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A phenomenological theory is developed for the phase transformation of spherical nuclei into non­
spherical ones. It explains the sudden, discontinuous appearance of equilibrium deformation of the 
nucleus and also the asymmetric growth of the amplitudes of the zero deformation oscillations near 
the transition point as deduced from a-decay data. The theory predicts degeneracy of the nonspheri­
cal nucleus mass coefficient at the transition point in accordance with the law (N - Nc)2, which agrees 
with the few data pertaining to octupole oscillations of heavy nuclei. 

1. INTRODUCTION 

AccORDING to modern notions (see, for example[l-al), 
weakly-excited states of heavy even-even nuclei have a 
collective nature. The corresponding collective varia­
bles can be represented for the sake of clarity as the 
deformation parameters which enter in the equation 

R([t, cp) = Ro { 1 + ~ a~.y~v(ft, cp) } 
~. 

of the nuclear surface. Here JJ. = cos J, cp is the azi­
muth, and 

1/ (t.-"01 . 
Yl.v(fl, cp) = (- 1)• V (I""+ v) I P~•(fl)e"~ 

( 1) 

(2) 

are spherical functions. Such a point of view makes it 
possible in essence to speak of a function E(a) (we con­
fine ourselves for simplicity, for the time being, to a 
single collective variable a, the role of which may be 
assumed, say, by the quadrupole deformation a20 = a2), 
that is, the energy of the nucleus in the ground state of 
its internal motion can be regarded as a function of its 
deformation. The equilibrium form of the nucleus is 
determined by the position of the minimum of E(a). 
The experimentally observed variation of this equili­
brium value a is usually explained as being connected 
with the more or less smooth change in the form of the 
function E(a) from nucleus to nucleus. Then, in princi­
ple, one can visualize two mechanisms under which a 
nonzero equilibrium deformation can arise. One of the 
possibilities (see, for example [4]) consists in the fact 
that the rigidity C of the spherical nucleus, defined as 
the coefficient of the expansion E( a) = Eo + ( 1/2) C a2 

of the energy in powers of the deformation, which var­
ies continuously as a function dl the number of nucleons, 
goes to zero and then becomes negative. Schematically, 
such a sequence of E(a) curves is shown in Fig. 1. The 
dashed curve describes the continuous growth of the 
equilibrium deformation from a zero value, which is 
apparently an inseparable attribute of such a theory. 
However, this cannot be readily reconciled with the ex­
perimental data, which indicate more likely a sudden 
increase of the value of a, jumpwise, from zero to a 
finite value at the transition p~int. Let us consider, for 
example, the transition of spherical nuclei into non­
spherical ones, observed between the emanation and 
radium. The experimental data [2] on the value of a are 
shown qualitatively by one of the curves of Fig. 2. It is 
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FIG. 1. 

typical that immediately beyond radium, for the neigh­
boring even-even nuclei, the difference in tl}.e deforma­
tion a is only ~5% of the initial value which the 
deformation acquires jumpwise at the transition point; 
subsequently a remains just as sluggish. Another con­
ceivable mechanism is connected with the competition 
of the two minima on the E(a) curve. Here, as seen 
from Fig. 3, the deformation actually changes jumpwise 
at the transition point. However, such a physical pic­
ture ties in very poorly with the variation of the ampli­
tudes of the zero-point oscillations of the deformations, 
which were recently calculated from a-decay data [s]. 

The results of these calculations are shown schematic­
ally by the corresponding curves in Fig. 2. Attention is 
called to the sharp rise of the zero-point amplitudes of 
the different deformations of the nonspherical nuclei in 
the vicinity of the transition point-on the other side of 
this point the quadrupole amplitude (iiDI/2 of the spher­
ical nucleus behaves in much more stable fashion. 
Thus, it is precisely at the instant when both minimal 
values of E(a) coincide on Fig. 3, when the system re­
places one potential well by another, that the amplitude 
of the zero-point oscillations in the second well increa-

w,. ----- ..... 

