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Splitting of the terms of a quasimolecule composed of two atoms of the same type is calcu­
lated for large distances between the nuclei of the atoms. The splitting consists of two parts. 
One is the exchange splitting corresponding to exchange of valence electrons, and the other 
is the long-range splitting due to long-range interaction between the atoms. The latter type 
of splitting vanishes if the spins of the interacting atoms are not the same. The result is 
employed to determine the cross section for excitation transfer from the metastable 23S 
helium atom to the helium atom in the ground state. 

1. In this paper we calculate the splitting of the 
terms of a quasimolecule made up of two identical 
atoms in different states, with large distances be­
tween their nuclei. This splitting determines the 
probability of excitation transfer by collision from 
one atom to the other of the same kind. This split­
ting consists of two parts-exchange splitting, 
corresponding to exchange of valence electrons, 
and long-range splitting, connected with the long­
range interaction of the atoms. The long-range 
splitting vanishes if the spins of the interacting 
atoms are different. This type of exchange split­
ting!) corresponds to overlap of the wave functions 
of two valence electrons, so that the problem of 
finding this quantity is a two-electron problem. In 
this respect, the problem under consideration is 
similar to that of finding the splitting of the terms 
of a quasimolecule made up of two atoms with spin 
1/2 at large distances between their nuclei, when 
this splitting corresponds to a different total spin 
of the quasimolecule. The latter problem was 
solved by Gor'kov and Pitaevski1[2J and also by 
Herring and Flick"er[3J for the interaction of two 
hydrogen atoms, and by Chibisov and the author[4J 
for the interaction of two alkali-metal atoms. The 
magnitude of this splitting characterizes the proba­
bility of exchange of valence electrons when these 
atoms collide, and the associated change in the 
direction of the spin of the atom. 

Using the analogy of these two problems, let us 
determine the exchange splitting of the terms in 
the case when the excitation is transferred in ex­
actly the same manner as in the case of spin ex-

1 )The energy of exchange interaction of two atoms, calcu­
lated in ['], has no bearing on the excitation-transfer process. 

change. We shall consider each of the interacting 
atoms from the point of view of a model in which 
the valence electron is in a self-consistent field of 
the atomic core, and the magnitude of this field 
depends both on the spin state of the electron and 
of the atomic core. Since the sought exchange 
splitting of the terms is determined by the large 
distances between the valence electrons and the 
atomic core, the use of this model makes it possi­
ble to obtain an asymptotically exact value for the 
exchange splitting in the limit of large distances 
between atoms. 

2. We consider a quasimolecule consisting of 
two atoms of the same type separated by a large 
distance. We shall denote by 'lt(1'a, 2b)S(1a, 2b) the 
wave function of the quasimolecule if, at large dis­
tances between the atoms, the first electron is 
concentrated essentially near the atomic core a, 
the second near the atomic core b, 'It denotes the 
coordinate wave function, and S the spin wave func­
tion; the prime denotes the electron that is in a 
more excited state. 

We investigate first the class of eigenfunctions 
of the electron Hamiltonian, which does not satisfy 
the Pauli principle. This is possible, since the 
Pauli principle is an additional condition imposed 
on the solution of the stationary Schrodinger equa­
tion, but does not follow from the equation itself. 
We move the first (more excited) electron to the 
atomic core b and the second to the atomic core a 
(this is possible since the atomic cores are identi­
cal). It will be shown later that we can separate 
from the system of spin functions corresponding to 
finding the first electron near the core b and the 
second near the core a such a system of orthogonal 
spin functions that only one of them T(1b, 2a) is not 
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orthogonal to S(1a, 2b). Thus, we have separated 
from the system of eigenfunctions of the Hamilton­
ian two wave functions of the valence electrons, 
'11 1 = '11(1'a, 2b)S(1a, 2b) and '11 2 = '11(1'b, 2a)T(1b, 2a), 
which are orthogonal to all the remaining functions. 
These remaining functions describe the considered 
state of the quasimolecule made up of atoms whose 
second electron is in a more excited state than the 
first. 

