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A diagram technique is proposed for a system of interacting spins which permits one to study 
the thermodynamics of a Heisenberg ferromagnet with arbitrary spin S at any temperature T 
or magnetic field strength H. The relevant high-temperature expansions are presented. Ex­
pressions for the thermodynamic quantities which are valid everywhere except in a narrow 
region near the transition point T = Tcr• H = 0 are derived for a ferromagnet with a large 
radius of interaction r 0• Corrections to the phenomenological phase transition theory are 
found in this case, and it is shown that the theory is valid for IT- T cr I » T crro6 and ~-tHS 
» Tcrr09• Low-temperature expansions of the thermodynamic quantities are presented. In 
this region the results for any spin are the same as those of Dyson, but have been obtained 
by a more simple and standard method. It is shown that for large spin S the Dyson expansion 
is correct only for T « T crs-1. The thermodynamics is also derived in the region T crs-1 

.$ T « Tcr when S » 1. 

1. INTRODUCTION 

MATSUBARA'S diagram technique[1l which has 
been worked out in detail is available for studying 
the temperature behavior of ordinary Fermi and 
Bose systems. This technique permits one to find 
the thermodynamic and kinetic properties of sys­
tems in the presence of any small parameter. In 
the theory of magnetism it is accepted practice to 
use Hamiltonians containing products of spin oper­
ators of various atoms. An example is the well­
known Heisenberg model of a ferromagnet. A con­
sistent method for describing such systems has 
been worked out only for low temperatures. Even 
in this case rigorous results are obtained by a very 
cumbersome and nonstandard method, [ 2• 3l while 
the simple Holstein-Primakoff formalism is suit­
able only for large values of the spin S of the 
atom. [ 41 

In order to describe a ferromagnet at arbitrary 
temperatures, use has been made of the molecular­
field method, [ 51 and of various methods of "chain 
decoupling" in the equations for the Green's func­
tions. [ 61 However, the results obtained by these 
methods do not agree with each other, and for low 
or high temperatures they do not go over into the 
exact low- and high-temperature expansions, so 
that none of these methods yields a consistent 
method of calculation. 

In this paper we present a diagram technique 
for describing systems with spin-spin interaction; 
the technique is analogous to that of Matsubara and 

constitutes a series of successive approximations 
of the self-consistent field method. This method is 
suitable in all cases when the deviations of field 
acting on the particle from the average field are 
small, i.e., for a large radius of interaction r 0, as 
well as at low and high temperatures. The formal 
expansion parameter in this method is the recipro­
cal interaction volume r03, in analogy with the fact 
that in Matsubara's method the expansion is in 
powers of the interaction. For low and high temper­
atures the results are obtained without assuming r 0 

to be large. 
We consider an ideal ferromagnet, i.e., the Hei­

senberg model with an arbitrary exchange interac­
tion between the spins. At low temperatures we ob­
tain expansions of the thermodynamic quantities in 
powers of the temperature that coincide with Dy­
son's results. [ 2• 31 It has been found that for large 
spin S Dyson's results are only valid in a narrow 
temperature range T « T crs-1 where T cr is the 
Curie temperature. Expressions are obtained for 
the thermodynamic quantities in a broader range 
T « T cr· For high temperatures the method yields 
an expansion in terms of T cr/T. Expansions are 
presented of thermodynamic quantities up to the 
fourth order in T cr/T, which coincide in particu­
lar cases with those obtained previously. [ 1l If the 
radius of interaction r 0 is large, then for large S 
the obtained results are valid everywhere except in 
the direct vicinity of the transition point. 

For this case we present expansions of the ther­
modynamic quantities near T cr which are valid in 
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the range Tcr » IT-Tcrl » Tcrr06 or Tcr»JLHS 
» T crro9 where JLS is the magnetic moment and H 
is the external field. The first terms of these ex­
pansions correspond to the molecular-field approxi­
mation and to the results of the phenomenological 
theory. [81 The connection with other methods, in 
particular with the methods of decoupling the equa­
tions for the Green's functions is discussed in 
Sec. 8. It is shown that they correspond to an inter­
polation form of the zeroth self-consistent field ap­
proximation. The problem of the applicability of the 
results to real ferromagnets is discussed in the 
Conclusion. 

2. DIAGRAM TECHNIQUE FOR SYSTEMS WITH 
SPIN-SPIN INTERACTION 

The Hamiltonian of the model under considera­
tion is of the form 

r=Fr' 

Here Sr is the spin operator of the atom which is 
considered fixed at the site of the crystal lattice, 
r is the coordinate of the site, V(r- r') is the ef­
fective interaction potential between the spins, H is 
the external magnetic field directed along the axis, 
and JLS is the magnetic moment of the atom. 

In order to obtain successive approximations, it 
is convenient to separate in (1) the interaction with 
the average spin ( S). The free energy then takes 
on the form 

1 [ N~V0(S)2 
- ~F = N ln Sp exp - 2 + ~ ~ Sr ( V0(S) + J..tH) 

r 

+ _! ~ V(r- r') (Sr -(S)) (Sr'- (S)) ]. (2) 
2 

r-=F-r' 

where N is the number of sites, {3 = 1/T, and V0 

= ~r V(r). 
The zeroth self-consistent field approximation, 

referred to as the molecular-field approximation, 
is obtained when the last term in (2) is neglected.[ 91 

In this case the free energy is given by the expres­
sion 

~p(OJ = (y- ~J..tH)2 -ln sh(S + ih)y_ 
2~Vo sh(y/2) ' 

y = ~(Vo(S•) + J..tH). (3) 

The average spin ( sz) is obtained from the con­
dition that the free energy be a minimum, 8F /8y =0: 

(S•) = y- ~J.lH = b(y). 
~Vo 

Here b(y) is a function which is simply related 

(4) 

with the well-known Brillouin function Bs(y): 

Sp S• exp (S•y) 
b(y)= S (S ) =SB8 (Sy) , p exp •y 

= ( S + _!__) cth( S + -1- )y- -~- cth !!_ 2 2 2 2. 
(5) 