Pb Po Em 

FIG. 2. Static and dynamic characteristics of the form of a heavy 
nucleus, shown qualitatively not to scale. Data on the amplitude of the 
ex oscillations are essentially indirect and based on analogy with (3 oscilla­
tions [ 5]. No literal meaning should be attached to the joining of the 
two curves pertaining to nonspherical nuclei at the transition point -
this joining merely expresses the fact that the amplitude of the zero­
point oscillations increases here to a value of the order of the equi­
librium deformation [5]. 
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FIG. 3. 

ses for some reason. Within the framework of the des­
cribed theoretical scheme, this looks like a random 
superposition of two entirely different phenomena, which 
apparently cannot be regarded as satisfactory. 

A common feature of the aforementioned theories is 
the fact that in final analysis they all operate only with 
a surface collective Hamiltonian E(a), without touching 
upon the internal state of the nucleus in any qualitative 
manner. In other words, it is assumed that the phase 
transition of spherical nuclei into nonspherical ones 
pertains, as it were, only to the collective Hamiltonian 
E(a) of the system. This is probably the reason for the 
already noted lack of agreement with experiment. Fur­
ther evidence in favor of the existence, in this case, of 
a phase transformation also with respect to the internal 
state of the nucleus is the behavior of the internal 
probabilities w a of a-particle production-this quantity 
increases by one order of magnitude on going from non­
spherical nuclei to spherical ones [sJ (see Fig. 2). Long 
ago, Landau raJ obtained with the aid of the detailed bal­
ancing principle the relation 

wu.roD, (3) 

where D is a certain average distance between the en­
ergy levels of the nucleus. If such a quantity experien­
ces so strong a change in the vicinity of the transition 
point, then the assumed qualitative invariance of the 
internal structure of the nucleus becomes worse than 
doubtful. 

To understand the exposition that follows, it is neces­
sary to bear in mind that from the phenomenological 
point of view the structure of the ground state, to which 
we are referring, becomes manifest in the properties 
of the spectrum of the weakly excited states of the 
nucleus. There are weighty reasons for assuming that 
nuclear matter as such possesses the energy spectrum 
of a Fermi liquid[7' 8l. It is constructed in general in 
accordance with the same model as the spectrum of a 
degenerate Fermi gas. However, if we vary the number 
of nucleons in a real nucleus in such a way that it ap­
proaches one of the magic numbers, then the energy 
spectrum of this type experiences significant changes-­
it acquires a qualitatively different lower part. This 
part, roughly speaking, is due essentially to the excita­
tion of the nucleons that are external relative to the 
magic "core." If we consider, for concreteness, the 
Pb210 nucleus, which has two neutrons beyond the 
doubly-magic Pb208, then it is precisely their excitation 
which will cause the first energy levels of the nucleus. 
Only beyond a certain energy t:., when a sufficiently 
large number of core nucleons can also become excited, 
will a return take place to the "normal" Fermi spec­
trum. In a less exaggerated example, when the outer 
shell has, say, four or six nucleons, they are capable, 
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with increasing excitation of the nucleus, of producing 
quite rapidly a relatively large level density. But the 
spectral regions under consideration will differ even in 
their statistical properties, such as the decrement of 
the growth of the level density with energy. It should be 
expected that the boundary between them will be statis­
tically sharp-roughly speaking, if the number of core 
nucleons capable of excitation is sufficiently large the 
density of the nuclear levels produced by them increases 
sharply in exponential fashion. The "collapse" of the 
energy gap t:.., which occurs with increasing distance 
from the magic numbers, can be visualized as being the 
result of a residual nuclear interaction between the 
outer nucleons and the core nucleons 1 >. It is difficult to 
assume that such a realignment of the energy spectrum 
and the nucleus occur jumpwise-we are more likely to 
deal here with a continuous phase transition. 

