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Excitation of longitudinal electromagnetic waves in ionic semiconductors by an electron beam is 
investigated in the quasilinear approximation. An equation is derived for the "background" dis
tribution function of the resonant beam particles. It resembles the diffusion equation in velocity 
space. Expressions for the frequency and increments of unstable electromagnetic waves are ob
tained by taking into account the polarization of the semiconductor and the oscillation damping 
due to carrier collisions. It is shown that the height of the distribution function "plateau" and 
hence the energy of the oscillation depends significantly on the beam temperature and on the 
carrier collision frequency. The energy lost by the beam as a result of excitation of the oscil
lations is determined. 

1. INTRODUCTION 

THE excitation of longitudinal electromagnetic oscilla
tions in a plasma by an electron beam has been investi
gated in l 1 • 2 l, where it was shown that in the quasilinear 
stage the reaction of the waves on the resonant parti
cles of the beam leads to the formation of a "plateau" 
in the distribution function and to the saturation of the 
oscillations. Excitation of oscillations by an electron 
beam can also occur in solids. In the linear approxima
tion, this problem has been examined in l 3 • 4 l. 

In the present paper we investigate the buildup of 
one -dimensional longitudinal oscillations in ionic semi
conductors during the quasilinear stage. The beam
semiconductor system is assumed here to be spatially 
homogeneous. An essential step in solving this problem 
is the necessity to take into account the oscillation 
damping due to the collisions of the carrier particles 
with impurities and with one another (other collisions 
are usually negligible) and to consider the polarization 
of the semiconductor. 

2. BASIC EQUATIONS 

As a starting point we use the Vlasov kinetic equa
tions with self-consistent electric field E 

aj<a> + v iJj<aJ + !!':_E iJj<a> = St<«J {j(aJ}, (2.1) 
at ax ma iJv 

Maxwell's equation 

! (E + 4nP) = - 4n ~ eana ~ vj<a>dv (2. 2) 
a -00 

and the equation for the polarization vector P of the 
semiconductor without allowance for spatial disper
sion[ 5 • 6 J 

iJ'P/iJt2 + ro02P = yE, (2.3) 

where f<a> is the distribution function of the particles of 

*This is a sample of proposed type substituting for DSJ. 
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type a (the superscript a= 1) corresponds to the elec
trons of the beam, a = 2 to the carriers) with charge 
ea, mass rna, and density na, w0 is the frequency of 
the exciton absorption, and y is a constant characteriz
ing the structure of the exciton bands. Because of the 
comparatively low energy of the oscillations excited in 
the beam-semiconductor system, anharmonicity of opti
cal oscillations of the lattice may be neglected. 

We represent the distribution function f< a> as the 
sum of two terms: 

(2.4) 

where f6a> =(f<a>),(F<a>> =(E)=(P)=O,andthe 
averaging is carried out over distances much greater 
than the wavelengths and over times much longer than 
the periods of the oscillations, or else over a set of 
special phases. We expand F< a>, E and P in Fourier 
series 

where 

p = ~ P,.(t)ei(kx-w,t), 

" 

Then we get from (2.1), 

where 

iJj(a) e iJ 
- 0 = __c:_ ~ En"F1"l+ St<aJ {!~">}. 

at maiJV k 

(a)/ 
F~a) = _ i ea E,.iJfo iJv 

ma ro-kv • 

ro==ron+i[y,.+'V~a) (v)], 

St<«J {/Ja> + F ~a>} - St<«J {f~aJ} 
'V~aJ(v) ==- F<«J ~,ro,. 

" 

(2.5) 

(2.6) 

Using (2.6), we find from Eqs. (2.2) and (2.3) the dis-
persion equation 
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where 

Q,.' = 4ne,.2n,. . 
m,. 

(2.7) 

It is clear from (2. 7) that when U~u/U~vT « 1 (u is 
the mean velocity of the beam, VT is its the\-mal veloc-

1 

ity), the expression for the excited frequencies wk does 
not depend on the parameters of the beam. Since quasi
linear theory is applicable when 'Yk « kvT 1 , the disper-

sion equation (2.7), with due allowance for this inequal
ity, readily reduces to the form 

I • Cis' ( Wh) g,z . g,z i:t0t2 ojJ11 
e (wh) +'v"---~--+!--(2y,.+v,.)-----=0, 

ow" w"' w"" kiki ov (2.S) 

where the effective carrier collision frequency Ilk is 
defined by the expression 

r (2) 0(2)1 
'Vh = J dv fo (v)-[vv,. (v) . 