In the absence of a magnetic field H = 0, it fol­
lows from (4) that a second-order phase transition 
into a ferromagnetic state takes place in the sys­
tem at a temperature T c 

Tc = VoS(S + 1)/3. (6) 

According to (3)-(5), the thermodynamic quan­
tities vary in the vicinity of T c in accordance with 
the phenomenological theory; in particular, for 
H = 0 y increases like (Tc- T)112• 

In order to set up a diagram technique we make 
use of a method which has previously been used in 
considering anharmonic vibrations in crystals[ 101 

and which is analogous to that proposed by Abriko­
sov for describing the Kondo effect in metals. [ 11 1 

The usual Matsubara diagram technique has been 
worked out for systems of Fermi and Bose parti­
cles; we transform, therefore, the Hamiltonian (1) 
to the usual fermion (or boson) form. We introduce 
the operators ah_ and arA. of the production and 
absorption of a particle in a state with a coordinate 
r and a spin projection A., and take into account the 
fact that one and only one such particle is always in 
each site r. Then the Hamiltonian can be rewritten 
in the form 

ie = - ~ J..tHar,_+s,_,_,•ar'-'- ! ~ V (r- r') (ar,_+s,_,_,arA') 
rr' 

AA'vv' 

X(ar'v+Sw'ar'v•)+g ~ ( ~ar,_+a.,.-1 y, 
r '-

(7) 

where the auxiliary constant g will tend to infinity 
in the answers, and therefore the remaining states 
in which the number of "particles" in one site dif­
fers from unity will make no contribution to the 
statistical properties. 

The Hamiltonian (7) is of the usual form so that 
one can make use of the well-known rules of the 
Matsubara diagram technique. [1 1 Each diagram is 
proportional to certain powers of the interaction V 
and g. Since g tends to infinity, it is convenient to 
collect for each power of the interaction V dia­
grams of all orders in g. It is important that the 
last term in (7) is of the form of the interaction of 
particles located in a single unit cell. Therefore 
each connected diagram can be represented in the 
form of single-cell diagrams connected by lines of 
interaction V(r- r'). Each line of interaction con-
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nects vertices of different blocks, either sz with 
sz, or s+ with s- where s± = (Sx ± iSY)/21/ 2. Since 
g tends to infinity, in calculating a single-cell block 
the problem reduces to the calculation of the statis­
tical average of the T-product of a certain number 
of single-particle spin operators of the form 

(8) 

where :1r0 = -ysz corresponds to the zeroth self­
consistent field approximation (3)-(5). 

The Fourier component of a single-cell block 
with n outgoing lines of interaction V is given by 
the expression 

fl n n 

r~·a •... an (rolo ro2, ... , ron) = Tn ~ IT dt;ei"'i 1i [ (i' IT s«; (t;) > 
0 i=l j=l 

(9) 

where T is the T-ordering symbol, [ 11 iwm = 2wimT 
are the imaginary frequencies of the temperature 
diagram technique, Ul the average ( ... ) denotes 
Sp p0( ••• ) with Po = exp ( -{3:YC0)/Sp exp ( -{33Co>· The 
second term in the square brackets in (9) repre­
sents the sum of the products of all possible blocks 
of lower rank. This is connected with the circum­
stance that in the Matsubara technique a block may 
include only singly-connected diagrams. One must 
therefore subtract from the average of the T-prod­
uct the contribution of all unconnected diagrams. 

Let us formulate the graphical rule for calcu­
lating the blocks; its derivation is based on the use 
of transposition relations among the spin operators 
and is presented in the Appendix. The block r n is 
represented by the aggregate of all diagrams with 
m vertices s+, m vertices s-, and n - 2m vertices 
sz. Each s+ vertex has one outgoing line, each s­
vertex either one incoming or two incoming and one 
outgoing line. Each sz vertex has either one in­
coming or one outgoing line or no line at all. To 
each line there corresponds a Green's function 

(10) 

The law of conservation of energy is fulfilled in 
each vertex: the sum of the incoming frequencies is 
equal to the sum of the outgoing ones. If the dia­
gram splits into N singly-connected diagrams, the 
total number of triple S- vertices and sz vertices 
on the continuous lines being l, then the common 
factor of this diagram is (-1)lb<N-l> where b<N-1> 
is the (N- 1)st derivative of the function b(y) intro­
duced in (5) with respect to y. 

We present the analytic expressions for the sim­
plest vertices illustrated in Figs. 1, a-e: 

a) fzzz(1, 2) =' b'ilt{Jz, b) f2+-(1, 2) = bGt6(1- 2), 

c) f 3+-•(1, 2, 3) =' -bGtGzlh-2+a + b'G161-z6a, 

d) r~.+-••(,1, 2, 3, 4) = bGtGz(G1+3 + G1+4)61-Z+JH 

- b'G1Gz(6t-z+a64 + 6t-2H6a) + b"Gtlh-z6a64, 

e) r,++-(1, 2, 3, 4) = -bGtGz(Ga + G,) 61+2-3--4 
+ b'G1Gz(fl1-ab2-r. + 6HfJ2--3). (11) 

Here r n(1, 2, ..• , n) = r n(w1o w2, ... , wn); <\-k 
= o(wi- wk) is the Kronecker symbol of the corre­
sponding frequency difference, and Gi = G(wi). As 
an example of more complicated blocks Fig. 1f 
shows the diagrams for r++++ ----. 

