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The microscopic structure of analog states in heavy nuclei are treated by the interacting­
quasiparticle method. The relation between the microscopic approach and the description by 
means of isotopic spin is established. The "optical" width of the analog states is estimated. 

1. INTRODUCTION 

As shown in [tJ, analog states in heavy nuclei can 
be regarded from the microscopic point of view 
as collective excitations of the proton-neutron 
hole type with zero total angular momentum. 
Since analog states are usually described by using 
the formalism of isotopic spin [21, a connection 
must be established between this description and 
the microscopic approach. 

There exist also other collective states of the 
proton-neutron hole type, which differ in energy 
and in isospin from the analog states. Allowance 
for the self-consistent Coulomb potential gives 
rise to small admixtures of these states to the 
analog state. In other words, a mixing of the 
states with different isospins takes place. The 
values of the coefficients that determine the mag­
nitude of the admixture of states with different 
isospin in the analog state are important for the 
clarification of the problem of the width of the 
analog state and for the calculation of certain 
nuclear reactions. 

In Sec. 2 we consider the analog states with the 
aid of the Hamiltonian for the quasiparticles. 
This approach makes it possible to avoid the 
simplifying assumptions made in [tJ, and to clarify 
the question of the classification of the states of 
the nucleus with the aid of isotopic spin. 

In Sec. 3 we consider, using methods of the 
theory of finite Fermi systems [31, other collective 
states of the proton-neutron hole type. We deter­
mine the energy and wave functions of some of 
these states in the quasiclassical approximation. 
Their width and isotopic spin are discussed. 

The method of calculating the corrections to 
the wave function and the density matrix of the 
analog state, which result from the variable part 
of the self consistent Coulomb potential, is 
formulated in Sec. 4. The magnitudes of these 

corrections are estimated in the quasiclassical 
approximation. 

2. ANALOG STATES AND THE HAMILTONIAN 
FOR THE QUASIPARTICLES 

To describe the low-excited states, the nucleus 
can be regarded as a gas of interacting quasi­
particles with an effective Hamiltonian which has, 
in accord with the theory of finite Fermi systems, 
the form (ti = c = M = 1)[31 

~!:J.; ~ 1~ (3) 
H =- LJ2M·*+ LJU(ri)+2" L.J<Jl(ri) (1--c; )+Hint· 

i t i i 
(1) 

Here M* is the effective mass of the quasiparti­
cles (we shall henceforth assume for neutrons and 
protons M1i_ = ~ = 1); U ( ri) is the nuclear 
self-consistent potential and is the same for the 
neutrons and the protons; cp( q) is the self­
consistent Coulomb potential acting on the pro­
tons; Hint is the quasiparticle interaction Hamil­
tonian. To describe the excitations with small 
momentum transfer in the particle-hole channel 
we can use the following expression for Hint [3] 

1 v I 

Hint= 4- ~ {(! + gGif1h)+(f' + g'G;f1h)1'i1'k]fl(ri- rk), 
Po ., 

'n (2) 

where V is the volume of the nucleus; Po coin­
cides with the density of the single-particle levels 
near the Fermi boundary for a rectangular poten­
tial well; f, g, f', and g' are phenomenological 
constants. In the case of scattering of quasiparti­
cles with transfer of arbitrary angular momentum, 
expression (2) does not hold for Hint. and it can 
only be stated that Hint remains an isotopic 
scalar. 

The operator Hint contains, besides the terms 
describing the scattering of the quasiparticles, 
also terms that make a contribution to the self-
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consistent field; this contribution is proportional 
to N - Z. These terms can be separated in the 
Hartree-Fock approximation. It is easy to esti­
mate them by assuming that the density of the 
excess neutrons is constant over the volume of 
the nucleus (and equal to ( N - Z) v-1 ). Then, 
according to (1) and (2), 

Un(r)= U(r)+ 1/J'(N-Z)p0-1, 

Up(r)= U(r)- 1/2l''(N-Z)p0-1+cp(r). (3) 

Inside the nucleus, where the nucleon density is 
constant, the self-consistent potential (3) coin­
cides with the expression used in the shell 
model [4]. The constant f' then turns out to be 
close to the value obtained from the Weizsacker 
formula [3J. 