We construct from the two separated wave func­
tions '11 1 and '11 2 combinations which are eigenfunc­
tions of the electron Hamiltonian H. By virtue of 
the symmetry of the problem, the eigenfunctions 
'~~I, II of the Hamiltonian H'III,II = EI,II'~~I,II are of 
the form 

'l'ur = 2-'t.['l' ( 1' a, 2b)S ( 1a, 2b) ±'I' ( 1'b, 2a) T ( 1b, 2a)]. 

With this, the splitting of the term of the quasi­
molecule is 

Er -En=~= 2 ('1'(1'a, 2b)S(1a, 2b) 

X JHJ'I'(1'b, 2a)T(1b, 2a)). 

The Hamiltonian of the system of electrons is 

fi = - 1/2 Vt2 - 1/z Vz2 + V(r1, rz), 

where r 1, r 2 is the coordinate of the corresponding 
electron; we make use of the system of atomic 
units n = m = e 2 = 1. From the equation for 'II I and 
'II II it is easy to obtain the relation 

~'I'I'I'n = 'l'uH'I'I- 'I'IH'I'n. 

Let us integrate this relation over the volume 
Q in the space of the electrons, where z1 > z2 (z 1 

and z2 are the electron coordinates, measured 
along the axis joining the nuclei, the nucleus a 
being assumed to be to the right of the nucleus b). 
Then, at large distances between nuclei we get 

~ '1'2(1'a,2b)dr1dr2= 1, )'1'2(1'b,2a)dr1 dr2=0, 
g g 

and the deviation from these equalities is exponen­
tially small. Using this fact in the right side of the 
:resultant relation, we get 

~ = ks) ('1'1 V 12'1'2- 'l'z V 12'1'1+ '1'1 V 22'1'2- '1'2 V22'1'!) dr1 dr2, 
g 

where 

ks= (S(1a,2b) JT(1b,2a)>, '1'1 = '1'(1'a,2b), 

'1'2 = 'I' ( 1'b, 2a). 

We transform the integral in the right side to an 
integral over the hypersurface z1 = z2• Since the 
substitutions z1 -- z 1 and z2 --z2 yield '11 1 - '11 2 

and '11 2 - '11 1, which yields 

a a 
'l't-'l'z(z~ozz)= -'l'z- 'l't(-z~, -zz), 

azl az1 

we get 

~ '1'1 ~ 'l'zl dz =- ) lJfz~ '¥1 I dz. 
OZt z1=z2 OZj Zt=Zz 

Using this property of the two other terms, we get 

~ = 2ks) [ '¥1 (!__ + ~ )'l'z J I dx1 dy1 dxz dyz dz. 
OZ1 OZ2 I z1=z2 ( 1) 

3. Let us estimate, on the basis of formula (1), 
the exponential dependence of the exchange splitting 
~ on the distance between the atoms R. It follows 
from the structure of this formula that ~ is a 
product of two overlap integrals, so that one of 
them corresponds to finding the excited electron 
near the first and second atomic cores, and the 
second corresponds to finding the unexcited elec­
tron near each of the cores. Since at large R we 
have~~ exp [-(a + {3) 2] (a 2/2 and {3 2/2 are the 
binding energies of the valence electron in the 
atom). In the case of exchange interaction of the 
atoms or splitting corresponding to different spin 
states, this dependence is of the form ~ ~ e- 2 f3R 
({3 < 0!). 

The exchange splitting ( 1) is calculated in the 
Appendix. The dependence of this type of exchange 
splitting on the distance R between the atoms is of 
the form 

2 2 1 
p=-+--1-m~-mz---, 

a ~ a+~ 

where m 1 and m2 is the projection of the moment 
of the valence electrons on the axis joining the 
nuclei. In the case of interaction of a helium atom 
in the ground and metastable 238 state, this quantity 
is equal to 

(2) 

4. Let us calculate the spin coefficient 
ks = (S(1a, 2b) JT(1b, 2a)) which enters in formula 
( 1). This coefficient characterizes the overlap of 
the spin functions of the quasimolecule for two 
states under consideration, which differ in posi­
tions of the numbered electrons. In the initial 
state, described by the spin function S(1a, 2b), 
there are two atoms with total spins J 1 and J 2, with 
projections M1 and M2 on the selected direction, 
and with atomic-core spins equal to j. The sought 
spin coefficient ks depends on these parameters. 