We define the temperature correlation functions 
of the spins in the usual way: 

li 

Kav(k, iron)= ;f3 ~ ei01 n 1dt ~eik(r,-r,)(T(Sr,"(t)-(8")), 
-II r, 

(Sr,'~(O) -(Sv) )). (12) 

The function Kcry (k, iwn) is represented by the 
aggregate of all singly-connected diagrams with 
two vertices. We denote by ~ay (k, iwn> the aggre­
gate of all irreducible diagrams. Then the correla­
tion functions can be written in the form (see, for 
example, [ 121 ) 

. ~zz (k, iron) . 
Kzz (k, Zron) = 1 - l3 V k~zz (k, iron)' 

. ~+-(k, iron) 
K+-(k, zron} = 1-j3Vk~+-(k, iron) (13) 

As has been shown below, in the case of a large 
radius of interaction and also for low or high tern­
peratures it is sufficient to restrict oneself in ~a{3 
to the simplest diagrams shown in Figs. 1, a and b. 
Substituting for ~a{3 expressions (lla and b), we 
obtain for the correlation functions in this approxi-
mation 

The average temperature correlation function 

0 0 
---<>--- + _J .0 0 'I+= 0 + + 0 .....,.... -

a b c d e 

l+V+~ - -+y +-
f 

FIG. 1. 
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Klz(k) = Kzz(k, t) lt=o is obtained from 
Kzz(k, iwn) by summing over the frequencies: 

n 

A formula for KJz corresponding to (14a) has been 
previously obtained by deGennes and Villain. [ 13 ] 

The excitation spectrum is given by the poles of 
the analytic continuation K(k, w) of the correlation 
function K(k, iwn>· [1, 12 ] Making in (14b) the sub­
stitution iwn- w and taking into account the self­
consistency condition (4), we obtain in this approxi­
mation for the spectrum of the spin waves 

(15) 

The properties of the spin waves and of the cor­
relation functions are discussed in more detail in 
another paper. [ 14] 

Expressions (14) take into account the main ef­
fects of the self-consistent field; therefore, instead 
of the initial interaction V it is more convenient to 
introduce effective interactions taking into account 
the particle correlation and the presence of spin 
waves: 

vk 
Vzz(k, i(t),) = Vk + ~VkKzz(k, iuln) Vk = 1 ~ .. I'" , 

- J!k) UnO 

(16a) 
F 

F+-(k, iw") = V1, + BVkK+_(k, icon) Vk 1 l' 1'bG( 
- fJ · k ,Wn) 

(16b) 

The interaction yzz connects the sz vertices of a 
single block or of different blocks and will be shown 
by means of a dashed line. The interaction v+­
connects a s+ vertex with a s- vertex and will be 
represented by a wavy line. 

3. CALCULATION OF THE FREE ENERGY 

It has been shown previously[ 9] that the molec­
ular-field approximation (3) represents for a large 
radius of interaction r 0 the main term of the ex­
pansion of the free energy F in powers of r03• It 
does not however take into account spin correlation 
effects, in particular the presence of such correla­
tions in the high -temperature region and their in­
crease near the transition temperature T cr- For 
small T expression (3) yields an exponential de­
pendence of the thermodynamic quantities on the 
temperature, whereas the following terms which 
take into account the particle correlation yield for 
small T a power contribution. It is therefore 
necessary to calculate the following terms of the 
expansion of F. 

The first correction terms to F are shown 

--' I 
I 
\ , ___ ..... 

a 

' ---' ' ' ' \ () I I ..... --~- ..... I I 
' I ' I \ I 

I I 1 / 
/'-.,_~:: \ l ) I~ ~\ ) '-....... _!_ ...... / 

b ' - u c d 
e 

() I~) 0 GZ 
cJ~O+o+o 

g 

FIG. 2. 

CD 

graphically in Fig. 2. In diagrams 2a and 2b there 
is single integration over the momenta, in diagrams 
2c-g double integration. Therefore the first two di­
agrams of Fig. 2 are of the order of r03, the re­
maining-of the order of r 06• [ 9] More complicated 
diagrams contain a larger number of integrations 
over the momenta and correspondingly higher pow­
ers of r03• In writing down the diagrams analyti­
cally it must be kept in mind that each vertex point 
in diagrams 2c-g is the sum of several terms 
shown in Fig. 1. Thus, for example, the diagram 2g 
is given in detailed notation by the sum of the three 
terms shown in Fig. 2g. 

In accordance with the general rule for writing 
down diagrams/ 1] the nth term of the expansion of 
diagrams 2a and 2b in powers of V contains the 
factor 1/n; for this reason one obtains instead of 
geometric progressions of the type (14) and (16) 
logarithmic expansions: [ 9] 

~Ji'(1l= !_~ ln(1- ~V~r.b')+ ~ ~ ln(1- ~VkbG(wn)) 
2 li: k n 

= 1. ~ In(1- fJVkb') + ~ In [1- exp(~Vkb- Y)] 
2 

-ln(1- e-Y\ (17) 

The first term in (17) describes the thermody­
namic contribution of the fluctuation of the z com­
ponents of the spins. The second term takes on in 
conjunction with the self-consistency condition (4) 
the form of the free energy of an ideal Bose gas of 
spin waves with a spectrum given by formula (15) 
and depending on the temperature. 

The value of y is determined from the condi­
tion that the free energy is a minimum, 8F I 8y 
= 0. [ 9J In the approximation under consideration 
we have 

y-~11H b"~ ~vk 
(Sz)= BVo =b+2 rt 1-~Vkb' 

- ~ [n~r.(1- ~Vkb')-ny]. (18) 
k 
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Here 

In the first-order terms in (18}, as in (17), one 
must substitute in accordance with the method of 
successive approximations y = y0(T, H) obtained 
from the zeroth approximation (4). 

In (18) the main, first term corresponds to the 
molecular-field approximation. The second term 
describes the contribution of the fluctuations sz, 
and the third corresponds to the spin waves. For a 
large radius of interaction r 0 the last terms are 
small corrections of the order of rQ" 3 to the first 
term. However, for small T the entire tempera­
ture dependence is determined by the Bloch spin­
wave term in (18). 