It is convenient to separate from the Coulomb 
potential 'fJ ( r) the part .6.Ec which is constant 
over the volume of the nucleus and coincides with 
the Coulomb energy per proton: 

1 .a r 
11Ee= 2. az J cp(r)p.(r)dV, (4) 

where p~ ( r) is the proton density. If Pz ( r) 
= ZV -1 ( r < R, R = radius of nucleus), then .6.Ec 
= (%) Z e2R -1, and <P ( r) can be rep res en ted in 
the form <P ( r) = <P 0 ( r) + .6.<{) ( r), where !6 Ze2 

-- r<R 
5 R' 

cpo(r) = Ze2 
-, r>R 

r 

(5) 

To study the nuclear excitation spectrum we 
can use in first approximation the Hamiltonian 
H', which is obtained from (1) when 6.qJ = 0. The 
corrections connected with .6.<P will be taken into 
account subsequently by perturbation theory. The 
Hamiltonian H' obtained in this manner satisfies 
the following commutation relations, which are 
valid for all ri < R: 

[H'~ TH] =MeT<->; (H', T<+>] =-MeT<+>, (6) 

where T(±) = (1f2 )~T~±) ). It follows from (6) that 
l 

there exists an excited state I a) (analog state) 
with energy A.Ec and with wave function 

Ia) = 2(N- Z)-'I•T<->10), 

where I 0) is the wave function of the ground 

(7) 

state for the Hamiltonian H', and satisfies in 
accordance with (6) the relation 

T<+>IO) = 0. ( 8) 

The Hamiltonian H' commutes with the total 
isospin operator T2 (for all ri < R). Therefore 
a definite isospin can be ascribed to the eigen­
functions of this Hamiltonian. In particular, it 
follows from (6)-{8) that the states I 0) and 
I a) have isospins and projections respectively 
equal to ( T0, T0 ) and ( T0, T0 - 1) for T0 

=(%)(N-Z). 
To calculate the effects connected with the ex­

citation of the analog states, it is necessary to 
determine the quasiparticle states, that is, the 
spectrum of the single-quasiparticle excitations 
of the system with the Hamiltonian H'. In the 
case of sufficiently large N - Z, the self-con­
sistent potential for the quasiparticles is deter­
mined by an expression of the form (3) with 
A.<P = 0. The wave functions of the neutrons and 
the protons <P A n,p can be regarded here as iden­
tical in the region of the discrete spectrum, 
accurate to boundary effects. 

In conclusion we note that the expressions for 
the energy and for the wave function of the analog 
state, obtained in [tJ using the concrete form of 
Hint• as well as the assumptions concerning the 
constancy of the density of the excess neutrons 
over the volume of the nucleus, coincide with the 
corresponding expressions of the present section. 

3. COLLECTIVE EXCITATIONS OF THE 
PROTON-NEUTRON HOLE TYPE 

As shown in [tJ, in heavy nuclei (( N - Z) 
» At/ 3) the analog state is one of the possible 
collective states of the proton-neutron hole type. 
The self-field corresponding to this excitation is 
constant over the volume of the nucleus ( va ( r) 
= const). There exist also excitations whose self­
fields differ from a constant (for example v2 = a 
+ br2, v3 = c + dr2 + fr4, etc.). In the quasiclassi­
cal approximation, for a rectangular potential 
well with infinite walls, we can verify that, for 
example, v2 ( r) = const ( 1 - 5 r 2/3R2 ) is a self­
field, that is, it satisfies the homogeneous equa­
tion whose solution is equivalent to the approxi­
mate diagonalization of the Hamiltonian H', 

fV "' nAP - nA,n 
V2(r) =- LJCVAP•cpA'n (v2)A'A. 

Po AA' 8AP - 8A,n - W2 

Here n~,p and ~,p are the occupation numbers 
and the excitation energies of the quasiparticles 
(neutrons and protons). Indeed, if we use the 

(9) 
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relations obtained in the study of giant monopole 
resonance [5] 

' 

(10) 

then we get in accordance with (9) and (10), in the 
approximation AEo « w 0 (w 02 = 42E 0/MR2; Eo 
= ( %) Ap01 is the energy of the Fermi boundary), 
two natural frequencies corresponding to the 
same self-field v2 ( r): 

1 + f' Me 
wz=~801 1+f'(1-c) = 1+!'(1-c)' 

'w2' = w0y1 + /'(1- c), (11) 

where AE 0 = ( o/ 3 ) E0 ( N- Z )/A is the difference 
in the depths of the potential wells for the neu­
trons and protons. It is natural to set the state 
j2) with energy w2 < AEc in correspondence with 
one of the possible configuration states (using 
Lane's terminology [2J). 

The expressions for the wave functions of the 
states with energies w2 and w 2' can be obtained 
with the aid of the relation given in [t J, using the 
explicit form of v2 ( r). For example, for the 
state j2) we have 

j2) = ~2-i-jO), ~hjO) = 0, ~z+= ~ C~~,a;.P+avn; 
i.i.' 

