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The necessary and sufficient conditions have been found for the existence of giant oscillations 
for finite electron path lengths. It is shown that in the limit of absolute zero temperature the 
oscillations are gigantic if the wavelength 1/k is large in comparison with the radius of the 
electron orbit R and small in comparison with the path length l. The amplitude and shape of 
the resonance lines are studied for finite temperature, when the energy of thermal motion is 
much smaller than the distance between Landau levels. In the low-frequency region the am
plitude of the oscillations of the wave absorption is kzl times greater than the amplitude of 
oscillations of the Shubnikov-de Haas type. For high frequencies, the condition kR « 1 is 
practically sufficient for the existence of giant oscillations. 

1. INTRODUCTION 

IN the propagation of sound waves in metals at 
low temperatures in a strong magnetic field, the 
wave absorption experiences gigantic quantum 
oscillations. [1] For large values of the conduction 
electron mean free path, their interaction with the 
wave can be regarded as the direct absorption of 
quanta. From the laws of conservation of energy 
and the component of the momentum in the direc
tion of the magnetic field H it follows that only 
those electrons can absorb the wave, for which 

P =P== m(ro-hkz2) (1.1) 
z kz 2m ' 

where m is the effective mass of the electron, w 
the frequency of the wave, kz and Pz the projec
tions of the wave vector k and the electron mo
mentum on the axis z II H. 

On the other hand, the electrons that take part 
in the absorption of the wave, are those located 
near the Fermi surface. Quantization of the trans
verse energy of these electrons in a magnetic 
field causes their longitudinal momentum pz to 
take on the discrete values 

Pzn =I (2m('EF- hQn) )'I•, (1.2) 

where EF is the Fermi energy; Q = eH/mc is the 
cyclotron frequency; the magnetic quantum num
ber is n = 0, 1, 2, ... ; c is the velocity of light. 

When one of the Pzn is identical with P, the 
wave absorption coefficient has a resonance 
maximum. If none of the Pzn coincides with P, 

then the absorption is small. Therefore, the ab
sorption undergoes strong oscillations upon 
change in the magnetic field. The effect has been 
observed exrerimentally in many metals (zinc [21, 
bismuth [a-s , gallium [71, antimony [B]) and is used 
at the present time for the study of the Fermi 
surface, for the measurement of the mean free 
path, the study of electron-phonon interactions, 
etc. 

The character and shape of the resonance 
maxima depends materially on the temperature 
and the electron path length. The role of the 
thermal motion, which leads to a washing out of 
the steps of the Fermi distribution and to a cor
responding broadening of the resonance maxima, 
is comparatively easy to take into account. 
Scattering of these electrons violates the law of 
conservation of energy, from which it follows that 
only electrons with Pz = P can absorb the wave. 
This also smears out and smoothes the resonance 
peaks. The effect of electron scattering on the 
giant oscillations is very considerable even in the 
case of long free path lengths, inasmuch as the 
absorption maxima are very narrow. Therefore, 
the problem of the role of electron collisions un
der quantization conditions is very important. Un
fortunately, there is no single point of view in the 
literature today relative to the necessary and 
sufficient conditions for the existence of giant 
oscillations of the wave absorption for a finite 
free path length. These divergences are associ
ated in appreciable measure with the misunder
standings brought about by the researches of 
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Quinn and Rodriguez,[S] Quinn,U 0J and Tosima, 
Quinn and Lampert, [1!] Furthermore, there has 
been to date no theoretical investigation of the ef
fect of scattering on the shape of the resonance 
peaks. In this connection, it is expedient to recall 
the idea of the derivation of the exact formula for 
the absorbed energy Q (or conductivity CFaf3) with 
account of electron scattering.[12 J With its help 
one can investigate the shape of the lines and 
establish exact criteria for the existence of giant 
oscillations for the case of finite path length. 

2. DERIVATION OF THE EXACT FORMULA FOR 
ABSORPTION 

Let us consider the case in which the electrons 
are scattered by randomly distributed fixed im
purities. The Hamiltonian of the electron in an 
external magnetic field and in the field of these 
impurities is 

(2.1) 
i 

Where :JC0 is the Hamiltonian in the absence of the 
impurities, V ( r - rj) is the potential of the im
purity located at the point rj. 