Taking into account the fact that 8 p<o >;ay j y =Yo 

= 0, one can readily show that an account of the 
first correction to y given by (18) results in the 
appearance of a second-order term in r 03 which is 

( fJF(1J)2( fJ2F(OJ \-1 
oF<2l=- - 2--. 

ay I fJy'2 ; 

B 11 o [ 1/' B v k 

=-2(1-BVoli) -2-~1-BVkb' 

-~ (nk(1-BVkb')-nu)r. 
k 

(19) 

Graphically this term is shown by the sum of pairs 
of single loops joined by one dashed line. Together 
with other second-order terms which are repre­
sented by diagrams 2c-g and in which one must 
substitute y from the zeroth approximation (4), we 
obtain for the total free energy in the second ap­
proximation 

_ (y- Bf.l.H)2 1 sh(S + 1/z)Y + 1 "1 1 (1 - b') BF - ------- n --- LJ n ak 
2a0 sh(y/2) ? k 

+ ~ln[1-exp(bak-y)]-ln{1-e-Y) 
k 

-- bill+ 0 ~ --+-1 [ a (b")2 ]( b'a 2 \2 
8 1 - aob' 1 - b ac1 J 

q 

(b") 2 ~ aq ak Uk+q b" 

-12 1- b'a--;;1~ b'ak 1-b'akH- 2(1- b'ao) k,q 

b' a 2 "" X~-+ LJ (ak- ao) (nk- ny) 
,1 1- b aq k 

- b' any~ aq 2 

2 fJy 1- b'a.q 
q 

v 1 
-2(1-b'ao) ~nknq(akaq-aoak-q)- 2(1-b'ao) 

k,q 

X~ (ao- ak- aq + ak-q) (nk- ny) (nq- ny). (20) 
k,q 

Here we have introduced the notation Cl!k = j3V k, 
Ek = y - bak, and y is understood everywhere to be 
its "zeroth" value given by Eq. (4). In deriving (20) 
we used the identity 

~ ak = BV(r = 0) = 0. 
k 

The terms of the second approximation in (20) 
have a simple physical meaning which is obvious 
from the diagrams of Fig. 2. Thus the first and 
second terms correspond to the contribution of the 
correlated fluctuations of sz; the third and fifth 
terms correspond to correlated fluctuations of 
longitudinal and transverse components, in partic­
ular to scattering of spin waves by fluctuations of 
sz. Finally, the two last terms describe the inter­
action of transverse fluctuations, including the kin­
ematic and dynamic interactions of spin waves. [ 2• SJ 

It is seen that for small values of the wave vector 
the interaction of the spin waves, both with one an­
other and with the fluctuations of sz, vanishes at 
all temperatures. 

In the following treatment of various limiting 
cases it often turns out to be convenient not to de­
termine y from the zeroth approximation (4), but 
directly from the condition that the free energy is 
a minimum. In this case one need not add in ex­
pression (20) the term (19), i.e., one sets formally 
in all terms of the second approximation (2) a0 = 0, 
and y is obtained from the condition 8F /8y = 0. 

4. HIGH TEMPERATURES 

Let us consider the range of high temperatures 
T » T cr and weak magnetic fields f3J-LH « 1. In this 
case the value of y will according to (4) also be 
small, and the function b(y) can be expanded in a 
series in powers of y: 

b(y) = ay- cyS/3 + ... , 
. S(S+1) 
a= 

3 
S(S+1)(SZ+S+ 1/z) =~a2 +~. 

c = 15 5 10 

(21) 

According to (6) the transition temperature T cr 
is of the order of a V0• Therefore for T » T cr the 
quantities b' Cl!k, and baky-1 ~ af3Vk in (20) are 
small, and the self-consistent field expansion goes 
over into the perturbation-theory series in powers 
of Cl!k. In an actual calculation it is more convenient 
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to expand in (20) formally in powers of O'k, and only 
then expand b(y) and b' (y) in y. As a result we ob­
tain for the free energy 

3 a3 

~F = -ln(2S + 1)--a2 ~ ak2 - -~ ak3 

4 k 2 k 

a2 ~ a(~JtH)2 a2(~~tH)2 +-LJ UkUqUkH - + ::-c-:__:_:_.:.__~ 
8k,ct 2(1- aa0) 2(1- aa0) 2 

X [ (a + .!_) ~ a~tz + ( az + ~) ~ ak3 
4 k 6 k 

- (!az+~a+_!) ~ai<aqai<+q]. 
5 10 15 k,q 

(22) 

For the sake of conciseness and clarity we re­
tained in (22) in the denominators the expressions 
aQI0 resulting from the zeroth approximation (4) for 
y, although for large T these denominators should 
also be expanded in aa0• 

By differentiating (22) with respect to T or H 
we obtain high-temperature expansions of various 
thermodynamic quantities. Thus, for example, we 
obtain from (22) for the isothermal susceptibility 

XT 

Xr =- 02F / = f1 2{ia [1+aao + a2ao2 - a( a+~)~ ak2 
f)H2 T 4 k 

+ a3a03 - 2a2 (a+ __1: lao ~ ak2 - a2 (a+ 1 ) ~· ak2 
\ 4/ k \ 6 k 

-a(~a2 + 1~ a+ 1~) ~ akaqak+q J. 
k,q 

(23) 

For the case of nearest-neighbor interaction in 
cubic lattices (23) goes over into the results of 
Brown and Luttinger. [7 1 

In the high-temperature case under considera­
tion successive approximations in F are compara­
tively simple to calculate. Therefore the proposed 
diagram technique can be used to set up the high­
temperature expansions, in particular in computer 
calculations of the Heisenberg model for arbitrary 
spin S. [ 151 In the case of the Ising model there are 
no diagrams with transverse interaction (16b), and 
the diagram technique is even further simplified. 

5. THE REGION NEAR THE TRANSITION 

For temperatures close to T cr and low mag­
netic fields {3p.H « 1 the value of y = {3(V0( sz) 
+ p.H) is small as before, and one can use for b(y) 
expansion (21). However, in expanding the free en­
ergy (20) in powers of y and T- Tc integrals ap­
pear which diverge for small momenta k. These 
divergences indicate that F is nonanalytic at the 
transition point; this nonanalyticity reflects the in-

crease in the long-wave correlations near T cr· 
The divergences should be removed in the same way 
as in [ 91 : in the denominators and under the loga­
rithm sign one must retain along with V0 - Vk term 
terms of the order y2 and T - T c· 

Thus the correlation function of the first approx­
imation (14a) entering in (20) takes on for small k 
the form 

I r T cy2 Vo- v,. J K,,(k,O)=a f --1+-+--
~ Tc a Vo 

(24) 

In (24) ~i denote the principal values of the 
tensor ~rxa Xf3V(r)V01, and ki are the projections 
of k on its principal axes. For cubic lattices ~i 
= ~/3 where R0 is the mean square of the radius 
of interaction. The values of y and Tc in (24) are 
determined by the zeroth approximation (4) and (6). 
In accordance with (4) in the absence of a magnetic 
field y = 0 for T > T c and cy2 = 3a(T c - T) for 
T < Tc so that (24) is of the form of the Ornstein­
Zernike equation. 