(12) 

Thus, to describe states of the proton-neutron 
hole type with small total angular momentum, the 
Hamiltonian H' can be written in the form 

where the operators !s and !~ satisfy, at the 
same accuracy with which equation (9) is valid, 
the boson commutation rules 

(13) 

(14) 

A sufficient condition for the applicability of 
equation (9), and consequently also (13) and (14), 
is the requirement 

p;_;.,•=\sJa;.P+a,.,njO) = (C,.,.,•)*(n,.,n-n;.P)<1. (15) 

Thus, for example, for the state I 2) this condi-

tion is equivalent, in accord with (12), to the in­
equality ( N - Z) -1/ 2 « 1. 

We note that the case s =a corresponds to the 
analog state which, as shown in Sec. 1, is ob­
tained as a result of exact diagonalization of the 
Hamiltonian H', that is !;.I 0) 
= 2 < N - z r11 2 T <- n 1 o >. 

It is of interest to determine the value of the 
isotopic spin for a collective state that does not 
coincide with the analog state. Let us calculate 
the mean value 

\To, To I !.T21.+1 To, To)= (To- 1)2 + 2 (To, To JI.T<+>TH!s I 
X To, T0) + 2\To, Toji.THT<+>!.J To, To). 

Using the relation [ T<+>, TH] = ( Y2 ) T< 3>, and 
also (8) and (14), we get for any s ~ a 

(Oj!.T2!.+JO) = To(To -1). (16) 

Thus, the isotopic spin of an arbitrary collective 
state I s) that does not coincide with I a) is equal 
to the isotopic spin of the ground state of the 
nucleus produced as a result of replacing the 
neutron by a proton in the target nucleus. 

Apart from isotopic spin, the analog state 
differs from other collective states of the proton­
neutron hole type in the absence of an "optical" 
width. By "optical" width Wopt of a single­
quasiparticle state we mean the width connected 
with the decay of this state into more complicated 
configurations with the same energy. This means 
that the Hamiltonian H' cannot in general be 
exactly diagonalized with the aid of the single­
quasiparticle states. The "optical" width in­
creases with increasing excitation energy ( E - E 0), 

and at sufficiently large ( E- E0 ) « E0 we have 
E 2 I [3J Wopt =a( -Eo), where a~ 1 E0 • 

Inasmuch as the analog state corresponds to 
exact diagonalization of the Hamiltonian H', its 
"optical" width is equal to zero. Other collective 
states of the proton-neutron hole type are ob­
tained as a result of approximate diagonalization 
of the Hamiltonian. The corresponding exact 
eigenfunctions contain, besides configurations of 
the particle-hole type, ,~so more complicated 
configurations (two particles-two holes, etc.). 
Therefore the "optical" width of the states 
s ~ a is of the order of the "optical" width of 
the quasiparticles with excitation energy AE 0• 

4. COULOMB CORRECTIONS 

The foregoing analysis was based on the use of 
a Hamiltonian H', in which no account was taken 
of the time-dependent part of the self consistent 
Coulomb potential Aq; . Allowance for D..<P leads 
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to the appearance of corrections to the wave 
function and energy of the analog state. In the 
first approximation of perturbation theory, the 
corrections to the wave functions are determined 
by the relation 

Ja)'= ja)+ 2;~~~~) js). (17) 
a*a a s 

The calculation of the matrix elements 
(slt.<Pia)= (oj[Ws[A'P, I;]]JO) withtheaid 
of the explicit expression for the operators Is, 
I,;, and t.cp leads to the following express ion: 

1 
(sj~cpja) = --=~ 

l'N-Z 
1,2 

Vzt 8 (~cp) tzB•. 
Etp- E2n- Ws 

Using (9), we can rewrite (18) in the form 

1 Po ~ (sl~cpla) = -IJ•- v•(r)~cpdr. 
l'N -Z f'V' 

(18) 

(19) 

Since Acp ~ v2 ( r), it follows that the matrix 
element (19) differs from zero only for the states 
I 2) and 12' ). Taking (17) and (19) into account, 
we get 

Ia)' = Ia) + _Po~Ec [ B<'!iJI2) 
~1f'1N-Z · Wa-Wz 

+ B(2'J 12') J 
Wa- Wz• 

(20) 

Let us estimate the values of the admixture coef­
ficients of the states I 2) and 12') in (20). If 
AE 0 « w0, then the ratio a 2'/a 2 ~ v t.E 0/w 0 « 1. 
In the same approximation we have, in accordance 
with (10)-(12), 

·W2- ~eo 

J3(2.J ~ 1--;:47/z=tc:::;:(N;;:;==z::=-) 
(21) 

Assuming that f' ~ 1.5 and c = %. we get 01. 2 

~ 0.1. Thus, the correction to the wave function 
of the analog state is practically the same for the 
region of nuclei of interest to us, and does not 
exceed 10~. 