_ 00 OV 
(2.9) 

From (2.8), we find the expressions for the excited 
frequencies and increments 

(2.10) 

Since the phase velocity of the wave is much greater 
than the thermal velocity of the carriers, the reaction 
of these waves on the carrier distribution may be neg
lected. Then, substituting F{f> from (2.6) into Eq. (2.5) 
for the beam, and neglecting the Coulomb collisions of 
the electrons in the beam, we obtain the equation for the 
diffusion of the beam electrons in velocity space 

(2.12) 

where 

3. QUASILINEAR STAGE 

Let us assume that the initial "background" distri
bution function of the beam particles is Maxwellian: 

(I) (I) 1 [ (u- v) 2 ] 
/o lt=o =/oM== -=-exp - . 

l'2xt VT, 2VT,2 

(3.1) 

Then for the case u » vT and 
1, 2 

'\'h <5;kvT, (3.2) 

the reactions of the oscillations excited in the velocity 
region where 'Yk > 0 leads to deformation of the beam
particle "background" distribution function described 
by (2.12). 

From (2.11) it follows that the waves with 

(3.3) 

grow the fastest. Allowance for the reaction of only 
these oscillations on the distribution function within a 
time T s 11k1 leads to the establishment of a plateau
like distribution in the velocity region v1 s v s v2 (see 
the diagram). Here v2 ~ u + vT , and the boundary v1 

1 

i'l 
0 

L _____ A 
Ul lL U.z U 

is approximately determined by the equation y' J _ 
v- v1 

= Ilk• from which we find that 

(3.4) 

where 

It is interesting to observe that v 1 depends weakly on 
Ilk· 

Assuming for simplicity that at the instant t = T a 
"plateau" has been established in the velocity interval 
v1 < v < v2 , we find its height from the condition that the 
number of particles must be conserved 

(f) 1 1 
/o It=•=--~ (3.5) 

Vz- Vt VT, (1+ l'2A) 

If the quantity Ilk in (2.11) is neglected in comparison 
with y' (which can be done for times t < T in the veloc
ity interval v1 < v < v2 ), we readily obtain from (2.11) 
and (2.12) that[ ll 

4 2 3 •• 
IE"!'= nmtlltW~tU z) (1~1)_/.IJ..:)dv. (3.6) 

Qz' •• 

At the instant t = T the quantity y' becomes of the 
order of vk in the entire region of instability and the 
oscillations stop growing. In this case, the maximum in
tensity in time of the k-th harmonic is determined 
from (3.6) 

where 
2" 

Cll(x) = = ~ e-t• dt. 
in 0 

(3.7) 

The potential energy of the oscillations Wn at the in
stant t = T is given by the expression 

Wn=~~e'!E~tl 2 ="1m1uvT, ~Z(i2A-1), (3.8) 
8:t" 4 

where the summation is carried over the different 
modes of the oscillations. From (3.8), we find that the 
fraction of the initial energy of the beam lost in exciting 
the oscillations is equal to (vT /u) I; Z ( ..f2 A - 1). 

1 

We now investigate in greater detail the conditions of 
applicability of the obtained solution. To this end, it suf
fices to require that inequalities (3.2) and (3.3) be satis
fied at the initial instant of time, when the velocity dis-
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tribution of the beam particles is still Maxwellian. De
termining the maximum values of y' and Yk in this 
case, and substituting them into inequalities (3.2) and 
(3.3), we obtain respectively 

(3.9) 

(3.10) 

For most semiconductors the collision frequency is 
high, so that for the oscillation mode with Z ~ 1 the in
equalities (3.9) and (3.10) turn out to be incompatible. In 
this case, however, for another oscillation mode the 
quantity Z may be sufficiently small so that inequali
ties (3.9) and (3.10) are satisfied. If both oscillation 
modes can build up in the semiconductor, then the mode 
with the greater Z will build up more rapidly. 

In many cases, by changing the carrier density (for 
example, by illumination), the frequency of one of the 
oscillation modes (with the greater Z) may increase so 
much that it enters the region of intrinsic absorption; in 
this case the branch of oscillations with Z « 1 will be 
excited. 

In conclusion we make some numerical estimate of 
the effect of excitation of oscillations in a semiconduc
tor with the parameters n2 ~ 1015 cm-3 , m2 ~ 0.1me 
(me= electron mass), w0 ::>l 1013 sec-\ 41TY = 1.1w~, 

and vk = 1011 sec-1 (such parameters are characteris
tic for Ger 7 l) by a beam with n1 = 1012 cm-3 , m 1 =me, 
and u2 = 103vT 2• It is not difficult to show that condi-

1 

tions (3.9) and (3.10) are satisfied with the greater in
crement and frequency w1 = 1. 5 x 1013 sec - 1 , and that 
0.2% of the initial energy is lost, according to (3.8), in 
exciting this branch. 
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