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It is shown that in polar liquids longitudinal electrostatic waves are possible; they are ac­
companied by oscillations of the molecule dipole moments and are not related to displace­
ments of the molecules themselves. Together with the sound vibrations, these waves form 
two different branches of the collective oscillations that can propagate in polar liquids. 

J. We consider in this paper collective oscilla­
tions in a liquid consisting of polar molecules. As 
is well known [tJ, in a number of cases such a 
liquid is distinguished by a definite order: some 
of the molecules of the liquid form the so called 
frame of the structure, corresponding to a some­
what distorted structure of the solid phase, and 
the remaining molecules fill the voids of the 
frame. In particular, such a structure is pos­
sessed by waterY 

The dipole moments of the molecules forming 
the frame of the structure are oriented (in the 
equilibrium state) in a strictly defined manner. 
In the case of water, in particular, only six 
equilibrium orientations are possible, and only one 
of these orientations is allowed for any specified 
aggregate of orientations of the neighboring mole­
cules of the frame. This makes it possible to 
represent the frame of the polar-liquid structure 
by the model of a liquid polycrystal consisting of 
spontaneously polarized crystallites, assuming 
that small (but macroscopic) values of the liquid 
have nonzero multiple moments, and that the 
multipole moments of such crystallites (and not 
the moments of individual molecules of the frame) 
are randomly oriented in the absence of an ex­
ternal field. We shall show now that such a model 
of the frame of the polar-liquid structure leads to 
the possibility of propagation of longitudinal elec­
tric oscillations with linear dispersion law in the 
liquid. 

2. We shall assume first that small macro­
scopic volumes of liquid are characterized by 

1)The fraction of the molecules making up the frame of the 
structure increases with decreasing temperature [•] and depends 
essentially on the presence of dissolved substances. For water 
at T = 25°C the number of molecules of the frame is equal to 
half the total number of molecules [']. 

nonzero dipole moment, and construct the La­
grange function describing small oscillations of 
the dipole moments of the frame molecules. If 
we disturb the equilibrium distribution of the 
dipoles, then obviously the potential energy per 
unit volume increases by an amount 
(iJ2 )at(oPi/axj) 2, where Pis the polarization 

vector (the dipole-moment density vector) and a 1 
is a constant (we shall disregard for simplicity 
the possibility that a 1 may have a tensor charac­
ter). Noting that the energy of interaction of two 
dipoles q1 and q2 located at points r 1 and r 2 is 
proportional to q1q2 l r1 - r 2 l-3, we can readily 
see that, in order of magnitude, a 1 ~ a 2, where 
are the dimensions of the molecules2>. Further, 
the kinetic energy of rotation of each individual 
dipole is ( %> Jq-2q2, where J is its moment of 
inertia. Therefore the kinetic energy per unit 
volume should be of the form (%) JJ.1 P2, where 
JJ.1 is a constant equal in order of magnitude to 
~Jn- 1q- 2 ~ ma2n-1q-2 ( m =mass and 
q = dipole moment of the molecule, n = number 
of molecules per unit volume). Recognizing that 
the energy of the dipole in an extraneous electric 
field Ee is -q · Ee, we get the Lagrangian 

i { 1-t1 • a1 ( oP )2 } L = J dr -P2-- - + PE• . 
2 2 OX; 

(1) 

Having the Lagrangian, we can obtain the equa­
tions of motion of the vector P in the extraneous 
electric field: 

(2) 

2 >1n fact, owing to the presence of hydrogen bonds, the en­
ergy of interaction of two molecules of a polar liquid, is not 
equal to the energy of interaction of two dipoles (and exceeds 
the latter somewhat); this does not affect, however, the order­
of-magnitude estimates. 
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Solving this equation, we get for the Fourier com­
ponents of the function P 

(3) 

Comparing this relation with the expression for 
the polarization.vector in an external electric 
field, P = KE-tEe, where K and E = 1 + 41TK are 
the electric susceptibility and the dielectric con­
stant of the system, and recognizing that ak << 1, 
we get 

(4) 

where V2 = a 1 / ~1 (the field Ee is assumed longi­
tudinal). Equating the function E to zero, we see 
that longitudinal electric oscillations can propa­
gate in the system, with a linear dispersion, 
w = Vk, and with a phase velocity on the order of 
v ~ qn1/2m-112. 

