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Invariant expressions are introduced for the energy density and the covariant Umov-Poynting vector, 
by means of which an invariant formulation is given for the integral law of conservation of energy. In 
the case of the special theory of relativity, in inertial reference systems the invariant formulation is 
the same as the usual one. The invariant expression for the integral flux of energy is given a concrete 
form for the case of the general theory of relativity. An invariant Hamiltonian is constructed for a 
system of point masses in a gravitational field. 

1. The usual integral form of the conservation laws for 
a system described by an energy-momentum tensor TJ1 11 

is not invariant relative to arbitrary coordinate trans­
formations. This gives rise to known difficulties in the 
passage to curvilinear coordinates and the pseudo­
riemannian space of the general theory of relativity. 
We shall here give an invariant formulation of the integ­
ral law of conservation of energy, which in the case of 
the Galilean coordinates of special relativity theory 
(STR) agrees with the generally accepted expression. 

Let us consider a family of spacelike hypersurfaces 

with 

,;(x0, x', x 2, x 3, C)= 0, 

ar: 
ax• >O, 

ar: iJr: 
g«~-->0. 

ax« ax~ 

( 1) 

{2) 

We denote by A the norm of the vector oT/ ax a ortho­
gonal to the hyper surface ( 1): 

g"'~~~=A2• (3) 
ax« ax~ 

We further introduce a timelike unit vector 

n« =A-tar: I axa. ( 4) 

Using the energy-momentum tensor T 1111 of the system 
and the vector ney_, we construct the following vector and 
scalar: 

s~ = r~· nv, s = r~· n~nv. ( 5) 

We introduce into the discussion the time interval 

(6) 

which is smaller than the integral interval dT by a fac­
tor A. 

From {6) there follows the obvious relation 

nadx" I d1] = 1. {7) 

We define a new vector 1111: 

II~= s~- s ax~;a11 • {8) 

It is easy to see that the vector 1111 has only three inde­
pendent components, since it satisfies one identity: 

{9) 

2. In a physical space with the metric g 1111 let us 
consider a symmetric tensor field a 1111• In a particular 

case a/J. 11 may be identical with g 1111• Furthermore, let 
us introduce a covariant derivative V' J1 relative to the 

a 
tensor a1111 and the following invariant elements of four-
dimensional volume, three-dimensional volume, and 
area: 

( 10) 

where a and g are the determinants of the tensors a 1111 
and g 1111 and dn, daa, and <E 1111 are given by 

1 ~ 
dQ = - 1- gea~v~ dx« dx~ dxV dx~, 

4! 
1-

dcra = 3! 1- gea~vo dx~ dxV dxO, 

1-
d~ •• = ?j f-g Ba~vO dxV dx~. {11) 

Let the vector sll satisfy the differential conserva­
tion law 

For this it is necessary that Tl1 11 be symmetric and 
satisfy the identical relation 

v.r••==o, (13) 
a 

and that na satisfy the Killing identities 

V ~na + Van~ == 0. { 14) 
a a 

Integrating {12) over the invariant three-volume, we get 
(see Appendix) the following invariant integral conser­
vation law: 

d 1 ,\:, dx• 
- J s dL = 1 II~- a~ •• 
dr: a dr: a 

( dxa) dL=dcr«- . 
a a d1] 

It follows from (15) that S is an invariant energy 
density and 1111 a covariant Umov-Poynting vector. 

(15) 

In the case of the STR the spacelike hypersurface 
can be chosen in the form T = t 0• Then 

no= 1, ni = 0, 
S = roo, II0 = 0, IIi= Ti0, 

dL = dV, dx•jdr: = 1, dxi/dr: = 0 

and consequently (15) can be rewritten in the form 

j_ I roo dV = ~ TWdf;. ( 15a) 
dt J 

v 
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3. There is an arbitrariness in the choice of the vec­
tor na, and consequently in S and na, owing to the 
arbitrariness in the choice of the hypersurface (1). 
This arbitrariness is connected with the possibility of 
choosing various reference systems in the sense of [l, 2l 

In the STR there exist distinguished inertial systems 
of reference. The choice of the hypersurface {1) in the 
form 

t0 (x0,x1, x2, x3) = C, (16) 

where t0 is a temporal Galilean coordinate and xa are 
curvilinear coordinates, corresponds to the use of an 
inertial system of reference (in an arbitrary curvilinear 
mesh). A different choice of the hypersurface (1) corre­
sponds to various accelerated systems. 

Accordingly, Eq. (15) allows us to write the integral 
conservation law in any coordinate mesh from the point 
of view of any arbitrarily chosen reference system. 

In the general theory of relativity there are no iner­
tial coordinates, l2l and therefore one or another choice 
of the hypersurface {1) is dictated by the concrete phys­
ical statement of the problem. 

We note that the integral conservation laws in invar­
iant form in the STR have also been considered by 
Fock, l 3l but Fock used a special form of the vector na, 
corresponding to the choice of a noninertial system of 
reference. 

