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A gas of bound electrons and holes (excitons) in a semiconductor is considered. It is demonstrated 
that such a system is capable of forming a Bose condensate, and the conditions for such a formation 
are determined. The interaction between light and an exciton condensate is studied. The real and 
imaginary parts of the dielectric polarizability of a semiconductor near the exciton absorption line 
are determined. It is shown that negative light absorption should occur at a frequency somewhat 
lower than that of exciton absorption. · 

INTRODUCTION 

PHENOMENA occurring under conditions of strong 
injection of nonequilibrium electrons and holes have 
recently assumed an important role in semiconductor 
physics. One example of such phenomena is the laser 
effect in semiconductor diodes. Considerable interest 
attaches to the question of the occurrence of Bose 
condensate of bound states of electrons and holes-exci
tons--in semiconductors under strong carrier injection. 
Such a possibility was first indicated by Blatt and Boer ll] 

and Moskalenko l2J. This question was also investigated 
by Keldysh and Kozlov l3l. Two problems arise in this 
connection. The first is to ascertain the conditions 
under which such a condensate can be produced. The 
second is to determine the observable effects of such a 
condensate. The question of the possibility of formation 
of a condensate of excitons is subdivided in turn into 
two. First, it is necessary to determine more precisely 
the degree to which the collective properties of the ex
citon systems are influenced by the fact that the exci
tons are not, strictly speaking, Bose particles but are 
bound states of two fermions. Second, since the exci
tons can be annihilated as a result of electron-hole 
recombination, it is necessary to determine whether a 
situation can be realized in which the thermal equil
ibrium of the excitons and of the lattice is established 
more rapidly than the exciton annihilation. Clearly, one 
can speak of a condensate of excitons only if this condi
tion is satisfied. 

We shall consider these questions in the first section 
of the paper, and show that in a number of semiconduc
tors an exciton condensate of low density can be pro
duced. We shall then consider the spectrum of the 
collective excitations in the exciton condensate and 
show that, just as in the model of weak non-ideal Bose 
gas, it has an acoustic character. There is, however, 
a certain difference, in that in most semiconductors the 
ground state of the exciton is degenerate. Therefore the 
condensate itself consists of several components, and 
the collective excitations correspond to several acous
tic branches with different velocities. 

Since the excitons determine in essential fashion the 
optical properties of the semiconductors at frequencies 
close to the fundamental absorption edge, it is perfectly 
natural to expect just there the primary manifestation 
of the presence of the exciton condensate. This question 
is dealt with in the last section of the paper. We shall 

show that in a semiconductor in which the maximum of 
the valence band and the minimum of the conduction 
band correspond to the same value of the quasimomen
tum, the presence of the condensate leads to a negative 
absorption of light. The frequency corresponding to the 
negative absorption lies somewhat below the frequency 
of the exciton transition corresponding to the creation 
of an exciton in the ground state. This negative absorp
tion of light can lead to the laser effect. It seems to us 
that the most suitable for the realization of such an 
effect is the three-layer semiconductor system called 
the p-i-n structure. This structure consists of a suffi
ciently pure semiconductor layer into which electrons 
and holes are injected from the neighboring n- and 
p-regions. 

BOSE CONDENSATION OF EXCITONS 

It is known that "large-radius exciton" or "Mott 
exciton" is the term used to describe a bound state of 
an electron and a hole. One can speak of such a state 
within the framework of the two-band model only if its 
radius is much larger than the lattice constant. This is 
precisely the situation realized in most typical semi
conductors, in which, owing to the large dielectric con
stant (E ~ 10--20) and the small reduced mass of the 
electron and the hole, which is usually of the order of 
1/10 of the free-electron mass, the radius of the exciton 
turns out to be of the order of several times ten inter
atomic distances, and the binding energy is of the order 
of one-hundredth of an electron volt. 