2. PHENOMENOLOGICAL THEORY OF PHASE TRANS­
FORMATION IN HEAVY NUCLEI 

The theory developed below starts from the assump­
tion that the expression for the energy of one of the 
nuclear phases can be formally continued into the region 
of the existence of the other phase. We confine ourselves 
for the time being to consideration of only one sort of 
nucleons, the number of which in the nucleus will be de­
noted N. We assume also for concreteness that when the 
nucleus has a spherical configuration the region N < Nc 
corresponds to the near-magic phase with nonzero gap 
t:. (m-phase), and when N > Nc, to the contrary, we have 
the normal state t:. = 0 of nuclear matter (n-phase). 
This situation is concretized graphically in Fig. 4. Such 
a simple point of intersection of the phase energy curves 
is usually associated with the concept of first-order 
phase transitions which are, in particular, character­
ized by hysteresis phenomena. As applied to the nucleus 
this would mean that the nucleus is capable of existing 
in any of the two states under consideration, which for 
a given N differ from each other only in energy. It must 
be decisively emphasized, however, that in this case we 
have in mind an entirely different physical picture, 
which has the most essential features of continuous 
phase transitions-so-called second-order phase tran­
sitions [gJ. The continuation of the curves for the energy 
(shown dashed in Fig. 4) into the region not belonging to 
the given phase corresponds to physically unrealizable 
states of the nucleus, which actually do not exist. We 
shall show below, for example, that the right-hand 
dashed curve, which describes formally the continuation 
of the m-phase into the region N > Nc, corresponds to 
physically meaningless imaginary values of the gap t:.. 
Similarly, continuation of the curve En to the left of the 

llWe use a simplified terminology. In the language of modem Fermi· 
liquid theory it would be necessary to speak not of nucleon but of the 
corresponding elementary excitations in the nucleus. 
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Curie point N = Nc pertains to a state for which the 
generalized mass B, corresponding to the collective 
degree of freedom a, is apparently negative (see Sec. 4 
below). The state with negative mass coefficient B is 
completely unstable and cannot be realized in practice. 

The energy of the nucleus in the ground state E will 
be assumed to depend on the quantity 6., which is regar­
ded as a phenomenological parameter. Since the gap 6. 
is indeed small in the direct vicinity of the Curie point, 
we expand here the general expression for the energy in 
a series: 

(4) 

The coefficients A and D are, generally speaking, cer­
tain functions of the number of nucleons and of the 
deformation; we shall not need the higher terms of the 
expansion. The quadratic term, which restores the sta­
bility, should obviously be positive; the function D(N, a) 
can be replaced, with accuracy sufficient for our pur­
poses, by its constant value D > 0 directly at the Curie 
point N = Nc; a = 0. 

The gap value which is physically realizable in the 
m-phase is obtained from the condition aE/a6. = 0 for 
the minimum of (4): 

8=A/D. 

Thus, A > 0 in m-phase. Substitution in (4) yields 

En- Em= A2/2D 

(5) 

(6) 

for the difference between the energy values of the two 
phases. 

Let us consider in greater detail the particular case 
a = 0 of an undeformed nucleus, shown schematically in 
Fig. 4. Near the Curie point N = Nc we obviously have 

1 a2 

En-Em=27J(N.-N), 
(7) 

where a > 0 is a certain constant. Comparison with (6) 
leads to 

A= a'/N.- N. (8) 

Substitution in (5) shows that when N < Nc the gap 

a ~- (9) 
8=D'/N.-N 

is closed in accordance with a square-root law. 
Let us turn now to the region N > Nc. In this region 

the general expression (4) becomes doubly valued be­
cause the function A(N) has a branch point (8). This am­
biguity is physically insignificant, and the choice of the 
sign before the root depends on the arbitrarily chosen 
direction of time flow. If, say, we choose the form 
customarily employed in quantum mechanics [1ol 
exp[-i(E- io)t/n] ro exp[- ot/l'i] for the time dependence 
of the amplitude of the decaying state, then the transi­
tion to the region under consideration must be executed 
in accordance with the rule: 

'/N.-N-+HVN -N.. (10) 

Substitution in (8) and (4) shows that any positive 6. 
leads to the appearance of a negative imaginary addition 
to the energy, corresponding to decay, and only the value 

8=0 

corresponds to a truly stationary state. 