For fixed locations of the impurity centers 
there exist strictly stationary states of the elec
tron I A), which are eigenfunctions of the operator 

3t'!A) = EAIA). (2.2) 

The eigenfunctions I A) and the energy eigen
values E A depend on the location of the impurity 
rj· Of course, we cannot find the explicit form of 
I A) and EAi for us, only the fact of the existence 
of strictly stationary states is important. As a 
consequence of this, the expression for the energy 
Q absorbed by the electrons can be represented 
in the form 

Q = ;; < s (BB- EA) I (BjUIA) 12 
O A,B 

X c'l (eA- EB + liro)[f(eA)- /(en)]), (2.3) 

where U = exp ( ik · r) U0 is the operator which 
describes the absorption of the wave by the elec
tron: the outer angle brackets denote averaging 
over the locations of the impurities rj; f ( E ) is 
the Fermi function of argument ( E - EF )/T, T is 
the temperature in energy units; V 0 is the vol
ume of the crystal. Equation (2.3) can be con
veniently rewritten in another way, which clearly 
indicates the temperature dependence of the pro
cedure of averaging over the rj: 

Q= r de[f(e)-~~~~+liro)]Q(e)~ (2.4) 
0 

where 

4l'throZ < "" ) Q(e) = -----v--- .Li I (BI VIA> 12 c'l(e- EA)6(e + hro- EB) 
O A, B (2.5) 

represents the energy of the wave absorbed by 
electrons with given energy E. Thus the interac
tion with the impurities does not affect the exact 
law of energy conservation; the energy of the 
wave quantum tiw enters in Eqs. (2.4) and (2.5). 

We rewrite (2.5) in operator form: 

4l'tliro2 ( ~ 1 ~ 
Q(B) = -- Sp U-.((e- at- iTJ)-1 

Vo ' 2m 
A ,.. I A 

-(e-at+ iT))-1] u+-. {(e + liro- 3t- iT))-1 
2m 

- (e + .1iro·-ie+iTJ)-1 ). 
(2.6) 

where TJ- + 0, the operator U + is the Hermitian 
conjugate of the operator U. 

The trace of the product of operators, as is 
well known, can be computed in any representa
tion. We transform in (2.6) to the representation 
of the Hamiltonian 

3to= e(.!!_!__ . .!!_!..._+ eHx . !!:_!:_) (2.7) 
i ax ' i ay c ' i az 

where E ( Px• Py• Pz) is the dispersion law for the 
conduction electron. We have chosen the vector 
potential A0 in the form 

Aox =Aoz = 0, Aay = Hx. (2.8) 

Inasmuch as :iC0 does not contain the coordinates 
y and z explicitly, the dependence of its own 
wave functions I a) on these coordinates is de
scribed by plane waves: 

Ia) = 'I'npz Bz (x,X)exp[i(pzz/li)- ixXyJ. (2.9) 

x = eH/Iic. 

Here a represents the set of quantum numbers 
n, Pz• Sz and X which characterize the eigenfunc
tions of the operator 3Co; n is the magnetic quan
tum number, pz and Sz are the projections of 
the momentum and the spin on the direction of the 
magnetic field, and X is the coordinate of the 
center of rotation; the explicit form of the func
tion oil plays no significent role for us. The en
ergy levels Ea of the electron do not depend on 
X and have the form 

Enr• z• z = En (Pz) + Sz gJloll, j.lo = eli/2moc. Sz = + 1 I 2, 

(2.10) 

where m 0 is the mass of the free electron and g 
is the effective g factor. 

In what follows, we shall be interested in the 
state of the electron with large values of the 
quantum number n and small values of Pz• for 
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which 

Here 

En (Pz) = liQn + pN2mu. 

eH 
Q=--·, 

me 

~ = fhm (p,) I 
mu ap.2 l p.=o 

(2.11) 

(2.12) 

S ( E, Pz) is the area of the section of the constant
energy surface in the plane Pz = const. The 
transverse quantized energy of the electron is de
termined by the cyclotron mass m, while the 
mass mil enters into the longitudinal kinetic en
ergy. 

In the representation of the operator :fco, the 
matrix elements (b I U I a) do not depend on the 
impurities. Therefore, for the calculation of 
Q ( E ) it is necessary to find the two-particle 
Green's function averaged over the positions of 
the impurities rj: 

(2.13) 

This function was studied in [i 2]. The simplest 
case was considered-the case of short-range 
acting impurities, the radius of action of which is 
small in comparison with the distances between 
them and the electron wavelength. It was found 
that the two-particle Green's function (2.13) re
duces to the product of the mean one-particle 
Green's functions: 

G""'( ) _ Omb' . Bba• 
b'b 8 - I ·n . • e- 8,.- 1 2' v(e) 8 + liw- 8b + 1/2,/iv(e + liro) 

(2.14) 
where 11 (E) is the frequency of electron collisions 
with energy E with the impurities. Equation (2.14) 
is valid for all E with the exception of the small 
range of values 

A< 1/N, 
where 

e = Qh(N +A), N = [8/liQ), (2.15) 
N is an integer, while ~ is the fractional part of 
the ratio E/tm. 