The spin wave function of the first atom in the 
initial state is[5J 

<1> 1/ j-M1+ 1/2 
'I' J,M,= .f 2j + 1 X;, Mt±'/2'/.;F 

1/ i +Mt + 1/2 (3a) 
± V · 2j + 1 X;, M 1'!' 1/zX±t 

where the upper sign corresponds to the case J 1 

= j + 1/2, and the lower to the case J 1 = j- 1/2. A 
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similar form is possessed by the spin-wave func­
tion of the second atom in the initial state: 

(2) v i-M2+ 1/2 
'l'J,M,= 2j+1 Zj,M,±'i~ 

1/j+M2+ 1/2 
± v 2j + 1 Zj, M,=F'hS±· 

(3b) 

Here x+' x_, !;+, and !;_ are the spin functions of the 
first and second valence electrons, corresponding 
respectively to the spin projection +1/2 and -1/2 
on the selected direction; Xjm1 and Zjm2 are spin 

functions of the atomic cores a and b with given 
value of the spin of the atomic core and its projec­
tion on the selected direction. 

Thus, the spin-wave function of the initial state 
is S(la, 2b) = lJ!J<OM l¥J<2>M, where the spin functions 

1 1 2 2 
>¥(1) and >¥< 2> of the atoms are given by formulas 
(3). The spin function of the final state will be 
represented in the form of the combination of the 
functions q,W q,<2> q,<1l q,<2l , 

J2,M1-1 J1,M2-1' J2,M1 J1,M2 
and <I>< u + <I> <2> . Here <I> <O is the spin wave 

J2,M1 1 J1,M2-1 
function of the atom made up of the atomic core a 
and the second electron, and <I> <2> is the spin wave 
function of the atom made up of the atomic core b 
and the first electron. Out of the combination of 
the given wave functions, we make up three ortho­
gonal wave functions in such a way that two of them 
are orthogonal to S(1a, 2b). Then the coefficient k8 
corresponds to overlap of the spin function of the 
initial state and of the third wave function, and is 
equal to 

k [<nr<1) nr(2) 1 <D(1) <D(2) )2 
S = -r J 1M 1 -r J 2M 2 J 2 , M 1-1 J,, M 2+1 

+ <w(i) w(2) I <D <1> <D(2> )z]'' 
J1M1 J2M2 J2,Mt+i J1":M2-i 2• 

( 4) 

Using the explicit form of the spin wave functions, 
we obtain for the spin coefficient 

ks = (2j + 1)-2 {[ [ (j -M1 + 1/2)(j- Mz + 1/z){i + M1 + 1/z) 

X (j + M2 + 1/2)] •;, + [ (j + Mt + 1/2) 

X (j + Mz + 112) (j + M1 + 1/z) (j ± Mz + 1/z)]'"]2 

+ (11 + Mz) (l1- M2 + 1) (lz- Mt) (lz ± M1 + 1) (5) 

+ (lt + Mz) (lt + M2 + 1) (lz + Mt) (lz + M1 + 1)}'1'. 
The upper sign corresponds to the case J 1 = J'2 and 
the lower to - I J 1 - J 21 = 1. In particular, in the 
case j = 0 (interaction of two atoms of alkali me­
tals), formula (5) yields ks = 1, and in the case 
J 1 = 1, j = 1/2, J 2 = 0 (interaction of metastable 
238 helium atom and helium atom in the ground 
state) we have ks = 1/2. 

5. If we take the Pauli principle into considera­
tion, then the two wave functions of the quasimole­
cule, from which we make up the eigenfunctions of 
the Hamiltonian, take the form 

'1'1 = 2-'h['¥(1'a, 2b)S(1a, 2b)- '¥(1b, 2'a)S(2a, 1b)], 
"11'2 = 2-'/, ['¥ ( 1'b, 2a) T ( 1b, 2a)- 'I' ( 1a, 2'b) T ( 1a, 2b) ]. 