4. Let us now consider the integral conservation 
laws when a gravitational field is taken into account. 
In [4 -aJ it is shown that one can introduce an energy­
momentum tensor sJJ.V of the matter and the gravita­
tional field, satisfying the conservation law 

(17) 

where V' JJ. is the covariant derivative relative to the 
0 

metric tensor of the auxiliary flat space. When we in-
troduce in addition to the vector na a vector na which 
satisfies the identities 0 

Van~ + V ~na; = 0 (18) 
0 0 0 0 

and define an invariant energy density and a covariant 
Umov-Poynting vector in the form 

s = s~vn~nv, rr~ = s~vnv- s dx"/dl'], ( 19) 
(} 0 0 0 0 

we get the conservation law in the form 

d 1 ~ dxv 
- J SdL= ';l' rr~-a~~v-
dT o o 0 dT 0 

(20) 

For spaces of Petrov's type I, l7l in coordinates which 
are Galilean at infinity, the conservation law (20) re­
duces to the usual Einstein form. If, however, in the 
Einstein form of the conservation law the total energy 
can become infinite when we go over to new (for exam­
ple spherical) coordinates, Eq. (20) is an invariant con­
tinuation of the physically justified results of the 
Einstein conservation law in asymptotically Galilean 
coordinates on an arbitrary coordinate net. 

It must be pointed out that if T!J.V is the source of a 
gravitational field with the metric tensor g!J.v• possess­
ing a certain group of motions, then the Killing equa­
tions in this space will be soluble, and by the general 

theorem expounded in Sec. 2 a conservation law will 
hold for the energy of the matter without the gravita­
tional field (besides the conservation of the total energy 
of the matter and the gravitational field). 

The conservation law (20) differs somewhat from the 
invariant integral form of the laws of conservation of 
gravitational energy which the writer derived previ­
ously, [8J but the total value found for the energy in spa­
ces of Petrov's type I is the same in both versions. On 
the other hand the conservation laws for momentum and 
angular momentum cannot be formulated in invariant 
form without covariant integration (this last has already 
been done previously [8J). 

The invariant expression for the flux of energy gives 
us an invariant criterion for solving the problem of the 
existence of gravitational waves. The whole question is 
complicated, however, by the fact that the expression 
which is invariant relative to arbitrary coordinates de­
pends on the choice of the hypersurfaces, and conse­
quently of the reference system. In the case of electro­
dynamics this difficulty does not arise, because in STR 
there are preferred inertial systems. Nevertheless, in 
the case of spaces of Petrov's type I, for physical rea­
sons we must give preference to the class of reference 
systems in which the metric tensor approaches the 
Galilean form at infinity. It is not hard to show that the 
flux of gravitational energy is the same in all such 
reference systems, i.e., our criterion becomes invariant 
not only relative to arbitrary coordinate transforma­
tions, but also relative to the choice between different 
reference systems which leave the asymptotic behavior 
of the metric tensor g!J.V at infinity unchanged. 

5. Let us define the invariant Hamiltonian of the sys­
tem in the form 

H= ~SdL. (21) 
L 

Substituting in (21) the expression for the energy­
momentum tensor for a system of point masses, we get 
the invariant Hamiltonian of a system of material points 
in a gravitational field. In particular, for one particle 
in a Schwarzschild field (with the hypersurfaces chosen 
to be T = x<), we get an expression which agrees with 
that given by Landau and Lifshitz l9l 

where 

H= mc2yg;; 
yi- v2jc2 , 

dl c dl 
v=c-=--::::::-' -. 

d't'] yg00 dx0 

(22) 

Accordingly, the formalism given here allows us to 
construct quantities which have the same physical mean­
ing as the noncovariant quantities, but which have good 
transformation properties. 

APPENDIX 

Let us consider the integral 

S v ~s~ . ....!. dL. 
a A a 

In transforming the integral {I) we use the following 
relations: 

{I) 
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( d:&'-)1 1 dQ= docr.dx""= doer.- -d,;=-dLd,;, 
dTJ A A 

Then 

~ V~~-__!_dL=) V~~O(,;-,;o)dQ= ~~("f...:..aS~)O(,;-,;o)dQ' 
L a A a 0 a a IJ iJx!J. 

where 

dQ' = ..!_ Scr.•·~ dx"- rkP dxv dxO 41 e<v 0 

We transform the first integral: 

~ a:~("f-aS~l\(,;-,;o))dQ' = S S~l\(,;-,;0)do~ 
Q a a 

We now transform the second integral: 
r ao ( 1: - 'to) r ih 
Js~ dQ = J s~-ll'(,;-,;0)dQ " ax~ a Q ax~ a 

= ) s~n~l\' (,; -1:o) dQ = ,~ s~n~l\' (,;- ,;0) dL d1: 
g a g a 

From this we get the expression given in the text. 
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