We note that the collision frequency 11 (E) is 
an oscillating function of the magnetic field. How
ever, for ~ > 1/N, these changes of 11 ( E) cannot 
be taken into account, and we assume 11 (E) ~ 11, 

where 11 is the collision frequency of electrons 
with impurities in the absence of a magnetic 
field. 

Using Eq. (2.14) for the two-particle Green's 
function, we can represent (2.6) in the form 

4nliw2 ~ 
Q(8) =---y- LJI(bjUia)I 2 D(8-8a)D(8+hll)-Bb), 

0 a,b 

where 
1 ltv 

D(e) = 2n e2 + (hv/2)2 

(2.16) 

(2.17) 

Consequently, the interaction of the electrons 
with the impurities leads to the broadening of the 
electron levels. It indicates the effect on the 
probability of absorption of a quantum of the wave 

and on the width of the region of accessible values 
of the projection of the momentum of the electrons 
that interacts most effectively with the wave. 
However, scattering does not change the energy 
quantum fiw absorbed by the electron and the 
expression (2.16) is proportional to (nw) 2 and 
not to ( Eb- Ea) 2 (cf.[iO,H]). This circumstance 
plays an unusually important role in the determina
tion of the amplitude and shape of the lines of the 
quantum oscillations in the case of a finite path 
length l = v/11. 

The matrix element ( b I U I a) contains the 
Kronecker delta symbol, which expresses the laws 
of conservation of the z component of the mo
mentum, the projection of the spin and coordinate 
of the center of rotation: 

( b I U I a) = U nn' (Pz• X) 6p' p +Ilk 6s ',a (l><.X'', xX-k • (2.18) 
.Z' Z Z Z Z 'JI 

We substitute (2.18) in (2.16) and carry out 
summation over p~. s~ and X' with account of the 
6 symbols. Furthermore, change from summa
tion over Pz and X to integration: 

~ ... -+-(2:)2/i~ dp.~ ~~· 
p%,X 

where Lx is the dimension of the crystal along 
the x axis. As a result, we obtain 

X/(02 00 00 

Q(e)=- ~ ~ \ dpziUnn•(Pz)I 2D[e-8ns (Pz)] n J z 
n.,n'=O s, -oo 

(2.19) 
X D[e + liro - Bn•s (Pz + likz) }. 

z 

The giant oscillations take place under condi
tions of strong spatial dispersion and strong mag
netic field, when the wavelength is small in com
parison with the path length l and large in com
parison with the characteristic dimension of the 
orbit of the electron in the magnetic field 
R = v/Q: 

(2.20) 

The integrand in (2.19) has a sharp maximum 
when the arguments of the D functions are identi
cal, i.e., for 
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likz2 kzPz 
Q(n'-n)=ffi----. 

2mll mu (2.21) 

The frequency on the right hand side of (2.21) is 
of the order of or smaller than kzv· Therefore, 
in the case kR « 1, condition (2.21) is satisfied 
only when 

n'=n, p.=P. (2.22) 

The velocity of the wave is usually much less than 
the Fermi veloc1ty of the electron v, and the 
condition Pz = P corresponds to small values of 
Pz· Consequently, the principal contribution is 
made by components with n' = n "'" N. Under the 
conditions of quasiclassical quantization N » 1, 
the matrix element Unn ( Pz) is a smooth function 
of n and Pz and it can be taken from under the 
integral over Pz and summed over n: 

2 00 00 

Q(E)=-"'(1) IUNN(P)I 2 ~ ~ sdpz·D(E-Ens (Pz)) n z 
n=O Bz -oo 

(2.23) 

It is convenient to rewrite this formula somewhat 
differently, expressing the quantity Q ( E) in 
terms of its limiting classical value Q0• In the 
classical case, ti Q ..... 0, the sum over n trans
forms into an integral, while the D functions can 
be replaced by o functions. This corresponds to 
the fact that for kzZ » 1 the absorption has a 
non-collision character and is determined by 
electrons in the gas moving with the wave, for 
which the right side of (2.21) vanishes (Landau 
damping). As a result, we haven 

- w2mmu 2 
Qo- nfi31kziiUNN(P) I. (2.24) 