(11) 

The inevitability of relation (11) for the n-phase can 
be explained also from a somewhat different point of 
view. Let us attempt to use in our region N > Nc the old 
value of the gap (9) and let us see where this will lead 
us. The upper level, from which the normal Fermi 
spectrum begins, always exists; with respect to this 
level, the ground state of "near magic condensation" 
corresponds as it were to "elementary excitation" with 
energy -6.. Substituting here (9) and taking (10) into ac­
count we obtain a negative-imaginary value 

a~-

-8= -iD'/N-N. 

for the energy of this "excitation." In other words, it 
corresponds to pure decay, of which there actually is 
none. By the same token, the initial upper level repre­
sents in fact a perfectly stable ground state of the 
nucleus in the case under consideration. 

It is easy to see now how the nuclear deformation af­
fects the physical picture described above. We can, for 
example, start in our reasoning from such a rough ap­
proximation as the independent-particle model. Within 
the framework of similar representations, the "magic" 
effect is the result of filling of a group of closely lying 
levels by the nucleons (see, for example, [10l). When the 
nucleus is deformed, they go into motion, and in final 
analysis, the levels belonging to different shells inter­
sect2>. Inasmuch as 6. is, roughly speaking, a measure 
of the closeness of the nuclear structure to magic, we 
obtain, even when N < Nc, a transition to the n-phase 
6. = 0 if the deformation exceeds a certain definite 
value ac. 

The energy of the nucleus can depend only on com­
binations of deformations that are invariant with respect 
to rotations; the same holds true also with respect to 
the energy difference (6). Inasmuch as even a small 
deformation is sufficient to cause this difference to 
vanish in the vicinity of the Curie point N = Nc, we must 
choose the invariants of the lowest power in a. For any 
of the possible values A 2! 2, such an invariant is 

A 

h= ~ IIUAvl 2• (12) 
'V=-h 

If we bear in mind, say, the quadrupole case A = 2, then 
we should actually mean by the square of the deforma­
tion a employed by us the analogous invariant 

2 

a2 = ~ lazvl 2• 
V=-,2. 

On the other hand, if it is advantageous, for the sake of 
clarity, to specify concretely the "invariant deforma­
tion" a, we can visualize an axially symmetrical case 
a = a20 = a2. Expanding the expression for the differ­
ence of the energies of the phases in powers of the 
deformation and taking the zeroth approximation (7) into 
account, we get 

En-Em=-}{~ (N.-N)-ca• }. (13) 

2)The physical obviousness of the fact that the effect of crossing of 
single-particle levels upon deformation of the nucleus, leading to a de­
struction of its magic structure, is additional serious evidence in favor of 
the existence of the phase transition considered by us. 
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Since the deformation of the nucleus decreases this 
difference, bringing closer the instant of transition to 
the n-phase, it is clear that 

c>O. 

Comparison with (6) and substitution in (5) yield 

A = ya2(Nc- N)- cDa2, 

Ll = ~ -v a2 (Nc- N)- cDa2• 

(14) 

(15) 

These are the relations, so long as the radicand is 
positive (m-phase). On the other hand, when it is nega­
tive, reasoning perfectly analogous to that given above 
for the particular a = 0 case shows that Eq. (11) is 
valid--we already have the n-phase. The Curie point is 
obtained from the deformation by equating to zero the 
radicand 

a• 
ac2 = -;;[) (Nc - N). (16) 

It is convenient to express all the other quantities in 
terms of this one. We reduce, for example, our results 
for the gap to a similar form: 

{ l/ c ya,2 - a• for a• < a,•(m-phase) 
ll = V D 

0 for a2 > a,• (n-phase) 
(17) 

The last inequality is always satisfied when N > Nc, for 
in accord with (16) a~ is negative in this region. If 
N - Nc, then ll'c - 0, and any quantity pertaining to the 
Curie point a = ll'c becomes a characteristic of the 
spherical nucleus in this limit. 

