispersion equation is formally the same as the dispersion 
equation ( 16) for a plan-parallel capillary if the parameter r is assumed 
to be equal to 

r c I'=_ i Pn 2J1(k8d) 
Y p k8dJ0(ksd) -2J,(k3d) 

This substitution changes the path of the dispersion curves slightly; How
ever, the difference does not exceed several percent. In the comparison of 

the theoretical curves with the experimental, it can be seen that the form
ulas which refer to the propagation of the waves in cylindrical capillaries 
give a better description of the wave in the system of curved capillaries, 
which is the case of the rouge, than the similar formulas for plane capil
laries. 
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