Just as in the previous paper, [ 91 in finding the 
second-order terms in (20), it is essential to take 
into account the renormalization of T c which can 
be obtained with the aid of the first-order approxi­
mation (18). Instead of using the general expres­
sion (20), it is more convenient in the calculations 
to expand each diagram 2c-g separately in y and 
T- Tc, since this results in considerable cancella­
tion. Retaining in each order only the most singular 
terms, we obtain 

Here 

't'= 

ay4: cy~ 
ayh+--+-

2 12 

cyz 
v=-. -+'t'; 

3a 

- _:__ 3y6 = ~ (1 + 1 ) 31'6 . 
'Y- a2 2nr03 5 2S(S + 1) 2nro3 ' 

(26) 

A denotes an immaterial constant of the order of 
unity which can be included in the renormalization 
of Tc. 

In (25) and (26) y denotes a quantity determined 
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by the zeroth approximation ( 4) which is near the sent the explicit form of the dependence of y on 
transition of the form cy3 + 3ayT - 3ah = 0. We pre- h and T: 

The quantity r~ entering in the formula for y 
in (26) is defined in the general case as 

1 11 3 ~ II 3 -y3-;o1Xo~oa 
r 03 =-Det'h - LJ XaXa V (r) = , 

Vc I Vo r Vc 
(28) 

where Xoi are the same as in (24), and Vc is the 
volume of the cell. For cubic lattices this is sim­
ply the ratio R3/v c; in the general case r~ also 
characterizes the relative volume of interaction. 
The equations of this Section, including (24), have 
a region of applicability only for r~ » 1. For the 
usually considered simple, face-centered, and body­
centered cubic lattices with nearest-neighbor inter­
action r 0 = 1, -./2, and f3 respectively, so that the 
self-consistent field approximation is in these in­
stances unsuitable for describing the region near 
the transition. 

It is seen from (25) and from Eqs. (29) presented 
below that the expansion parameter near the transi­
tion is yu -112 ~ r03 u - 112 . Therefore even for large 
r 0 the expansion used becomes inapplicable for IT I 
< r 09• In this connection it is also impossible to ob­
tain the value of the transition temperature T cr 
with an accuracy greater than given by the first­
approximation formula (26). 

From (25) one can find the behavior of all ther­
modynamic quantities close to the transition. Thus 
we have the average moment ( sz) and the specific 
heat CH in various regions of variation of the tem­
perature and magnetic field: 

a) T=(T--Tc)/Tc>O, ch2 /aT'~1: 

(Sz) = ah [1 + ~_}'___ + yz\( ~ln -1-- ~ln 3 + 2\ 
T 3 lT T 9 T 9 3 ) 

ch2 ( 1 29 y y 2 ( 20 1 16 35 \ \] 
- a•s ,T+I8-y, +-;r 27ln-;-f7ln3+58f ); ; 

y2( 5 1 4 7 \ \] +- -ln----In3 + 8- 11 . 
T 3 T 3 18 ' 

(29a) 

(27) 

( ysa )'Is ( 5 a !1 ( 2 \ 16 2 \ 
+ - -In- --In 1+-=- 1+-+-=. 

9ch2 • \ 27 9ch2 9 l"3 ' 27 l"3 · 

_ •( ___!!:___)'/a( 1 +( y6a f' ( ~ :_ 1"3 ))] ; 
9ch2 9ch2 1 \ 2 9 

( 5 1 125 )) ( ch2 )'I• y ( 7 55 y \] 
x sin 2t + 48 + 3at3 l"t 8-16 -yu•J · 

(29c) 

Equations (29) illustrate the structure of the asymp­
totic expansions near the transition. 

The susceptibility xT is proportional to the de­
rivative of ( sz) with respect to H. We see from 
(29c) that below T cr the susceptibility in a weak 
magnetic field tends to infinity as H-112, a fact 
which is connected with the existence of spin waves 
in this region. 

6. LOW TEMPERATURES 

At low temperatures the quantity y, equal to 
{3(V0(sz) +~H) tends to infinity. We therefore have 
with an accuracy up to exponentially small terms 

b = S, b1 = 0, ny = 0. (30) 

Equation (20) takes on the form 
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VoS2 
F =--- ~tHS + T ~ln(1- exp(-~ek))· 

2 k 

1 
-- ~ (Vo- V1,- Vq + Vk-q)nknq, (31) 

2 k,q 

where €k = S(V0 - Vk) + j.LH. The third term in this 
formula represents the Bloch free energy of an 
ideal Bose gas of spin waves, and its expansion in 
powers of the temperature has the well-known 
form: 

where 
00 

Za.(x) = L n-«e-nx, 
n=l 

and the constants A.1 and A.2 depend on the type of 
lattice and are expressed for cubic lattices in 
terms of the radii of interaction in the following 
form: 
At= 3/w, A2 = 1/a2(20vt2 - 24vvt + 45v2 - 8p), 

v = ~ rW(r)/R0Wo, v1 = 31~ x4V(r)/Ro4Vo, 
r 

r 

Thus in the case of nearest-neighbor interaction in 
a simple cubic lattice 

v = Vt = p = 1, At= 3h, A2 = 33/32. 