Let us make a few remarks concerning the classifica
tion of the exciton states in the semiconductors that are 
of interest from the experimental point of view. We note 
first that from the point of view of the band structure, 
semiconductors are divided into two classes. The first 
includes semiconductors in which the minimum of the 
conduction band and the maximum of the valence band 
are in different points of the Brillouin zone. Typical 
representatives of this class are germanium and sili
con. The second class includes semiconductors in which 
the minimum of the conduction band and the maximum 
of the valence band are at the center of the Brillouin 
zone. This class includes most III- V semiconductors, 
such as GaAs and InSb. 

The conduction band of semiconductors of the first 
class is characterized by several symmetrically
arranged minima, and the dispersion law near each of 
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them is quadratic, with an anisotropic effective mass. 
In semiconductors of the second type, there is one low
lying minimum at the center of the Brillouin zone, and 
the dispersion law turns out to be quadratic and iso
tropic. In all these semiconductors, the dispersion law 
of the holes has two branches, corresponding to "heavy" 
and "light" holes. These branches coincide, at zero 
value of the quasimomentum, and have a minimum at 
this point. 

Since the interaction of the electron spin with the 
hole is exceedingly small, the energy of the excitons 
corresponding to different spin states of the electrons 
practically coincide. Owing to the presence of two 
branches of the hole spectrum, two lower exciton levels 
are produced. For semiconductors of the GaAs type, 
each of these levels, with allowance for the electron 
spin, has four-fold degeneracy. The c.m.s. motion en
ergy of these excitons does not depend on the quantum 
numbers with respect to which the level is degenerate, 
and at small values of the quasimomenta p it takes the 
form 

8! = p2/2M, E2 = p2/2M', 

where M and M' are the masses of the "heavy" and 
"light" excitons. It is clear that the binding energy 
of the "heavy" exciton exceeds the binding energy of 

(1) 

the "light" exciton. In semiconductors such as german
ium there is additional degeneracy connected with the 
presence of several electron-energy minima in the con
duction band. This degeneracy is lifted partially when 
the quasimomentum of the exciton differs from zero. 

As already stated in the Introduction, an important 
factor for the feasibility of Bose condensation is the 
relation between the exciton lifetime and the time neces
sary to establish thermal equilibrium between the exci
tons and the lattice. We shall discuss first the lifetime 
of the exciton in a semiconductor such as germanium, 
brought about by recombination in which the impurities 
do not take part. The concentration of the impurities 
may be so low that their role in the recombination is 
negligible. In such semiconductors, the exciton is made 
up of electrons and holes from essentially different 
regions of quasimomentum space. The difference be
tween the wave vectors of the electron and of the hole 
is a quantity on the order of the reciprocal-lattice vec
tor. Since the wave vector of the light radiated during 
recombination is much smaller than this difference, re
combination is possible only with participation of a 
short-wave phonon. Simple calculations show that at 
low temperatures, in interaction with an acoustic pho
non, the exciton lifetime T is given by the expression 

~- (_!_)·~ 
T - !'> psra&ro · 

(2) 

Here g is the constant of the deformation potential of 
the electron, with an approximate value 4 eV, ~is the 
difference between the electron energy at the center of 
the Brillouin zone and at the minimum, which is located 
at the point ko, p is the crystal density, s is the speed of 
sound, re is the radius of the exciton, and To is the 
characteristic atomic time, which is inversely propor
tional to the interband dipole moment of the transition 
and to the cube of the wave vector of the emitted light; 
To is a quantity on the order of 10-8 sec. Substituting in 

(2) the values of the parameters corresponding to ger
manium, we find that the lifetime of the exciton 
T ~ 10- 4 sec. The lifetime in silicon is of the same 
order. 