3. JUMP OF RIGIDITY 

Differentiating (13) with respect to a twice, we ob­
tain the following expression for the jump of the rigidity 
of the spherical nucleus at the Curie point N = Nc: 

Cm-Cn =c. ( 18) 

In conjunction with (14), it acquires the character of a 
thermodynamic inequality that expresses, essentially, 
the simple fact that deformation of a nucleus destroys 
its magic structure (see the preceding section). The 
other inequality 

/(19) 
does not follow from thermodynamic considerations, but 
does not contradict them. The experimental data give 
the impression that inequality (19) does not behold ap­
parently in many cases, if not all. 3 > Then substitution in 
(18) yields 

Cn<O, (20) 

that is, on going to the normal region N > Nc the rigidity 
becomes negative jumpwise, making the spherical con­
figuration of the nucleus unstable. As a result, the 
equilibrium deformation a also acquires jumpwise a 
certain finite value, which agrees with the experimental 
data (see the Introduction). 

It can be seen from (13) that when N < Nc a jump 
takes place also in the first derivative of the energy 

3)The latter remark pertains to quadrupole collective variables X = 2. 

FIG. 5. 

with respect to the deformation at the Curie point de­
fined by formula (16): 

dEm I dEn I -- --- =cac 
da a~a da a~a · 

c c 

(21) 

Thus, at the point a= ll'c the true E(a) curve has a kink; 
the thermodynamic inequality (14) shows the direction 
in which the tangent is rotated. Figure 5 shows qualita­
tively the variation of the character of the curves E(a) 
as a function of the number of nucleons. The dashed 
continuations of the curves correspond to physically un­
realizable states. 

4. MASS COEFFICIENT 

To consider the properties of the kinetic energy 
corresponding to the time variation of the collective 
variables, it is necessary to specify, besides the value 
of the deformation a, also the generalized rate a. 
Differentiating relation (11) with respect to time, we get 

A =0. (22) 

In other words, within the limits of the n-phase a finite 
rate a does not generate at all a proportional time 
variation A of the gap. 

An important universal feature of all second-order 
phase transitions is the following: at the phase transi­
tion point itself, the properties of the system are the 
same as on either side of this point4 >. Turning, for ex­
ample, to relations (17), it is easy to see that in our 
case this pertains precisely to the region a> O!c· 
Consequently, when N < Nc we should stipulate satis­
faction of relations (11) and (22) in the entire region 
a 2: ac, including ~he Curie point a = a c. The fact that 
even at this point the finite rate a is still incapable of 
generating a nonzero derivative can be interpreted 
physically as a certain unique "hindrance" against the 
occurrence of a gap t:.. when the deformation of the 
nucleus is decreased. 

Let us assume that during the course of such a 
change in the deformation the mechanical system under 
consideration goes from the region a > ac to the Curie 
point at a finite rate d!n· The system cannot go over 
into the region of the m-phase with a nonzero rate am, 
for this would inevitably involve violation of condition 
(22) at a = O!c· s> We shall now apply the energy- conser­
vation law directly to the transition point 

4)The corresponding theorem was proved by group methods [9 ) for 
the case when the transition is manifest in a change of the crystallo­
graphic symmetry of the body. 

5) As seen from ( 17), in this case the concrete character of the viola­
tion would consist of 2!. increasing jump wise from zero to infinity. 
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1/zBm(ac)<im2 +Em(ac)= 1/2Bn(ac)lin2+En(ac). (23} 

The potential energy E experiences no jump anywhere­
it was shown above (see the preceding section) that the 
E(a) curve has only a kink at the Curie point. There­
fore the terms of (23) corresponding to the potential 
energy of the collective motion cancel out. Further, by 
virtue of the foregoing, am = 0, whereas an, by defini­
tion, differs from zero. Therefore 

(24) 

It follows hence that the tendency of the mass coefficient 
to approach zero as N- Nc in the region N > Nc 
(n-phase), which is of greater direct physical interest, 
is also present. By the same token, this explains the 
growth of the amplitudes of the oscillations of the non­
spherical nucleus near the Curie point, which is shown 
schematically in Fig. 2 (see the Introduction). Indeed, 
the amplitude of the zero-point oscillations of the 
deformation about a certain equilibrium position is 
connected with the rigidity C and the mass B of the 
corresponding oscillator by the well known relation 
(b:(i) 2 = n/2-/BC, that is, it increases with decreasing 
mass coefficient. 