The last term in (31) describing the interaction 
of spin waves is proportional to T5r06• It is equal 
to the Born approximation for the analogous term 
obtained by Dyson. [2, 31 The applicability of the 
Born approximation in this instance is connected 
with the large radius of interaction-the following 
approximations contain higher powers of r 03• 

The presented diagram technique permits one to 
obtain Dyson's low-temperature expansions also 
without assuming r~ to be large. In the case of low 
temperatures the technique becomes considerably 
simpler. Condition (30) permits one to take into ac­
count in the vertex blocks (9) and (11) only singly­
connected diagrams, since the multiply-connected 
vertex diagrams are proportional to the derivatives 

FIG. 3. 

of b(y). It is therefore now possible not to split the 
diagrams into single-cell blocks connected by lines 
(16b), but instead to draw directly lines represent­
ing sums of single-cell diagrams with analogous 
multi-cell ones. This is illustrated by the diagrams 
of Fig. 3 in which the dotted line represents the ini­
tial interaction V. It is seen that the lines G(wn) 
coming into each single-cell block are replaced 
after summing by thick lines which we shall denote 
by TGk: 

Gk = 13 [G(wn) + G (wn) j3V kbG(wn) + G (wn) (j3V kbG(wn) )2 

+ ... ] = 1/(ek- iwn), (33) 

where Ek is the same as in (31). 
The resulting diagram technique coincides with 

that of Dyson. It describes a Bose gas of interact­
ing spin waves, and is analogous to the technique 
for the usual nonideal Bose gas. [ 11• 1l 

At low temperatures the density of spin waves is 
low, and in calculating the thermodynamic functions 
one can make use of the gas approximation. [iT, 11 

The main contribution corresponds to the ideal gas 
and is given by the third term of (31). The follow­
ing term describing the interaction of two spin 
waves is of the same form as the last term in (31), 
however instead of the Born amplitude V0 - Vk 
- V q + Vk _ q one must write the exact two-particle 
amplitude. Neglecting higher powers of the density, 
i.e., of the temperature, one can use the ladder 
proximation to determine this amplitude. [ 17• 11 

The equation for the amplitude is shown graphi­
cally in Fig. 4. It is of the form 

A (Pt.P2,ps,P4)= ~ (Vp, -q- Vq){bp,-q + 6p,-q 
q 

+ GqGp,+p.-q (A ( q, Pt + P2- q, Ps, P4) +A (Pt + P2 

-q,q,pg,p,))], (34) 

where Pi and q are the "four-dimensional" mo­
menta (p, iwn>· The amplitude A depends para­
metrically only on the sum of the frequencies of the 
colliding spin waves w1 + w2 = w3 + w4• Summing 
the kernel of Eq. (34) over wq, we obtain 

04 . . 
1 2 

+g·.·4 +2'·.-'.n.g 
--- - 10 1 z 

1 z 1 z 
FIG. 4. 
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A (P~>P2>Ps, P•) = ~ (V p, -q- V q)[6p 3-q + 6p,-q 

q 

1 + nq + np,+p,-q + + .( + )(A(q,p1+P2-q,ps,p•) 
8q 8p 1+p 2-q - ~ W! (!)2 

(35) 

At low temperatures one can neglect in the numer­
ator of the kernel Ilq and np1 + p2 _ q compared with 
unity. In addition, in calculating the free energy 
the important frequencies w1 + w2 ....., T « Eq ....., V0S. 

One can, therefore, ignore in the denominator of the 
kernel the term i(w1 + w2). The solution of this 
equation must be substituted in the last term of (31) 
for the free energy in place of V0 - Vp - V q + Vp _ q· 
Equation (35) has been obtained by Dyson[ 2• 31 who 
solved it for the case of cubic lattices with nearest­
neighbor interaction [Eqs. (79) in [ 21 and (114) in 
[ 3] 1 • 

The Born approximation for the amplitude em­
ployed in (31) turns out to be applicable not only for 
a large radius of interaction but also for large spin 
S, since in (35) Eq and Ep1 +p2 _ q....., V0S. However, 

for large S the region of applicability of the low­
temperature expansion turns out to be very narrow. 
Indeed, as has been shown in Sees. 2 and 5, the 
transition temperature is for large S of the order 
of V0S2, and in the derivation of (31) and (32) we 
have used the fact that y » 1, i.e., T « V0S 
....., Tcrs-1• Equation (32) is in this case an expansion 
in the parameter STTc~ and becomes inapplicable 
for T ~ Tcrs-1• 

7. REGION OF LARGE SPINS S AND 
TEMPERATURES T0 r/S .$ T« Tcr 

The general method presented in Sec. 3 permits 
one to obtain for large S an expression for the free 
energy also in the region T....., Tcrs-1 without as­
suming r 0 to be large. In this region we have with 
an accuracy up to small exponential terms of the 
order of e-Sy....., e-Tcr/T 

b(y)= S- ny. (36) 

Therefore in all diagrams, except those collecting 
in v+- (16b), the expansion in the diagram technique 
is in the parameter {3V0 and f3Vk .:S 1/S. 

Substituting (36) in Eq. (20) and expanding in 
powers of 1/S, we find that the quantity ny enter­
ing in b(y) and in other parts of the formula can­
cels, so that the expression for the free energy is 
as before with an accuracy up to higher powers of 
1/S of the form (31). But whereas for T « T crS-1 

the free energy was determined by the long-wave 
portion of the spin-wave spectrum, in the region 

T"'TcrS-1 the short-wave portion of the spectrum 
becomes important; therefore the temperature de­
pendence of the free energy depends on the type of 
crystal lattice and the explicit form of the inter­
action V(r). 

An interesting result is obtained in the other 
limiting case V0S « T « V0S2. From (31) we again 
obtain a power expansion, but now in powers of 
Tcr(ST)-1 and TTc~: 

VoS2 ( T Ck 8k2 ) F= ---S11H-T _l: ln-+-+--
2 k Ck 2·T 24T2 

_ T2 ~ Vo- Vk- V q + V k-q . 