An estimate of the lifetime in semiconductors of the 
GaAs type is somewhat more complicated. Since the 
exciton is made up here of an electron and a hole with 
quasimomenta close to zero, direct conversion of the 
exciton into light is possible. All that is necessary for 
this purpose is that the quasimomentum of the center of 
gravity of the exciton be equal to the momentum of the 
light. Since the inverse process is also possible, one 
cannot speak of the exciton and of the light separately 
near the point of intersection of the optical and exciton 
branches. The region ak of the wave vectors near the 
point of intersection, in which this intermingling is sig
nificant, is of the order of Uk/ Wo, where Wo and k are 
the frequency and the wave vector at the point of inter
section, and nn = 41Tidl 2re3 is the characteristic fre
quency which determines the interaction between the 
excitons and the light [4J (here d is the dipole moment of 
the transition between the valence band and the conduc
tion band). Inasmuch as n is a quantity on the order of 
1010 sec -1 and w 0 ~ 10-15 sec -r, it follows that the interval 
ak is very narrow compared with k. It is clear that the 
vanishing of the exciton as a result of its conversion 
into light and the emergence of the latter from the crys
tal are possible only in this narrow interval of wave 
vectors. Simple calculations show, however, that this 
process is insignificant. The point is that, owing to the 
smallness of the phase volume r ~ k2 ak in which such a 
process is possible, the number of excitons passing into 
this region per unit time is small. The main process 
determining the lifetime of the excitons is their recom
bination accompanied by emission or absorption of a 
long-wave phonon. This process is possible for an ex
citon with any quasimomentum of the c.m. This is pre
cisely why this process determines the average lifetime 
of the exciton, in spite of the additional smallness intro
duced by the participation of the phonon into the recom
bination probability. The expression for the recombina
tion probability per unit time differs from (2) in that ~ 
is replaced by a quantity on the order of the average 
thermal energy of the exciton, and ko is replaced by its 
thermal momentum. The exciton lifetime in GaAs 
at liquid-helium temperature, estimated from this 
formula, is on the order of 10-il sec. 

We now discuss the establishment of thermal 
equilibrium of the excitons. This occurs in two stages: 
the binding of the electron with the hole into an exciton, 
and the cooling of the resultant exciton to the lattice 
temperature. The cross section for the binding of an 
electron and a hole to form an exciton was calculated by 
Lipnik[sJ and is approximately 10-13 cm2 at helium tem
peratures for crystals such as GaAs or Ge. At electron 
and hole concentrations on the order of 1015 em -3, the 
time of binding of an electron and a hole to form an ex
citon is of the order of 10-9 sec. 

As shown by Lipnik [5J, the kinetic energy of the ex
citon produced as a result of binding of an electron with 
a hole is close to the exciton binding energy. Therefore 
the resultant excitons are ''hot" and it is necessary to 
consider the process of their "cooling" with transfer 
of energy to the lattice, that is, by emission of phonons 
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from the exciton. It can be shown that the exciton cool
ing time due to this process is given by the relation 

1 4 (gt + g2) 2M" 
'I" 3~ pli3re 

where g1 and g2 are the constants of the deformation 
potential for the electrons and holes respectively. Sub
stituting parameters that are characteristics of the 
crystals under consideration, we obtain 
T ~ 10- 9-10-10 sec. We note incidentally that the time 
of collisions between the excitons, at an exciton concen
tration 1015 em -3 and at helium temperature, is of the 
same order of magnitude. 

We see thus that the excitons enter into thermal 
equilibrium with the lattice within a time much shorter 
than their lifetime. 

As already stated in the Introduction, it is question
able whether the low-density exciton system can be re
garded as a weakly non-ideal Bose gas. In particular, 
is their Bose-Einstein condensation possible? The point 
is that the exciton creation and annihilation operators 
obey the Bose commutation relations with accuracy to 
terms of the order of nr~, where n is the exciton den
sity. On the other hand, to consider the collective 
properties of the an exciton system it is necessary to 
take their interaction into account. Since the amplitude 
for the scattering of the excitons by one another is of 
the order of re, the energy of their interaction per exci
ton is proportional to nr~ in the lowest order in the 
concentration. Thus, it must be taken into account in 
the consideration of the interaction that the excitons are 
not bosons but consist of Fermi particles. 

It can be shown, nonetheless, that, accurate to second 
order in the concentration inclusive, the system of exci
tons behaves like a gas of low-density Bose particles. 
The "non-Bose nature" of the excitons becomes mani
fest only in the fact that the scattering amplitude that 
enters into the theory of a weakly non-ideal Bose gas [e] 

is defined here as the total amplitude for the forward 
scattering of two excitons, determined with allowance 
for their internal structure. This amplitude is obtained 
by solving the Schrodinger equation for two electrons 
and two holes with boundary conditions corresponding 
to two excitons at infinity. 