The law according to which the mass coefficient of 
the normal phase-as a function of the deformation or 
of the number of particles-tends to zero at the Curie 
point cannot be determined from purely phenomenologi­
cal considerations. It can be established, however, by 
using the well known quantum-mechanical expression 
(see, for example, [4J} 

(25) 

for the mass coefficient in terms of the wave functions 
of the internal motion in the nucleus. Here ¢k and Ek 
are the normalized wave functions and the correspond­
ing eigenvalues of the energy of the "internal Hamil­
tonian" of the nucleus, which depends on the connective 
variable a as a parameter; J d~ denotes integration over 
the configuration space of the internal degrees of free­
dom. We put now 0! = ll!c and compare (25) with (24). 
Since En is the energy of the ground state of the even­
even nucleus, and consequently none of the terms of the 
sum (25) are negative, each of the integrals in the 
numerator vanishes separately: 

(26) 

a= ac. 

In other words, at the Curie point the expansion of the 
derivative Bl/Jn/aa in the eigenfunctions of the problem 
does not contain wave functions of other stationary 
states of the nucleus at all. Nor does this expansion 
contain 1/Jn itself, since the ground state under consid­
eration is nondegenerate, and its wave function can be 
chosen to be real. 6 > Differentiating with respect to a 
the condition J lf;~d~ = 1 for its normalization, we get 

6>The presence of spin variables in the configuration ~-space does 
not introduce any essential changes in our reasoning, since the concept 
of "reality" can also be extended to a spinor in our case. As is well 
known, such a possibility is closely related to the symmetry of the non­
degenerate state relative to time reversal [IO ]. 

~ 11ln. a:: d£ = 0. (27) 

As a result we must have 

il1jln I =0 
ila <>~<> • 

c 
(28) 

Thus, 0! = ll!c is a kind of "point of indifference" of the 
internal state of the normal phase relative to a change 
of the collective variable a. This constitutes the micro­
scopic manifestation of that "hindered" character of the 
occurrence of the gap A when the system moves from 
the region 0! > ll!c, which was already discussed above 
from a different, phenomenological point of view. A 
condition of the type (28) for the internal wave function 
expresses in most essential fashion the effect of inter­
action between nucleons (elementary excitations) in the 
nucleus-no such relation could arise in the independent­
particle model, nor, incidentally, the phase transition 
phenomenon itself. It would apparently be difficult to 
relate such an equality likewise with the simplified no­
tion that the nucleus is a system of nucleons immersed 
in an infinitely deep potential well with sharply delinea­
ted boundaries. This equality, of course, does not de­
note complete loss of sensitivity of the internal state O!n 
to variation of the parameter a-the insensitivity, so to 
speak, takes place only in the linear approximation, and 
a relation between them does remain in the higher, 
second order in the deformation increment. Turning to 
(25), we see that at the Curie point, besides (24), we also 
have 

dBn I = O 
da .. ~ .. c 

(29) 

and only 

~~n I = 41i2 ~ I ) 11Jk" ~n d£ I" (Eh -En)-1 > 0. (30} 
a a=a c k=l=n a 

Now, taking the derived relations into account, it is 
necessary to express the mass coefficient of the n-phase 
in terms of invariant combinations of the deformations 
(see the analogous reasoning in Sec. 2, pertaining to the 
potential energy E(a) of nuclear deformation). The ex­
pression satisfying these requirements is of the form 

Bn = b(a2- ac2) 2• (31) 

Of fundamental physical interest is the dependence of 
the mass coefficient on the number of nucleons in the 
region N > Nc. Putting a = 0 (the actual nonsphericity 
of the nuclei under consideration can be neglected here) 
and substituting (16) in (31), we get 

ba' 
B =--(N-N)• 

n c2fl2 c 
(32) 