In the quasiclassical approximation the diago
nal matrix element DNN ( P) is equal to the mean 
value of the classical quantity U ( E, Pz· cp): 

1 sw -Urm(P) =- d([!U(EF,P,cp) = U(EF,P). (2.25) 
2n 0 

Here cp is the canonical conjugate of the energy 
of the angular variable, which characterizes the 
absorption of the electron over its orbit in the 
magnetic field. Expressing I U~m ( P) I in terms 
of Q0 and substituting (2.23) 'in (2.4), we finally 
obtain 

1 )We note that if the Eqs. (2.16) and (2. 23) were propor
tional to [En(Pz + iikz) - f n(Pz)] 2 , as Quinn maintained, [' 0 ] 

then all the electrons would have made an important contribu
tion to the absorption, and the expression for Q would have 
contained an additional component ofthe order of Q0[kzvv/(w 2 

+ v2), which is actually not present. 

Q /iQkz oo oo 

-= -;-- ~ ~ S dE[/(E)- j(E+Iiffi)] 
Qo 2mllffi s n=O 0 

z (2.26) 
00 

X .\ dpz D [E- Ens z (Pz)] D [E + /i(t)- Ens z (Pz + likz) ). 

It is obvious that the giant oscillations take 
place when the matrix element UNN ( P) differs 
from zero. If the vectors k and H are not 
parallel, then UNN "'- 0 for both electromagnetic 
and sound waves. The absorption of the sound 
waves by the electrons in the case (2.20) is de
termined by the deformation interaction of the 
electrons with the lattice: 

(2 .27) 

where uf~ is the amplitude value of the deforma
tion tensor: 

U;h = (8a;/8xh + 8a,.j8xi)/2, 

u is the displacement vector in the sound wave; 
Aik ( E, Pz• cp) are the components of the deforma
tion potential; summation is indicated by repeti
tion of the vector indices ( i, k = x, y, z). 

The damping of the helical electromagnetic 
wave in an isotropic metal is determined by the 
conductivity uxx(w, k):[13J 

(2.28) 

the x axis is directed transverse to the vectors 
k and H; the angle 4> between them is different 
from zero; Ex is the projection of the electric 
field of the wave on the x axis, and the limiting 
classical value of u < o> has the form [13] XX 

(Ol 3n n0ec 
CJxx = -- kzRtg2 <l> 

8 H ' (2 .29) 

n0 is the concentration of electrons. The quantum 
oscillations of the damping of the helical wave 
were investigated in [14 J. 

Giant oscillations are absent under those 
special circumstances in which the collision-free 
Landau damping disappears ( Q0 = 0). Thus, if 
the vectors k and H are parallel to an axis of 
symmetry of higher order, then the damping of 
the transverse waves in the case kR < 1 is due 
to electron scattering. 

3. SHAPE OF THE ABSORPTION LINES AT 
ABSOLUTE ZERO TEMPERATURE 

Let us consider the effect of electron scatter
ing on the character of the absorption at absolute 
zero temperature. For simplicity, we shall 
neglect the spin splitting of the energy levels. 

The ratio w/v can be either larger or small in 
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comparison with unity. We shall study both limit
ing cases. 

1. Low frequencies ( w « v). In this range of 
frequencies the quantity w - nki/2mll in the 
argument of the second D function in (2.26) can 
be neglected in comparison with v. The difference 
of the Fermi functions is equal to unity in the 
range 

(3.1) 

and vanishes for other values of E:. Inasmuch as 
the width of the interval of integration over E: is 
much less than the characteristic width of the D 
functions, integration over E: in (2.26) reduces 
to multiplication by tiw and replacement of E: by 
EF in the arguments of the D functions: 

Q fi2Qk N co 

-Q =-• ~ S dp.D[eF-en(Pz)] 
0 mu n=O-<X> 

X [ fikzPz J D 8F- 8n(Pz)-- • 
mu 

(3.2) 

Completing the elementary integration over pz, 
we get 

( i )-'/• X Re 8F - hQn + yh 'V 
(3.3) 

For those values of the magnetic field for 
which EF = Nli Q, the component with n = N has 
a sharp maximum. We separate this basic com
ponent and replace the sum of the remaining 
components approximately by an integral. Then 

Q 2 1 A ( iv )-·''' 
-- = 1 -- arctg A +- Re Ll +- , (3 .4) 
Qo l't rt1+A2tl 2Q, 

where 

A= k.lll 
N'", 

( 2e .. )'" z11 = -- . (3.5) 
muv2 

We shall consider the question of the amplitude 
and shape of the lines of the quantum oscillations 
Q. As has been noted in the previous section, Eq. 
(2.14) for the two-particle Green's function is 
valid for A > 1/N. Therefore, the maximum value 
of the last term in (3.4) has a value of the order 