However, the situation becomes somewhat more com
plicated because the ground state of the exciton is de
generate and is characterized by several quantum 
numbers CT. Therefore the condensate consists of sev
eral components, and the interaction is determined by 
the aggregate of the amplitudes for the scattering of 
each of the components by the other. The exciton en
ergy1> at zero temperature, in an approximation quad
ratic in the concentration of the condensates, takes the 
form 

(3) 

where Vis the volume of the system, ncr = lq~al 2 is the 
concentration of the C1-component of the condensate, (/Ia 

I)We shall consider henceforth, for simplicity, only zero tempera
ture. However, the results can be generalized to the case of nonzero 
temperatures in a manner similar to that used in the model of low
density Bose gas. It is clear that the results obtained below remain 
qualitatively in force at all temperatures that are not too close to the 
Bose-condensate temperature. 

is the condensate "wave function," and faa' is the am
plitude for scattering from the state a into C1 1 at zero 
quasimomentum. 

The quantity ?; is defined by the relation ?; = Eo- 1J.1 
+ IJ.2, where Eo is the exciton excitation energy, which is 
equal to the width of the forbidden band Eg less the ex~ 
citon binding energy Ee, while 1J.1 and 1J.2 are the Fermi 
quasilevels for the electrons and holes respectively. 

Expression (3) has a simple physical meaning. The 
first term is the energy of formation of immobile ex
citons from electrons and holes, and the second is the 
energy of their interaction. This expression does not 
contain excited exciton states, and is therefore valid if 
the interaction energy is small compared with the en
ergy of transition to the excited state. Since the energy 
of the transition is of the order of the binding energy 
and the scattering amplitudes are of the order of re, 
this condition coincides with the low-density condition, 
that is, with the condition that allows us to confine our
selves to terms quadratic in the concentration in the 
expression for the system energy. 

In order for the system to be stable, the second term 
of (3) must be positive definite, that is, the matrix faCT' 
must have positive eigenvalues. In the opposite case, 
the excitons form a liquid. 

It is clear that if the matrix faa' is positive definite, 
then the condensate appears only if ?; < 0. This means 
that the work expended in bringing the electron and hole 
into the system from the reservoirs that deter~ine the 
chemical potentials of the electrons and ?oles IS smal~er 
than the energy gained during the formatwn of the exci
ton. In the case of a p-i-n structure the role of the 
reservoirs is played by the p and n regions. For con~ 
densate to occur it is necessary that the voltage apphed 
to it, which is equal to (IJ.l- 1J.2)/e, exceed Eo/e, that is, 
?: < 0. 

Minimizing expression (3) with respect to q~a, we ob
tain an expression for the concentration of the compon
ents of the condensate: 

( 4:n:/i2 ) 
!po ~ + ~ -- foo•no• = 0. 

o' M 

This equation must be solved with allowance for the 
natural condition ncr 2: 0. It has two solutions: 

lpa=O, 

(4) 

If any n0'0, defined by the last formula, turn out to be 
negative when ?; < 0, they must be set equal to zero, and 
it is necessary to minimize the energy (3), in which 
there are no terms with 0' = C1o. As a result we get 

n - -t~ ~(f-i)aa•, 
a- 4:n:/i2 .,.· 

(5) 

where faa' is the matrix from which the elements with 
one of the indices a or cr' coinciding with ao have been 
discarded. 

For estimating purposes, let us consider the sim
plest case, when the lowest level of the exciton is not 
degenerate, and the condensate consists of one compon
ent. Then 

n- Ml~l/4:n:li2/. 

Recognizing that the binding energy of the electron 
and the hole in the exciton is 
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lEal~ 1i2/2we2, 

where J.1. is their reduced mass, we get 

n -lblM/4nfra2JllEel· 

If the excitons do not experience resonant scattering, 
then f - re. Therefore the condition of small density 
denotes that ltl « IEeiJ.l/M. 