We turn now to the region N < Nc and consider the vic­
inity of the Curie point a = ll!c· In its direct vicinity (31) 
goes over into 

Bn ~ 4bac2(a- ac) 2• (33) 

Since the mass coefficient Bn depends on the difference 
a- ll!c quadratically, an impression can be gained that 
on the other side of the transition point it will also as­
sume reasonable positive values. In fact, however, ex­
pression (33) no longer has a physical meaning corre­
sponding to the state 1/Jn of the mass coefficient in the 
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~. or; 

region a < ac· Indeed, there appears here a new state­
"near magic" lf'm-which did not exist at all for a > ac 
(of course, the imaginary value of a given by the second 
formula of (15) does not correspond to any real state of 
the internal motion in the nucleus even for fixed a). 
From the microscopic point of view, when, in particular, 
En and Em are regarded as "internal Hamiltonian" 
terms that depend on the parameter a, this situation is 
shown schematically in Fig. 6. The general formula (25) 
requires summation over all the existing states; there­
fore when a < ac we have 

Bn = 21i2 {-I) ¢m' 0:; dS r (En- Em)-1 

+ ~ I )¢h' 0:: dS 12 (Eh-En)-l}. 
k*m,n 

(34) 

Only the second term is given here by expression (33), 
and the smallness of the denominator En - Em, which 
according to (13) and (16) is proportional to the differ­
ence ac- a, shows that the first negative term predom­
inates in (34). 

However, a certain stipulation must be made with 
respect to the last conclusion: depending on the parame­
ter a, the wave function lf'm has, as a function of the 
parameter a, a singularity of unknown character at 
a = ac· From this point of view, our last result admits, 
strictly speaking, of only the following more careful 
formulation: there are weighty grounds, both physical 
and mathematical, for assuming that the mass coeffi­
cient B becomes negative in the region a < ac where 
the m-phase exists. Therefore the state lf'n is here com­
pletely unstable and cannot be in fact realized as a real 
stationary state of the nucleus. To ascertain the form 
of the singularity of the function am at the point a = ac 
it will probably be impossible to formulate a micro­
scopic theory of the phenomenon considered by us with 
full mathematical rigor. 71 

En- Em=_!_ {_!!._(Nc- N) -/} 
2 D 

(36) 

can depend only on this combination. The ''Curie point'' 
with respect to the deformation is given by the relation 

a2 
lc = "[)(Nc- N), 

(37) 

and all further generalizations are obvious. We present 
only the important formula for the jump in rigidity: 

(38) 

The thermodynamic inequality 

(39) 

which generalizes (14), corresponds physically to the 
fact that each of the deformations a~v destroys separ­
ately the magic structure in the nucleus, if the invariant 
(35) corresponding to it exceeds the value (37). To the 
contrary, an inequality of the type (19), which does not 
follow of necessity from thermodynamic considerations, 
does not call for any generalization. And indeed even 
for octupole deformation ~ = 3 experiment apparently 
yields 

Ca < Ca<m>, Ca<n) > 0, 

which contradicts (19) and (20). In other words, insofar 
as can be judged from the experimental data (see, for 
example, [zJ) even after exact transformation of spher­
ical nuclei into nonspherical ones a 30 = a 3 = 0, that is, 
the equilibrium shape of the nucleus conserves the sym­
metry center. 

The results of the preceding sections can likewise be 
generalized to arbitrary A. Retaining where possible 
the earlier notation, we readily obtain 

B~<n>=(b~/c~2)(/-/0)2, b~>O, A.;;<o2. (40) 

Going over to the region of physical interest, N > Nc 
we now express this quantity in terms of the number of 
particles: 

(41) 

Thus, regardless of the number A of the spherical 
harmonic in the right side of ( 1), the corresponding 
mass coefficient of the nonspherical nucleus near the 
Curie point tends to zero like (N - N c> 2• 

Essentially, the entire preceding exposition did not 
exclude the presence in the nucleus of two different 
sorts of nucleons. If we take N to mean the number of 5. GENERALIZATION OF THE THEORY. COMPARISON 