AN'I•(1 + Nv/2Q)-'l•, (3.6) 

while the difference of the first two is less than 
unity. Consequently, the necessary and sufficient 
condition that the quantum oscillations of the ab
sorption be gigantic is that 

( 
'\7 8F)'/, 

k.Z11 ~ 1 +2g fiQ, • 
(3. 7) 

In the case of not too strong a magnetic field, 
when the quantity a = ( ti n2/ VEF )112 is small in 
comparison with unity, the relative amplitude of 
the oscillations is of the order akzlll· The 
parameter a represents the relative amplitude 
of the static quantum oscillations of the density of 
states at T = 0. [iS] Consequently, the oscillations 
of the absorption of the variable field is seen to be 
kzl times greater than the static. They are 
gigantic if 

(3.8) 

In the region of strong magnetic fields 
(a 2 » 1), condition (3. 7) reduces to the inequality 

(3.9) 

which is identical with the condition for strong 
spatial inhomogeneity of the variable field over 
the path length (2.20). 

The shape of the line depends materially on the 
value of A2• If 

(3.10) 

then Qmin ~ Qo/ A, i.e., it is much less than the 
limiting classical value of Q0• The shape of the 
resonance maximum for A> v/f1. is described by 
the function 

(3.11) 

In the case (3.10), the characteristic width of the 
maximum ,A~ A - 2, while for A2 « 1, it is of the 
order of A2• 

Thus, for absolute zero temperature and low 
frequencies w « v, the condition (3.10) is not 
necessary. The necessary and sufficient condition 
for the existence of giant quantum oscillations of 
the absorption is seen to be condition (3. 7). 

2. High frequencies ( w » v). In this case, the 
range of integration over E in (2 .26) is much 
greater than the characteristic width of the D 
function. Integration over Pz and E: leads to a 
rather complicated and very cumbersome expres
sion which we shall not write out. The result of 
the exact calculation is seen to be approximately 
the same as when one D function is replaced by 
a o function and the width of the other D function 
is doubled. We make such a substitution in (2.26) 
and integrate over E with account of the o func
tion. Then 
Q Q k. Sco ; v/rt 
-=--- dp.7, U(en(Pz)) 
Qo (J) mu_.c.o n'::o v2 + (m- mu- k,v,) 2 3.12) 

-/(en (Pz) + hw)l, 

where 
(3.13) 
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Carrying out the integration over pz, we obtain 

+ arctg ( k,v1. t~.±-~-ron \ 
. v I 

( k,vdfl- ro/Q- ro +ron) ) 
- arctg 

v 

t ( kzv1 Y fl - ro/Q + ro - ron \} 2 
-arc g - +-. 

' v I n.A 

Here 

v1. = (2/tQ/mn) v •. 

(3.14) 

(3.15) 

This formula is valid for D.> w/rl.. If the differ
ence D. - w/ fl. is negative, then the square root 
(D. - w/rl. )t/ 2 must be set equal to zero. 

Analysis of Eq. (3.14) shows that the amplitude 
and shape of the resonance maxima depends ap
preciably on the ratio 11/w11, which can be either 
greater or less than unity. 

A. In the region of not too high frequencies, 

(3.16) 

the absorption maxima correspond to values of 
the magnetic field for which 

fl =flo, flo= ro2/2ronfJ == (ro/vA)2. (3.17) 

It is obvious in this case that the quantity D-0 is 
much greater than w/rJ.2l. Therefore, the differ
ences in the arctangents in (3.14) can be expanded 
in powers of w/rl.D., in which we limit ourselves 
to the linear term of the expansion. This gives 

!{_ = ~+ A _{[1 +A2(fA 
Qo :nA 2n l' fl 

.-.... l'flo)2]-t + [1 + A2(ffl + l' fl 0)2]-1}. 

(3.18) 

The first term in (3.18) represents the inte
grated contribution of all the nonresonant elec
trons with n < N. This part of the absorption, 
which depends smoothly on the magnetic field, is 
small in comparison with unity by virtue of the 
conditions D-0 < 1 and 11 < w (see (3.17)). The 
second component describes the contribution of 
electrons with n = N, which lie close to the 
extremal cross section of the Fermi surface. The 
height of the maximum 

Qmax A 2v CO 

Qo = 2nro == 2nvA0 > 1• (3 .19) 

2)We note that for kR « 1, the value of flo is small in 
comparison with unity everywhere with the exception of a small 
region of angles II> close to rr/2. 

and its relative width I D. - D-0 I is of the order 
Qo/Qmax· The absorption at the minimum for 
D. ~ % is the same in order of magnitude as the 
first term in (3.18). 