We have assumed above that the amplitude for the 
scattering of two excitons, as the function of their en
ergy, has no poles on the real axis. This denotes that 
there is no bound state- "molecule"-of two excitons. 
If such a "molecule" is produced, then it is not difficult 
to generalize the theory to include this case. The dif
ference is that the condensate is made up not of exci
tons but of molecules, and the interaction energy is de
termined by their forward scattering amplitude. 

COLLECTIVE EXCITATIONS 

It is perfectly clear that the spectrum of the long
wave single-exciton excitations should have an acoustic 
character, in analogy with the non-ideal Bose gas[6 ' 7J. 

The Hamiltonian of the system of electrons and holes 
is of the form 

H=Ho+Hint· 

2 

Ho= ~ ~ dx1jl,.+(x)[e,.(p)-11a]1jl,.(x), 
1%=1 

- r dxdx'¢,+(x)1Jl•(x) I 62 'I ¢•+(x'J'i'•(x'J. (6) J B r-r 

Here 1/J~x) and 1/J;(x) are the operators for the c;eatio!l 
of an electron and a hole, respectively, and E1(p), Ez(p) 
and J.1. 1, J.lz are their kinetic energies and chemical 
potentials. The variable xis the aggregate of the spatial 
coordinate r and the variables s which characterize the 
internal states of the electron and the hole. 

The spectrum of the single-exciton excitations is 
determined by the poles of the Green's function 21 

G,.(x,,x./x{,x.')""' i~ dteirot (T{1Pt(Xt, t)¢g(x.,t)1jlg+(x•')¢t+(xt')}), (7) 
1jl(x, t) = eiHtw(x)e-iHt. 

In the case when there is no condensate and the tem
perature is equal to zero, this function takes the form [4J 

Kro(x,,x.Jxt',xg')= ~ Ka(k)xak(x.,x2)XAk(x,',xg'), 
Alt 

Ka(k)= [!il -E8 + 11•- 112-Ea- ea(k)]-•. 
(8) 

Here EA + EA (k) and XA.k(x, x') are the self-energies and 
the eigenfunctions, normalized to unity, of an exciton 
whose c.m. has a wave vector k, including an electron 
and hole in the scattering state. 

As already mentioned in the preceding section, in the 
case of semiconductors of the GaAs type, the lowest 
exciton branch has a quadratic dispersion law. Let us 
see now how the dispersion law is changed by the ap
pearance of the condensate. 

We make first a number of remarks. The Hamilton
ian (6) is invariant to the transformation 

2lWe put h = 1 throughout. 

with arbitrary phases cp1 and cpz. The indicated invar
iance leads to identical vanishing of the mean values 
(1/!Il/J;) and (l/J21/J1). The occurrence of the condensate 
corresponds to violation of this symmetry, and the mean 
value of the operator lf!Il/!;, which determines, in par
ticular, the creation of an exciton, turns out to be differ
ent from zero in the ground state. A similar situation 

· I · d t· [oJ anses a so m Bose-gas con ensa wn . 
The function (l/J1(x1)lf!2(xz)) = <l>(xl, Xz) can be repre

sented in the form of an expansion in the eigenfunctions 
of the exciton: 

<IJ(x1,x2)= L <Da(k)xak(x.,x2)· (9) 

The appearance of a low-density exciton condensate 
corresponds to a macroscopically large filling of the 
ground exciton level, that is, of the state with k = 0 and 
A = a. Therefore 

<Da(O) = "JfV cpa, 

where CfJa is the amplitude of the a- component of the 
condensate, and its concentration na = lcpalz. The con
nection between na and the difference between the Fermi 
quasilevels of the electrons and holes was established 
in the preceding section. 

In the presence of the condensate, the coefficients of 
the expansion of the Green's function in the eigenfunc
tions of the exciton Gu,(k) differ from the coefficients 
gA (k) that arise in the case of a free exciton and are 
given by relation (8). 

The functions GAA ,(k) satisfy equations that can be 
represented graphically in the form shown in the figure. 