Let us estimate now the correction to the en­
ergy of the analog state 

"M - ~ l<sl~cpla)lz (22) 
u c- L.J E -E • 

s=2,2' 8 a 

It can be verified that the states I 2) and 12') 
give comparable contributions, but with opposite 
signs, to (22): 

{>~Ec = ctz2 (wa- (i)z) + ctz•2 (·Wa- •Wz•). (23) 

Using the same values of f' and c as before, we 
obtain the estimate I OAEc/AEc I< 0.005. Thus, 
the energy shift of the analog state relative to 
AEc does not exceed 100 keV even in the heaviest 
nuclei. 

To calculate the effects connected with the ex-

citation of the analog states, it is necessary to 
know the density matrix p' 

(24) 

Where I a') is determined from formula (20) and 
I o') is the wave function of the ground state of 
the target nucleus 

IO') = JO) + ~. (il~cpiO) 10. (25) 
. Eo-Ei 
t 

Here I i) are all the possible wave functions cor­
responding to excitations of the neutron (proton)­
neutron (proton) hole with zero total angular mo­
mentum. We note that the diagonal corrections of 
the density matrix are determined only by the 
corrections to the wave function of the analog 
state. 

The correction to the density matrix of the 
analog state can also be obtained by using the 
equation for the self-field (vertex). This method, 
which is of independent interest, is described 
briefly below. The equation for the proper field 
'f3 ( r) with allowance for A <P is 

f'V 
v• = -- (CPCnv•), (26) 

Po 

where the brackets ( ... ) denote integration with 
respect to the fourth variable E. The Green's 
function (}p(n) (E) can be obtained by perturbation 
theory, for example, 

({>GP)i.i.• == (CP- GP)i.i.• = (GP,;PGP);.;.., (27) 

where ( GP )71.71.' = Ot...t...' ( E - E~ + ia Et...) -I is the 
unperturbed Green's function. 

The static vertex Tp(n)( t.cp) which results from 
the action of the continuous field Acp on the sys­
tem can be obtained from equations that are well 
known in the theory of finite Fermi systems. 
Taking (27) into account, the equation for va takes 
the form 

f'V f'V f'V 
v<•J = -'(GPGnvs) +- ({>GPGnvs) +- (GP{>Gnv•). 

Po Po Po 

In the case of the analog state va = va +ova. 
Therefore in first order in ova we have 

(28) 

{>va(r) f'V( {>va) f'V f'V ---= - GPGn -- +- (bGPGn) +- (GP{>Gn). 
va Po \ va Po Po 

(29) 

The solution of the inhomogeneous equation (29) 
determines the correction to the density matrix 

~ = <GPGn {>va )+ ({>GPGn) + (GP{>Gn). (30) 
va va 

we can verify, for example, that the diagonal 
corrections to the density matrix, obtained from 
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formulas (30) and (24), coincide. If the correc­
tions to the wave function or to the density matrix 
of the analog state are known, then we can esti­
mate the "optical" width of the same state 

a 
Wopt: 

Wo;t ~ a22Wopt(t\eo) ~Wopt(t\eo), (31) 

where W0 pt(AE. 0 ) is the "optical" width of the 
single-qusiparticle level with energy AE 0• Since 
W 0 t ~ ( AE 0) 2, then the "optical" width of the 
ana)og state increases with increasing Z and A 
like [ (A - 2Z )/A ]2• 

5. CONCLUSION 

In our preceding analysis we limited ourselves 
to states analogous to the ground state. If 
lOt), l 02) .•• and Et. E2 ••• are the wave func­
tions and energies of the first, second, etc. ex­
cited states of the target nucleus, then, according 
to (6), we have 2 ( N - Z) -1/ 2 T <-t> l 01 ), 

2 ( N - z) -1/ 2T <-u I 0 2 ), ••• , and E1 +A Ec, E2 

+ AEc, ... , are the wave functions and energies 
of the corresponding analog states. The "optical" 
width of these states, as in the case of the state 
analogous to the ground state, is much smaller 
than the "optical" width of the single-quasiparti­
cle levels at the corresponding energies. We note 
that the width of the single-quasiparticle states 
can be estimated from the imaginary part of the 
optical potential. 

We did not take into account the Coulomb 
scattering amplitude of the protons in the Hamil­
tonian for the quasiparticles (1). To calculate the 
"optical" width of the analog state it is necessary, 
generally speaking, to take into account the 
Coulomb amplitude, since its contribution to the 
width can be comparable with (31). 
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