As is seen from Eq. (3.18), Q has an additional 
maximum, located at D.~ w/fl. It is due to the 
singularity in the density of electron states in the 
magnetic field (oscillations of the Shubnikov-de 
Haas type). The nature of these oscillations is 
different from the nature of the giant quantum 
oscillations, and is not connected with the reso
nance character of the interaction of the electrons 
with the wave. The height of this second maximum 
is 

A (" )2( Q \''• Q2 ~ n "(;)"" "(;)"" J Qo. 
(3.20) 

and its width is much less than the width of the 
maximum of the giant oscillations. In contrast 
with the low-frequency case w « 11, when the two 
maxima are superposed on one another, these 
maxima here should be clearly separated (see 
Fig. 1). 

B. In the region of frequencies 

(3.21) 

it is impossible to neglect the frequency w11. The 
location of the center of the resonance line is de
termined by the same Eq. (3.17) as in case A. The 
amplitude of the oscillations reaches its limiting 
value 

Q 
Qmax = -Qo, (3.22) 

(I) 

which is characteristic for giant oscillations in 
the absence of scattering. 

Close to the center of the maximum, where 
I kzVt ~- w I < w11, the shape of the line is de
scribed by the equation 

Q __ fJ { (kzvtl'"& -I co- ron I) --- arctg 
Qo nco v 

( k,vtl'h-ro-ron )} --arctg . 
v 

(3.23) 

In this case the absorption is almost rectangular 
with a plane vertex with slightly rounded corners 

FIG. 1. 
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and almost vertical sides. The relative width of 
the maximum is equal to w/ rl.. The absorption on 
the wings of the line for I kzV(h - w I > w 11 is 
given by the formula 

_g_ = 2(~)''• vQ(kiv12~ + ro2) (3.24) 
Qo :n: Q ~(k.2v12~- ro2)2 . 

We recall that in the absence of scattering the 
quantum maxima are strictly rectangular.C14 -

So far as the second maximum for ~ ~ w/rl. is 
concerned, its amplitude is determined as pr evi
ously by Eq. (3.20) and turns out to be much Less 
than (3.22). 

C. We can investigate the line shape in th,= 
region 

(3.25) 

in similar fashion (for a sound wave, this region 
corresponds to much higher frequencies). The 
center of the maximum is located at the point 

~o = 'rou/4Q, (3.26) 

and its shape is described by Eq. (3.23) as before. 
Thus, for the existence of giant oscillations of 

the absorption at absolute zero temperature, 
satisfaction of the conditions of a strong ma~;netic 
field and a strong spatial dispersion (2.20) i~: suf
ficient. In the case of (3.16), the scattering of the 
electrons strongly spreads out the quantum max
ima and has a material effect on their amplitude 
and shape. In the region of much higher frequen
cies w11 > v, the role of scattering is reducEd only 
to the smoothing out of the angles in the rectangu
lar maxima and to the appearance of a small ab
sorption in the regions in between them. 

Let us make clear the physical meaning of the 
inequality w II > v. In the absence of electron 
scattering, the conservation laws for the ab~:orp
tion of a quantum of the wave can be written in 
the form 

rou = w' == w- k.v •. (3.27) 

On the right-hand side of this equation, there is 
the frequency of the wave in a set of coordinates 
moving with the electron with velocity Vz· On the 
left side is the frequency corresponding to the 
change in the longitudinal energy of the electron in 
this system. The scattering violates the conser
vation law (3.27). For finite path length, those 
electrons absorb the wave most effectively whose 
longitudinal velocity satisfies the condition 
I w'- w11l ~ v. If the longitudinal energy of the 
electron nwll is small in comparison with he 
width of the level tiv, then the scattering essen
tially destroys the law of conservation of energy 

(3 .27). The scatter of frequencies ow' effectively 
absorbed by the electrons is seen to be greater 
than the frequency w II· It is natural that in this 
case the electron collisions strongly affect the 
amplitude and shape of the resonance maxima. In 
the opposite case w II » v the violation of the law 
of energy conservation is insignificant, and the 
scattering weakly affects the shape of the absorp
tion line. 