- = ----+- + --[I]--- + -0-

-= 
The heavy line with one arrow corresponds here to 
GAA'(k), the heavy line with two arrows corresponds to 
the anomalous Green's function FAA'(k) which is used in 
the theory of low-density Bose gas [eJ, and the thin line 
corresponds to g.\ (k) ou '· The vertex L describes the 
scattering of an exciton by excitons of the condensate, 
and the vertices f * and L describe the creation of two 
excitons with opposite momenta from the condensate, 
and, respectively, their departure to the condensate. 

A significant change takes place only in the spectrum 
of those excitons which make up the condensate, that is, 
the spectrum of the lowest exciton branch with A = a. 
The change in the spectrum of the remaining exciton 
branches, in the case of low condensate density under 
consideration, reduces to a trivial energy shift, due to 
the interaction with the condensate. In the equations for 
Gu, (see the figure) we can discard the terms with 
A .,. a since the Green's functions Gu~k) that enter 
there do not contain resonant denominators. 

The vertices that enter into the equations for Gaa' 
have in the lowest order in the condensate concentra
tion the following form 

~aa• = 6aa' ~ T aa" na" + !Jla T aa• !Jla• •, 
a" (10) 

~oa' = lpa Tao' 'Po', 

where T aa, = 41Tfaa 1n2 /M. The first term in the expres
sion for Lo-a' describes the direct interaction of the 
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exciton, characterized by a quantum number a, with the 
condensate, whereas the second term describes the ex
change interaction. 

Thus, the equations for Gaa' and Faa' take the form 

( IJJ-~ )Gao•- (jlcr ~ Taa"'P•'•Gaoa•- (jlcr ~'Tcrcr'•'Jlcr"F"""' = ilcrcr•, 
w ~ ~ 

(11) 

'P•' ~ r •• , 'P;" G., .. + (- IJj- 2:) Faa'- 'P•' ~ r •• , 'P•" Fa"O' = 0. 
~ ' ~ 

We have used here the equality (4). 
These equations are similar to those obtained by 

Belyaev[6 J for a weakly non-ideal Bose gas. The only 
difference is that in our case the condensate consists 
of several components. 

To solve the system, we represent the amplitudes of 
the condensate in the form 

(12) 

where y a is the phase of the corresponding component 
of the condensate, and introduce the auxiliary Green's 
functions 

Caa' = exp ( -iya) G(wexp ( iycr•), 

Faa• = exp (iy.)Facr•exp (i'ya•). 

Then the system (11) takes the form 

(13) 

I k') -~ - -.._, -
\ IJJ - - Caa• -ljncr LJ T aa" lfna•• Ca"a' -ljna .LJ T aa" lfna" Fa" a• = ba, a•, 

2M a" a" 

(11a) 

-1;;, ~ r ••.. '/n.,c ..... + (-w- -/!--)F ••. -y~ ~ r.,-yn.,F., •. = 0. 
0 , 2M a" 

We proceed now to a representation in which the 
Hermitian operator Jn;;T aa,;n;; is diagonal. Its eigen
functions ~~ and eigenvalues 47Tfmn/M (n = .6ana, and 
fm has the meaning of the effective scattering ampli
tude) are determined by the equation 

(14) 

The solution of the system (11a) in this representation 
is of the form 

where 

G w k)- Nkm+ 1 Nkm 

m(' - w-wm(k)+ib- w+wm(k)-ib' 

4nfmn/M 
F(w, k) = w2 - IJJm2 (k) + ib' 

_ ( k~ 4nfmn 2 )'" 
Wm- 4M' +lif2k , 

and the distribution function with respect to k of the 
supercondensate excitons Nk is equal to 

(15) 

As to the matrix elements of the Green's functions 
G,ur{k) pertaining to the excited states of the excitons 
(A.,A.' = a), they do not differ from their values in the ab
sence of the condensate oA.A.'gA. (k, w), apart from an in
significant energy shift proportional to ?.; • As a result 
we arrive at an expression for the Green's function of 
an exciton interacting with the condensate: 

Gw(Xt.X2!x,',x,') = ~ Xmk(x,,x,)Xmk(x,',x,')Gm(W,k) 
m,k 

( 18) 

where 

are wave functions that are orthogonal and are normal
ized to unity, and Gm(w, k) and gA. (w, k) have been 
defined in (15) and (8). 