The term splitting L\ corresponding to excita­
tion transfer, is as before equal to the matrix ele­
ment of the Hamiltonian, taken over the two wave 
functions under consideration. It is equal to 

L\11 = L\- 2('¥ ( 1' a, 2b) IHI IJ!'(1a, 2'b) )(S( 1a, 2b) IT (1a, 2b)) 
= L\- 2Cis ('¥(1'a, 2b) llii'I'(1a, 2'b)>, (6) 
Cis= (S ( 1a, 2b) IT ( 1a, 2b )>. 

The first term corresponds to exchange splitting 
and is determined by formula ( 1). The second term 
corresponds to long-range interaction and was not 
obtained earlier, since the long-range interaction 
was neglected in the method employed in the calcu­
lation. 

Let us calc11late the long-range part 2f th_!l 
splitting under consideration. We have H = H0 + V, 
where H0 is the Hamiltonian of the non-interacting 
atoms, and V is the perturbation operator. In cal­
culating the splitting connected with the long- range 
interaction, we assume that the first electron is at 
the atom a, the second at the atom b, and there is 
no exchange of electrons. The wave function of the 
electrons is 

'¥ ( 1a, 2,b) = IPtXZ + ~VIi, 21tiPiX~< 
. k E12-Eik 
'· 

where cpi is the wave function of the first electron, 
Xk that of the second electron.l Eik is the electron 
energy of the atoms, so that H0cpixk = EikCfiXk• and 
the indices 1 and 2 correspond to the two consid­
ered states of the atoms. Similarly 

nr(1' 2b)- .+"" V2l,1jfPIXi CJ'fX2 ~ V1j;21v2j,Jl 
-r a - 1P2X1 Li - -- ZJ ' 

' . Etz-El 2 (E!z-E·z) 2 
J, l J j, l J 

On the basis of this we obtain for the long-range 
part of the splitting, accurate to terms of second 
order in V, 

('I' (1'a, 2b) IHI '¥ (1a.2'b) > = v 12,21 + ~ v~i,2.k V~, ik. 

i, k 12- ik 

In particular, if we choose for V the dipole in­
teraction of the atoms V = K 3[DaDb- 3(Dan)(Dbn)l, 
where Da and Db are the operators of the dipole 
moment of the corresponding atom, the long-range 
part of the splitting takes the form 

('l'(1'a,2b) IHI'l'(1a, 2'b)>= R-3 [Dt:f- 3(Dt2D) 2},C / R6• 

Here D 12 is the matrix element of the operator of 
the dipole moment of the atom, taken between the 
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atoms under consideration, C is the Van der Waals 
constant, and n is a unit vector directed along R. 

Let us calculate the spin factor in ( 6). It turns 
out to be equal to 

(7) 

where the spin wave functions ~ (i) and <P (i) are de­
termined in the same manner as in ( 4), and ks is 
given by (5). As follows from (7), os = 0 if J 1 7'J2• 

Therefore long-range splitting takes place only if 
atoms of the same kind having the same spin inter­
act. Then 

bs=ks-1 { (j ~ Mt+1i2)(j- Mz+1/z) + U+Mt+1/z) 
(8) 

X {i+Mz+1/ 2)}6J,J,. 

Accordingly, the splitting of the terms of the 
quasimolecule, corresponding to the transfer of ex­
citation from one atom to another, at large distan­
ces between them, is in the case of dipole-dipole 
interaction of the atoms 

Llt = Ll + 26s{;3 [3(Dtzn) 2 - Dtz2] + ~6 }, (9) 

where the first term corresponds to exchange 

splitting ( 1), and the second corresponds to long­
range splitting. 