4. GIANT OSCILLATIONS AT FINITE TEMPER
ATURE 

The limiting case of zero temperature con
sidered above requires the satisfaction of the in
equality T « ti ( w + v). For example, if v < w, 
then at T = 0.1°K the frequency of the field w 
should be much greater than 1010 sec -1 • Along 
with the difficulties of obtaining such high fre
quencies and low temperatures, it is necessary 
to use extraordinarily large magnetic fields 
H » 105 Oe (in order to satisfy the condition 
kR « 1). Therefore, the opposite limiting case 
is the most realistic one at the present time: 

(4.1) 

when the energy of thermal motion of the electrons 
is much greater than the energy of the quanta of 
the variable field or the width of the energy levels, 
but is less than the separation between the Landau 
levels. For tiQ « T, the difference in the Fermi 
functions in Eq. (3.12) can be expanded in powers 
of nw, limiting outselves to the first nonvanishing 
term: 

Q liQ k. f d v/:n: 
Qo = 4T mu Pz v2 + ( 0) - WIJ - k.v.) 2 

-oo 

X ~ ch-2 ( Bn (~~ -eF) . 
n=O 

(4.2) 

As in the previous section, we consider the 
limiting cases of low and high frequency separately. 

1. Low frequencies ( w « v). In this region of 
frequencies the quantity w - w11 can be neglected. 
The integrand in (4.2) contains the product of two 
rapidly changing functions: 

D ( )- v/:n: 
o p - v2 +(k.p/mll)2 ' 

~ [p2 -2mu(eF-nliQ) J 
F(p) = LJ ch-2 . 

n=O 4muT 

(4.3) 

Graphs of these functions for p > 0 are shown 
in Fig. 2. The maximum of the function D0(p) is 
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located at p = 0 and has the width 

6p = muv/k. ~ ppfk.lu. 

p 

(4.4) 

Far away from the maximum, the function Do ( p) 
falls off according to the power law p-2• 

The function F ( p) is a set of peaks of unit 
height. The width of the peaks and the distance 
between them depend on their position (the contin
uous curves in the drawing). In their turn, the 
position of the maxima is determined by the value 
of the magnetic field. Figure 2a shows the func
tion F ( p) for such a value of H that the Landau 
level with Pz = 0 and n = N is identical with the 
Fermi energy. The central maximum of the func
tion F corresponding to this level has the width 
~p = Pt ( T/tif.! )112, where p1 = ( 2m11tif.!)1/ 2• The 
next peak is located at a distance p1 from the 
central peak and has the width of order p1T/tif.!. 
The distance of the s-th peak from the central 
peak is equal to p1s11 2, and its width is 
p1T/tif.!s1l 2• Thus for tif.! » T, the central maxi
mum of the function F ( p) is very broad, while 
the distances between the maxima are much 
greater than their width. 

Upon decrease in the magnetic field, the cen
tral maximum of the function F is shifted in the 
direction of larger p, and its width is decreased. 
At the origin there is a new maximum with an ex
ponentially small amplitude (Fig. 2b). Upon fur
ther decrease in H, this peak rapidly increases 
and its amplitude becomes equal to unity when the 
corresponding Landau level with Pz = 0 falls on 
the Fermi surface. The decrease of the magnetic 
field shows the greatest effect on the location and 
width of the central, very broad maximum of the 
function F. The quantum oscillations of the ab
sorption are gigantic in the case in which the 
contribution of this maximum to the integral (4.2) 

is greater than the total contribution of all the 
remaining peaks of the function F. 

We estimate the value of this total contribution, 
assuming that the width op subtends several 
peaks of the function F ( A < 1) • It follows from 
the estimates given above that the number of such 
peaks is 

M ~ (6p/pi)2 ~ A-z. 

Their total width is of the order 
M 
~PiT I T 1 
LJ-s-1• ~Pi--nQ nQ A· 

8=1 

(4.5) 

(4.6) 

The contribution of these peaks to the absorption 
Q will be small in comparison with the contribu
tion of the central maximum of the function F if 
its width p1 ( T/tif.!)t/ 2 is greater than the value of 
(4.6), i.e., for 

(4. 7) 

The parameter tm/( TEF )112 represents the 
relative amplitude of oscillations of the Shubni
kov-de Haas type for T » tiv. It follows from 
( 4. 7) that the amplitude of the oscillations of the 
wave absorption is kzlll times greater than the 
amplitude of static oscillations-the same as at 
absolute zero temperature (cf. (3.8)). 