3. ELECTROMAGNETIC PROPERTIES OF EXCITON 
CONDENSATE 

Let us consider first the interaction of an exciton 
condensate with an external electromagnetic field whose 
frequency w is close to wo = Eg- Ee, that is, to the 
frequency of the exciton transition. 

The mean value of the dipole moment, produced un
der the influence of an external field <e(t, r), is in the 
linear approximation 

t 00 

(Pa(r, t)) = i ~ dt' ~ dr ([P«(r, t), P~(r', t')J) <e~(t',r'). (19) 

Here P(r, t) is the operator of the dipole-moment den
sity in the Heisenberg representation: 

P(r, t)=4d,,,,{\j)i(r, s1 ,t)\j)~(r,s2 ,t)+'\IJ2 (r,s2 ,t)ijll(r.,slot)), (20) 
s 82 

where ds1s 2 is the dipole moment of the transition be
tween the top of the valence band and the bottom of the 
conduction band. We assume that these transitions are 
allowed in the crystal. The entire theory can be gen
eralized in obvious fashion to the case of forbidden 
dipole transitions (ds1s 2 = 0), but allowed quadrupole 
transitions. 

The operators ~1(t) and lP2(t) differ from the opera
tors introduced in (7) by the factors exp(-i J..1.1t) and 
exp(- i J..L 2t), respectively. These factors are connected 
with the fact that so far we have disregarded the inter
band transitions and therefore could introduce different 
reference points from which to reckon the energy for 
the electrons and the holes. In problems where'electron 
hole pairs can be produced under the influence of light, 
their energy must be reckoned from one level. 

Going over in (2) to the earlier operators, we get 

P(r,t)= ~ {d,,,,"¢ 1+(r,s,t)"¢2+(r,s2,t)ei~.,, 
[ k2 4rr.fmn l 

Nkm = 8n2/m2n2/Mwm(k) Wm(k) + 2M + ~ J · (16) ''" (21) 

We have thus arrived at the acoustic dispersion law 
which is the usual one for weakly non-ideal Bose gas at 
small momenta. The only difference is that the pres
ence of many components in the condensate gives rise 
to several acoustic branches with velocities 

(17) 

Here J..1.1 2 = J..1.1- J.1. 2 = w-?.;. Substituting (21) in (19), we 
get an expression for the dielectric polarizability: 

:t'~(w,k)= ~ ~ drdr'd,~8,(d,~8,)"eik(r-r')[G..,~~.,+G_';,_~,). (22) 

The retarded Green's functions which enters in this 
equation 
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.. 
G.,R(x, x')""'- i ~ dt e-imt (['ljl2(x, t)'ljl1(x, t), 1Jl1+(x')11'2+(x')]) 

0 

is connected when T = 0 with the Causal function (18) 
by the relation [9 J 

Im G,.R = I: I Im Gm, Re G.,R = ReG.,. 

We are interested in frequencies such that lw- wol 
« Ee. We can then retain in (22) only the terms that 
pertain to the ground state, and neglect the nonresonant 
terms. In this case we have 

X"P(ro k)= _ ~ dm"(dmP)' [ Nkm + 1 
' m ra3 ro- f-112- rom(k) + i6 

Nkm J 
ro- 1112 + rom(k) + i6 (23) 

where 

is the effective dipole moment of the transition, and w 
and k are the frequency and wave vector of the light in 
the semiconductor. As seen from (16), in the absence 
of condensate we have Nm = 0, wm(k) = k2/2M, and the 
expression (23) takes on\he usual form of the polariza
bility of an ideal gas of atoms with a dipole moment 
squared equal to ~dffi(d~)*, a resonant frequency !J.12, 
and a concentration r-3 f4l. In this case, as always, there 
is absorption of light ~t the resonant frequency. 