2 k, q 8k8q 

Hence we obtain for the spontaneous moment 
and the specific heat 

(37) 

[ T ( V 08 V02S2 \ ( T )2] (Sz)=S 1--- c1+-+--1-c2 I--
VoS2 T 12T2 I Vo82 ' 

I SVo)2 T CH= 1~cs{- +c2-. 
' \ T l'oS2 

(38) 

The constants ci depend on the type of lattice and 
are determined as follows: 

Thus for a simple cubic lattice with nearest­
neighbor interaction 

Ci = 1.516, C2 = f, C3 = 7/72. 

The results (38) have a simple physical meaning. 
For large S the temperature Tcr....., V0S2 will be 
much higher than the energy of the spin waves for 
all k: Ek .$ V0S « V0S2• Therefore for V0S « T the 
occupation numbers of spin waves nk = (ef3Ek- 1)-1 

....., TEk1 are large for all k. On the other hand, the 
interaction of spin waves with one another is pro­
portional to T(V 0S2) - 1 ....., TT(;~, and the thermody­
namic contribution of the fluctuations of the moment 
is proportional to e-f3Tcr. Thus we have in the 
range Tcrs-1 « T « Tcr in the first approximation 
only a classical ideal gas of spin waves. Therefore 
the main term in the specific heat is equal to unity 
and does not depend on the type of lattice and the 
form of the interaction, in analogy with the law of 
Dulong and Petit in the case of phonons. The follow­
ing term, proportional to the temperature, in the 
specific heat is due to the interaction of spin waves 
and is analogous to the term due to the anharmon­
icity of the lattice vibrations. 
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8. COMPARISON WITH OTHER METHODS 

At low temperatures the method which has been 
presented leads to the same results as the meth­
ods of Dyson[ 2, 31 and Holstein and Primakoff. [ 18 • 41 

However, Dyson's method is very cumbersome, 
while the Holstein-Primakoff method is only appli­
cable for large S. In addition, in the Holstein­
Primakoff method one must make approximations 
in the initial Hamiltonian and it is difficult to esti­
mate their accuracy. Thus the new results of Sec. 7 
on the thermodynamics in the range Tcrs-1 .$ T 
« Tcr could have also been obtained by the Hol­
stein-Primakoff method, but it is not clear whether 
this method is applicable in this range. The dia­
gram technique presented above, as the method of 
Matsubara, permits one to obtain a general diagram 
expression for the free energy, and only then dis­
card diagrams which are small in any parameter, 
for example TT0~ . 

For T ~ T cr the thermodynamics of a ferromag­
net has been described by the molecular-field 
method, or by the methods of Tyablikov, or Callen, 
et al. [ 61 -by decoupling chains of equations for 
Green's functions. All these methods are applicable 
only for large r 0; in this case they yield coinciding 
results corresponding the zeroth self-consistent 
field approximation (3)-(6). 

Let us consider, for instance, the Bogolyubov­
Tyablikov equation for the average moment with 
spin S = 1h which is in our notation of the form[ 61 

( ) ~ ~(Vo_.Vk)(S•) +~11H 
1 = 2 sz ..LJ cth -'-'--------'-----'---' 

k' 2 

or 

y- ~JlH = ~ th Y2j[1 + 2th ~ ~ (nk- ny) J (40) 
k 

In the case of a large radius of interaction the 
quantity vk decreases rapidly for k z rQ" 1' so that 
(40) goes over into (4) with accuracy up to terms 
~ r-3 0 • 

As can be seen, for example, from a comparison 
of (40) and (18), in the decoupling methods the 
terms after r03 are taken into account incorrectly. 
However, at low temperatures of all correction 
terms in (18) only the Bloch component ~knk, cor­
responding to the contribution of free spin waves, 
contributes a nonexponentially small contribution. 
Comparing with (40), we see that in this region the 
first correction term of (40) also coincides with 
(18). Therefore the decoupling method is actually a 
sensible interpolation form of the zeroth self­
consistent field approximation. 

We note, however, that the usual application of 

this method to the case of temperatures that are not 
low and to nearest-neighbor interaction can, as has 
been shown in this paper, yield only a qualitative 
description. In addition, in the decoupling methods 
there is no clear-cut scheme of constructing suc­
cessive approximations. Therefore in proceeding 
to terms of subsequent orders which describe in 
particular the interaction of spin waves well-known 
difficulties appear even in the low-temperature 
range. [ 61 Thus, for example, for spin % for small 
T one obtains a contribution proportional to -r3 to 
the average moment instead of the Dyson term 
~ T4 found in Sec. 6. 

At the transition point both the de coupling meth­
ods as well as the molecular-field methods lead to 
a jump in the specific heat and give no indications 
of the existence of a stronger singularity; as has 
been shown in Sec. 5, such indications appear when 
consistent account is taken of the following self­
consistent field approximations. Analogous difficul­
ties of the decoupling methods in describing the dy­
namics of spin waves are discussed in [ 141 • 

9. CONCLUSION 

This paper is basically of a methodological na­
ture. The physical results are therefore for the 
most part not qualitatively new. Thus the results of 
Sees. 4 and 6 represent a generalization of well­
known high- and low-temperature expansions to the 
case of arbitrary lattices and interaction of not only 
the nearest neighbors. The results of Sec. 5 are 
valid only for a large radius of interaction and con­
tain corrections to the phenomenological theory of 
phase transitions. Qualitative results refer only to 
the region of large S and small T considered in 
Sec. 7. Taking into account the statements of Sees. 
6 and 7, the temperature dependence of the specific 
heat CH(T) for large spin should be peculiar. Fol­
lowing a rapid increase in the region of low tem­
peratures in accordance with a (ST/Tcr>312 law, 
the specific heat reaches in the region Tcr/S ~ T 
« T cr in the case of all lattices a plateau CH = 1, 
and the subsequent growth of CH starts only at 
T ~ Tcr-

The weak-field susceptibility is anomalously 
large ~ H-112 throughout the region below the tran­
sition. Applied to real ferromagnets this result is 
valid for sufficiently strong fields, since it is sen­
sitive to the anisotropy field and to the magnetic 
interaction. These interactions are relativistic and 
for the majority of ferromagnets they are small 
compared with the exchange interaction which has 
been taken into account above. Therefore the basic 
thermodynamic properties will change little when 
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these interactions are taken into account. However, 
the magnetic interaction and the anisotropy field 
are important for describing the susceptibility in a 
weak field, as well as the domain structure and hy­
steresis; they can be taken into account by the 
method described above. 