The inequality (4. 7) is the necessary and suf
ficient condition for the existence of giant oscil
lations at finite temperature and finite path 
length in the region of low frequencies. A more 
stringent condition A2 » 1, which is sufficient 
but not necessary, was cited in [1•12 J. Criteria of 
the sort obtained in the works of Quinn [9, 10J are 
incorrect. 

Analysis of Eq. (4.2) confirms these qualitative 
co,nsiderations. In the calculation of Q in (4.2), 
it is convenient to isolate the specific terms with 
n = N and n = N + 1, and to replace the rest of 
the sum by an integral. This gives 

Q/Qo= q + q', (4.8) 

where 

(4.9) 

~(Ll) = { Ll for Ll~1 
Ll-1 for 1- Ll ~ 1 

is the resonance part of the absorption, and 

q'=1-1.arctgA (4.10) 
1T 

is the nonresonance part, which is substantial 
only at great distances from the maximum of the 
giant oscillations. The quantity 
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(4.11) 

characterizes the ratio of the width of the central 
maximum of the F function to the width of the 
function D0• It is equal to the ratio of the thermal 
energy T to the scatter of energy of the resonance 
electrons as the result of their scattering. Ac
tually, the scatter of the projection of the momen
tum I Pz I ~ m11v/kz (see (4.3)) and the correspond
ing scatter of the longitudinal energy is 
p~/2mll ~ EF/(kzlll)2. 

Equation (4.9) describes the shape of the 
resonance line in the low frequency case con
sidered. In the case B2 « 1, the maximum value 
is 

~ 2A ( /iQ )'" 
qmax ~ 3:rt T . (4.12) 

In the opposite limiting case B2 » 1 in the cal
culation of the resonance part of the absorption q, 
the function D0 can be replaced by delta functions. 
Here, A2 » 1 and Eqs. (4.9) and (4.10) yield 

!]___ = /iQ{ ch-2 ( /iQ~ ) + ch-2 ( liQ(i- ~) )}+ ~ . 
Qo 4T, 2T 2T :n:A 

( 4.13) 

The first two terms on the right side of Eq. (4.13) 
are due to electrons close to the extremal cross 
section of the Fermi surface. This part of the 
absorption does not depend on the free path length 

of the electrons. The latter component in (4.13) is 
inversely proportional to l11 and depends smoothly 
on H. 

Figure 3 shows the curves Q ( H )/Q0 which 
characterize the effect of scattering on the shape 
of the resonance maxima" Curve 1 is the absorp
tion curve in the limit of infinitely long path 
(A- oo ) • Curve 2 corresponds to the value A 2 

= 7, while curve 3 represents A2 = V7• The ratio 
lUl/T for all three curves is equal to 50. The 
asymmetry of curves 2 and 3 relative to the point 
!; = 0 is due to the fact that, for finite path length, 
the singularity in the density of electron states is 
superimposed on the giant oscillations as 1::.- + 

~- + o. 

f-J 0,2 

FIG. 3. 

2. High frequencies ( w » v). We limit our
selves to the consideration of not very high fre
quencies, when Wll « w. In Sec. 3A it was noted 
that the value of ~0 = ( w/ v A) 2 is much less than 
unity. Therefore, the contribution to the absorp
tion from the nonresonance electrons with n < N 
is determined as before by Eq. (4.10) for large 
values of A. 

The expression for the resonance part of the 
absorption ( n = N) can be rewritten in the form 

q = ~ ( /iQ \'/,! dx ch-2 [~( xz- /iQ~ )] 
4:n: T} _00 1+(Bx-w/v)2 2 T · 

The small region of values of x near x 0 
(4.14) 

= (tH2~/T)11 2 plays a special role in this integral. 
We expand the argument of the hyperbolic cosine 
in (4.14) in powers of x - x 0 and limit ourselves 
to the linear term in the expansion. Then the 
expression for q, which describes the shape of 
the resonance line, takes the form 

= _!!E_ (' dz ch-2(zfiQ~'I,/AT) 

q 4:n:T }"' 1 + [z +A (~''•- ~0''') )2 
(4.15) 

This function has a maximum at ~ = ~0 • The cor
respondmg value of q depends on the value of the 
parameter B2v/ w. We write out the interpolation 
formula for qmax: 

( 2nw 4T \-1 (4.16) 
qmax = vAz + liQ) . 

It follows from (4.16) and the inequality 
A > w/v that qmax is always large in comparison 
with unity. In other words, the conditions 

w~v. kR~1, T~liQ ( 4.1 7) 

are sufficient for the existence of giant oscilla
tions. 
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