6. We use the result to find the cross section 
for the transfer of excitation in the case of colli­
sion of a metastable helium atom 23S and a helium 
atom in the ground state. If we neglect the elastic 
scattering, the excitation transfer cross section a-t 
is determined in a manner similar to the cross 
section for resonance charge exchange[6J, and is 
found to be 

cr = nRN2, (lOa) 

where R0 is given by the relation 

[nRo/2(a+ ~)]''•ll(Ro)= 0.28v (lOb) 

(v is the collision velocity). The exchange splitting 
in the case of interaction between a metastable 
helium atom and helium atom in the ground state 
is given by formula ( 2). The cross sections ob­
tained on the basis of formulas (2) and (10) for the 
transfer of excitation from the metastable atom 
He (23S) to the atom He (1 1S), in the absence of 
elastic scattering of the atoms, assumes the follow­
ing values: 

Energy of incoming atom, eV: 100 10 1 0.1 
Excitation-transfer cross section, lo-16 cm2: 11 15 20 25 

The experimentally measured cross section for 
the transfer of excitation from the metastable 
helium atom[7) at a temperature of 500°K turns out 
to be 5 x 10- 16 cm2 and decreases with decreasing 
temperature to a value of~ 10-17 cm2 at 4°K. The 
reason for such a behavior is that the excitation­
transfer cross section is connected in essential 
fashion with elastic scattering at thermal collision 
energies. Indeed, the energy of exchange interac­
tion between the metastable helium atom and the 
helium atom in the ground state is[t) 4.2R1. 34e-1. 07R, 
and the energy of the Vander Waals interaction[aJ 
is 58/R6, which is much lower in the distance range 
of interest. Exchange interaction leads to repulsion 
of the atoms, and at large distances between the 
atoms the energy of this interaction greatly exceeds 
the exchange splitting (2) corresponding to excita­
tion transfer. Therefore, at low collision velocities, 
a situation arises in which, at the collision impact 
parameters R0 that determine the cross section 
(10), the energy of the exchange interaction of the 
atoms becomes comparable with the kinetic energy 
of the nuclei. In this case, when atoms collide at 
impact parameters on the order of R0, the repulsion 
does not cause the internuclear distances to reach 
values at which intense excitation transfer takes 

place. Thus, elastic scattering of the atoms leads 
to a decrease in the cross section of excitation 
transfer. 

APPENDIX 

CALCULATION OF EXCHANGE SPLITTING 
CORRESPONDING TO EXCITATION TRANSFER 

The exchange splitting of interest to us is given 
by formula (1) 

fl = 2ks ~ [ '1'(1'a, 2b) (a:i + a~J '1'(1'b, 2a) ]I z,=z, 

X dx1dy1 dx2 dy2 dz, (A.l) 

where ~(l'a, 2b) corresponds to a situation wherein 
the first electron is distributed essentially around 
the atomic core a, and the second around the 
atomic core b, and the prime denotes the electron 
in the higher excited state. If one of the electrons 
is brought closer to the atomic core near which it 
is essentially concentrated, and the other is moved 
sufficiently far from this core, then the coordinate 
wave functions entering in (A.l) can be represented 
in the form of a product of atomic wave functions: 

'1'(1'a, 2b) = q>(1'a)~p(2b), (A.2) 
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where cp(1'a) and cp(2b) are the wave functions of 
the electron in the corresponding atom. 

However, the integral (A.1), which we calculate 
for large distances between nuclei, is determined 
essentially by the region of the coordinates of the 
electrons located near the axis joining the nuclei 
in the region between the nuclei. If the distances 
between the electrons themselves and between the 
electrons and the atomic cores are of the same 
order, as is the situation in our case, then the in­
teraction of one electron with the other electron and 
with the foreign atomic core will greatly distort 
the form of the wave function, compared with (A. 2), 
in the region of interest to us. We represent the 
wave functions that enter in (A.1) in the form 

'¥(1'a, 2b) = cp(1'a)cp(2b)XJ:, '¥(1'b, 2a) = cp(1'b)<p(2a)XJ:I· 
(A.3) 

The functions xi and Xu were calculated in the gen-
eral case in[4J. To determine them we used the 
fact that in the region between the nuclei they 
change much less abruptly than the atomic wave 
functions. We present their values for z 1 = z2 = z: 