3. Let us consider now a liquid in which small 
macroscopic volumes have nonzero quadrupole 
moment (but zero dipole moment). The Lagrangian 
has in this case the form 

L= S dr{~(Di;2)- a2 ( aDH ) 2+!:_Dii-1-E{} (5) 
2 2 axz 6 OXj 

where Dij is the tensor of quadrupole-moment 
density, and a 2 and ~2 are constants whose order 
of magnitude is a 2 ~ 1 and ~2 ~ Jn-1Q-2 ( Q2 is 
the square of the quadrupole moment of the mole­
cule). The Lagrangian (5) leads to an equation of 
motion for the tensor D in the form 

(6) 

Solving this equation and noting that the density of 
the quadrupole moment Dij is equivalent, from 
the point of view of the equations of electrostatics, 
to the polarization vector Pi = ( -%) aDij/axj we 
can readily determine the dielectric constant of 
the system of quadrupoles. Introducing the nota­
tion V2 = a2 /~2 and v = 1 + 1r ( 9a2 )-1, we get 

(7) 

Equating the function E to zero, we obtain the 
dispersion of the longitudinal electric oscillations, 
w = Vk; the phase velocity of these oscillations is 
of the order V ~ Qa -tn11 2m -11 2• 

4. Of course, in order for the oscillations in 
question to be weakly damped it is necessary to 
satisfy the condition wT » 1, where w is the fre­
quency of the wave and T is the relaxation time 
of the dipole moments of the molecules making up 
the frame of the structure of the liquid. The time 
T must, generally speaking, differ from the re­
laxation time that determines the viscosity of the 

liquid. We can expect T to be close to the relaxa­
tion time T 0 of the dipole moments of the mole­
cules of the solid phase3>. 

We emphasize that the oscillations in question 
represent oscillations of the dipole moments of 
a fraction of the molecules of the liquid, and un­
like sound wave, they are not connected with the 
displacements of the molecules itself. Thus, 
these oscillations differ in principle from sound 
waves and form a different possible oscillation 
mode of a polar liquid. In some sense, these os­
cillations are analogous to spin waves in mag­
netically-ordered crystals. 

We note that collective oscillations of this type 
can in principle take place in substances con­
sisting of polar molecules in the solid phase, too, 
although in this case the oscillations of the dipole 
moments of the molecules are hindered by the 
more rigid coupling (compared with the frame of 
the structure of the liquid) between the molecules 
in the crystallattice4>. 

Longitudinal electrostatic oscillations of a 
polar liquid can be excited with the aid of a post 
antenna placed in the liquid and fed with high­
frequency current. The excited longitudinal os­
cillations should in this case propagate along the 
antenna direction. We emphasize that these oscil­
lations were different from radio waves both in 
polarization and in propagation velocity. 

In conclusion I am grateful to A. I. Akhiezer 
for useful discussions. 
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3 )For ice at melting temperature, the value of T0 (deter­
mined from the dispersion of the transverse dielectric constant) 
is T0 - 2 x 10-• sec [•]. 

4 )In a gas consisting of polar molecules, longitudinal elec­
tric oscillations are also possible. These oscillations take 
place in the high frequency region, w » wR, w >>kv, where 
wR - Ty,ry, is the average rotation frequency of the molecules 
and v- TY'm-y, is the average velocity of their thermal motion 
(T = temperature, m = mass, and J =moment of inertia of the 
molecule); they are perfectly analogous to Langmuir oscilla­
tions of a plasma, and, in particular, have an essentially non­
linear dispersion law. 