In order to apply the results to ferromagnetic 
metals, one must take into account the exchange in­
teraction of the spins, i.e., of the electrons of the 
filled bands with the conduction electrons. It can be 
expected that taking this into account will reduce 
to a change in the effective interaction, and will not 
affect the magnetic part of the thermodynamic 
quantities. In ferrodielectrics the radius of inter­
action is usually small; therefore the results apply 
to them basically at high and low temperatures. We 
considered above only ferrodielectics with a cell 
containing one magnetic atom, like for example, 
EuO. The majority of ferrodielectrics are antifer­
romagnets with uncompensated spins (ferrites). The 
obtained results apply to these without appreciable 
changes. Excitations and fluctuations with small k 
in which the averaged characteristics of the cell 
are thus important at low temperatures and near 
the transition. 

The authors are grateful to M. Sh. Giterman for 
a useful discussion of the results. 

APPENDIX 

We present the proof of the rule for writing down 
the vertex blocks r n which we formulated above 
[see formula (9)]. 

Let us first calculate the first term of (9) which 
represents the average of some number of opera­
tors Sa(t). Let us first consider the case when we 
have on the left the operator s+: ( s+ sz ... s-) 
= Sp p0S+sz ... s-. We make use of the assumption 
employed by Luttinger to prove the Wick theorem 
for Bose and Fermi operators in statistics, [ 191 and 
find the average of the commutator 

(S+(SzoooS-)-(SzoooS-)S+) = ([S+,Sz]oooS- (A.1) 

+ 0 0 0 + sz 0 0 0 [S+, S-]) 

On the other hand, in the second term of the left­
hand side of (Ao1) one can carry out a cyclic trans­
position of the operators, and use the relation: 
s+ Po = eY p0S+. As a result the left-hand part of 
(A.1) takes on the form (1- eY)( s+sz ... s-). Taking 
into account that [S+, sz] = -s+, and [S+, s-] = sz, 
we obtain from (A.1) 

(S+Sz 0 .. S-) = nu[(S+ 0 .. S-) + .. 0- (Sz .. 0 Sz)]; 

nu=(eY-1)-10 (A.2) 

Thus the average of the product has been reduced 
to a sum of averages of products of a smaller num­
ber of operators. The left-hand operator s+ has dis­
disappeared in each product, and one of the opera­
tors s- or sz has been replaced by sz or -s+ re­
spectively. 

In the case when the operator s+ is not on the 
left the average of the product is calculated analo­
gously. In this case s+ is first transposed to the 
left, commutations with sz and s- resulting in 
terms of the same form as in (A.2) but with a fac­
tor + 1 and -1 for sz and S- respectively. As a 
result 

(Sz 0 0 0 S+ 0 0 0 S-> = (n 11 + 1) (S+ .. 0 S-> + ... 
(A.3) 

Terms obtained by contraction of the operator s+ 
with operators on its left enter with a factor ny + 1, 
and those on the right with a factor ny. Taking into 
account that the time dependence of the operators 
is given by 

s+ (t) = e:Je,t S+e-:lfot = e-11tT s+; S-(t) = eY1TS-; S 2 (t) = S 2 , 

(A.4) 

we obtain 

('is+(tt)S2 (t2) .. OS-(tn)> = G(t1- t2)(TS+(t2) 

.. oS-(tn)> + .. o-G(tt-fn)(J'Sz(t2)o .. S 2 (tn)), 

{ n t>O 
G(t) = eYtT 11 

n11 +1 t<O 
(A.5) 

Continuing this process, we finally find that the 
averaging sign will include one or several opera­
tors sz. 

In the graphical representation of vertex blocks 
by diagrams of the type of Fig. 1 the number of 
lines representing G functions in singly-connected 
diagrams will only be one less than the number of 
vertices. These diagrams correspond to cases 
when only one operator sz remains and therefore 
the expression represented by them contains the 
factor ( sz) = b (y). A diagram that splits into N 
singly-connected diagrams is proportional to 
( (Sz)N). In the second term of (9) one will then ob­
tain expressions which are represented by the same 
diagram and contain the same kind of products 
G(wi) and o(wi). Each vertex splits into an aggre­
gate of singly-connected diagrams in all possible 
ways. 

We shall prove that in this case the difference in 
(9) is proportional to brN-u(y). We assume that 
this rule is obeyed for M < N. The subtracted terms 
are then proportional to 
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(b[M;-ll)m; N! 

M;! m;! 

(b[M;-ll)m; N! 

M;!mi! 
(A.6) 

In order to express ( (Sz)N) in terms of the 
fWlction b(y) and its derivatives, we use the equa­
tions 

z[NJ 
((Sz)N) = -; 

z 
z' 

b=-; 
z 

z = Sp eYs•. 

Using Leibnitz 's rule, we obtain 

((Sz)N) = _i_ (bz)[N-1] 
z 

= ~ (N- 1)! b[nl((S•)N-n). 
n n! (N -1- n)! 

(A. 7) 

(A.8) 

We assume that each average ((Sz)N-n) entering in 
the right-hand side of (A.8) is given by the first 
term of the right-hand side of (A. 6) with the re­
placement N- N- n. Substituting in (A.8) the ex­
pressions ( (SZ)N -n), we convince ourselves that the 
same assumption is also correct for ((Sz)N) and for 
N = 1 the average ( sz) = b according to definition 
(5). 

Thus after the subtraction (A.6) the coefficient 
for the N -connected diagram in (9) is b[N -1l (y). 
Carrying out a Fourier transformation over the 
times t11 t2, ... tn and using for the Fourier com­
ponents of the Green's function G(t) of (A. 5) the 
well-known expression (10), we obtain the rule for­
mulated in the paper. 
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