1/(a-+11) ( 2x) t/rz exp [- ( x + z) /2ax] (a + ~) i/fl-t/(rz+a>p12 
XII = ' a1/ll-1/(a+fll211<a+ll> (x + z) 1/(rz+lll ( x - z) i;a. J 

(A.4) 

where K = R/2; a 2/2 and {32/2 are the binding ener­
gies of the valence electrons, p~2 = (x1 - x2) 2 

+ (y1 - y2) 2• The function Xn is obtained from xi by 
making the substitution z --- z. 

For the electron-coordinate region defined by 
the integral (A.1) we have ria' rib "' R, so that the 
distance from the electrons to their own atomic 
cores is large compared with the atomic dimen-

In addition, 

The value of XIXII for z :< 0 is obtained from the 
latter expression by making the substitution z --- z. 

Calculating the integral (A.6) with the aid of 
(A. 7), we get for the exchange splitting 

A= RPe-R(a+ll>ksCI>a;~a;pjm,m, (a, fl), 

2 2 1 (A.8) 
pE0.-+--1-m1-mz---. 

a fl a+P 

sions, and we can use for the atomic wave functions 
the asymptotic expressions 

I 1/rz-1 cp(1 a)= Ar1a. e-<l•taY1,m,(6t.Cl>), 
(A.5) 

1/11-1 
q> (2b) = Brzb e-ll••bYl,ma (62, Cl>), 

where r 1a, 81, <I>, and r 2b, 82, <I> are the spherical 
coordinates of the given electrons, reckoned from 
the corresponding nucleus, Yzm is a normalized 
angular function of the electrons, and A and B are 
asymptotic coefficients. On the basis of (A.5) we 
find, that for r 1aa 2 » 1 and r 2bf32 » 1 we have 

acp(1'a),::a -acp(1'a),. acp(2b) = ~cp(2b) 
az1 azz 

near the axis joining the nuclei (in this region r1a 
~ z 1 + K and r 2b ~ K - z2). Therefore, differentiat­
ing in (A.1) only the most rapidly decreasing fac­
tors exp{-r1ba} and exp{-(3r2a}, we obtain, accurate 
to terms "'1/R: 

~ = 2ks(a- ~) ~ cp(1'a)cp(1'b)cp(2a)cp(2b)x;IXIIIz,=za 

(A.6) 

The main contribution to the interval (A.6) is made 
by the region of the coordinates of the electrons 
situated near the axis joining the nuclei. In this 
region of coordinates ( 8 « 1) we have 

_ [ (2l + 1) (.l + m) I ]';, emeim<l> 
Yzm(S,<l>)- 4n (l-m)! m12m' 

so that the product of the atomic wave functions 
near the axis joining the nuclei is, in accordance 
with (A.5), 

cp ( 1' a) cp ( 1'b) cp (2a) cp(2b) = A2B2(x2 ~ z2) 1/a+t/11-2 

[ 2 ( + A) (~XPt2 + axpz2) J 
X exp· - a t' x- -"-7:-:----:':--'-

2(x2-z2) 

where 

(A.7a) 

(A.7b) 

Wap = A 2B2 (a- fl) (2l1 +1) (2lz+ 1) (l1 + mt)!(lz+ mz)l. 
n2 (lt-mt)!(l:i-mz)!(mt!) 2 (mzl)2 

(a + fl) 1/<Ht/ll-1/(a+ll> 
X 21/a+t/ila1111-1/(a+lllfl1/a-1/(a+fll ' 

la;p :c: ~ dy exp{- (1 ;- y) (! +})} 
0 
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X ( 1 - y) 1/a-tl/~-1/(a+fl) ( 1 + y) 1/(a+~) 

Here p1 = ix1 + jy1 and p 2 = ix2 + jy2• In the case 
m1 = m 2 = 0 we have 

2n 

X s --~dqJ__:__ __ 

0 (a cos2 <p + ~ sin2 a) i+t/(<X+fl) 
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