WITH EXPERIMENT neutrons, then we can assume that we always had the 
case Z = canst in mind. Such a line drawn on the Z -N 

Allowance for the simultaneous presence of collec­
tive degrees of freedom of the nucleus, corresponding 
to different~ in the right side of (1), entails no special 
difficulty. For each~ there exists its own invariant (12), 
and the invariant combination of the lowest (second) 
power in the deformation has obviously the following 
most general form: 

(35) 

The energy difference of the phases in the direct vicin­
ity of the Curie point N = Nc 

7>For similar reasons, it is still somewhat difficult to analyze from 
the microscopic point of view the limiting behavior of the true mass 
coefficient of the nucleus in the state 1/lm at the Curie point. 

plane will cross the line separating the two nuclear 
phases at a certain angle, the concrete value of which, 
reasoning abstractly, will not influence the correctness 
of the limiting quadratic behavior of the form (41). 
From the practical point of view, however, in order to 
exclude where possible the regular and smooth varia­
tion of the mass coefficient along the curve separating 
the fhases, it is desirable to compare the law 
B(n ll (N- Nc) 2 with experiment along directions that 
are normal to this curve, or close to normal. 

Experimental data on a decay of nonspherical heavy 
nuclei at the relatively low-lying level 1- of octupole 
oscillations of the daughter nucleus have made it possi­
ble to determine the corresponding mass coefficient 
B <3n > in nine cases (sJ. The results are listed in the 
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Decay ~'/4B,, keY Decay t&2/4B3, keV 

Th224.- Ra~o 0,99 U230 -+ Th226 0,09 
ThmJe- Ranz 0,40 Uts2-+ Th22B 0,023 
Thus -+ RaZ24 0,095 cmut- Pu288 0,035 
Th280-+ Ra~ 0,042 Cm244 _,. Puuo 0,029 
u•,.~Th ... 0,16 

table. The last two values pertain to regions that are 
quite far from the phase-transition line, and can 
hardly be useful for verifying the limiting relation (41). 
The remaining seven values of n2/ 4B3 correspond to the 
points shown in Fig. 7; the axes represent the numbers 
of the nucleons, reckoned from the doubly magic Pb 208 • a> 
Qualitative considerations give grounds for assuming 
that the line separating the phases is in the form of the 
"dashed" lobe, the ends of which correspond to the 
violation of the magic structure of lead by protons 
alone or by neutrons alone. The solid section of the 
curve lies between the four nonspherical isotopes of 
radium and the four is~topes of the emanation, all of 
which are known from experiment to be apparently 
spherical. Thus, the arbitrariness in the drawing of the 
transition line becomes practically insignificant here. 
On the lines drawn in the direction close to normal to 
the section of the separation curve under consideration 
there are located, as seen from Fig. 7, three pairs of 
points. Along each of them, within the limits of experi­
mental accuracy, the quadratic law (41) holds for the 
variation of the mass coefficient of the octupole oscilla­
tions. 

It would be advantageous to devise experiments capa­
ble of determining and refining the boundary between 
two nuclear phases on the Z -N plane in other sections 
of this plane. 

I am grateful to V. V. Vladimirskil, D. P. Grechukhin, 
V. N. Gribov, I. I. Gurevich, R. 0. Za:ttsev, A. G. 
Zelenkov, A. S. Kompaneets, L. P. Kudrin, V. M. 

B)The points correspond to odd numbers of nucleons because they 
are regarded as pertaining to a certain hypothetical nucleus, halfway be­
tween the daughter and· the parent. See [ 5 I for a more rigorous formu­
lation of the law of averaging of the characteristics extracted from data 
on ex decay between the parent and daughter nuclei. 
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Kulakov, N. M. Polievktov-Nikoladze, Ya. A. Smorodin­
skit,.K. A. Ter-Martirosyan, E. L. Feinberg, 0. B. 
Firsov, and Yu. K. Khokhlov for a discussion of the re­
sults. I thank T. A. Kamaeva for help in preparing the 
figures and the table. 
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