In the presence of the condensate, the imaginary part 
of xaf3, which determines the absorption, is 

d "(d,.P)' 
x""P(ro, k) = n ~ _m ___ [(Ni<m + 1) 6(ill- 1-112- rom(k)) 

m rea 

-Nk6(ro-1112+ rom(k))). 
(24) 

We see that besides increasing the absorption at the 
frequencies /J.l2 + ww(k), amplification of the light at the 
frequency !J.12 - wm~k) takes place. The absorption is 
connected with the ordinary process, in which the en
ergy of the absorbed quantum of light goes into the 
formation of an exciton with a c.m.s. momentum equal 
to the moment of the light quantum. In our case, how
ever, the produced exciton interacts with the conden
sate, and the energy of its center of gravity is renorm
alized and, as seen from the formula for wm{k), it 
turns out to be much larger when k « Mvm than the 
recoil energy of the free exciton k 2 /2M. The increase 
in the absorption is connected with the fact that the 
interaction causes pairs of excitons with opposite mo
menta to be "pushed out" from the condensate. This 
leads to a nonzero distribution function of the excitons 
over the momenta N~ at zero temperature. We have 

already seen that a low-density exciton gas behaves 
like a Bose-particle gas. It is therefore natural that 
the exciton production probability is proportional to 
Nm + 1. 

k The amplification of the light is due to stimulated 
annihilation of the excitons. Owing to the momentum 
conservation law, the only excitons that can be trans
formed into light are those having a momentum equal 
to the momentum of light. The interaction causes two 
excitons with momenta k and -k to be "expelled" from 
the condensate. One of them subsequently annihilates 

and emits a quantum of light, while the other excites a 
condensate acoustic wave with frequency wm(k). Since 
the energy of the exciton at rest is JJ. 12, the frequency 
of the emitted light is /J.12- wm(k). It is clear that the 
probability of this process is proportional to Nr. 

We see that the difference in the frequencies of the 
absorption and amplification of the light is equal to 
2 wm(k) and increases with increasing concentration of 
the condensate. At concentrations such that fmn? k\ Nr 
becomes larger than or of the order of unity and the 
amplification coefficient turns out to be of the order of 
the absorption coefficient. This condition is attained in 
GaAs at exciton concentrations on the order of 1016 em -3• 

Generally speaking, to find the connection between 
the frequency and the momentum of light in matter it is 
necessary to take into account the contribution of the 
excitons to the real part of the polarizability of the 
crystal, which is determined by expression (23). It 
follows from this expression that the polarizability of 
the exciton condensate has a resonance at frequencies 
corresponding to absorption and amplification of light. 
Let us ascertain the degree to which this addition influ
ences the dispersion of light. It is necessary to take 
into account here that the exciton line width o is finite 
and is determined essentially by the scattering of the 
excitons by the impurities. At charge-impurity concen
trations on the order of 1015 cm-3, the mean free path 
time o-1 of an exciton with a momentum equal to the 
momentum of the absorbed or emitted light is of the 
order of 10-10 sec in GaAs. Since the characteristic 
frequency n = 4?Td2/re 3n (d-dipole moment of the tran
sition between bands), which determines the interaction 
of the excitons with the light, is of the order of 1010 sec-1 

in GaAs, the addition to the dielectric constant of the 
crystal, due to the excitons, will be n;o ~ 1 at reson
ance. 

Inasmuch as the dielectric constant of the crystal 
is E RJ 10, we can neglect the contribution of the exci
tons. This means that, owing to the scattering of the 
excitons and their weak coupling with the light, no ef
fective intermixing of the exciton and optical branches 
takes place near their intersection. Consequently the 
dispersion of the velocity of light near the amplification 
and absorption exciton lines can be neglected, and the 
amplification of light over the wavelength is 4?Tx"/E. 
Thus, the amplification coefficient at the center of the 
line is of the order of 

We recall that at exciton concentrations on the order 
nf 1016 cm-3 we have Nm ~ 1. 

The authors are gr:l\eful to A. P. Levanyuk and K. K. 
Svidzinskii' for useful discussions. 
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