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The response of a system to a weak thermal perturbation that varies arbitrarily in space and 
time is considered. A rigorous proof of the fluctuation-dissipation theorem is presented for 
the corresponding generalized susceptibility, which plays the role of the heat capacity of the 
system and is "complex and dependent on w and k." 

INTRODUCTION 

THE response of a linear dissipative system to 
thermal perturbation was considered in a number 
of papers [t, 2l under the assumptions that the 
period of the perturbation is much shorter than 
the relaxation time of the system and that the 
spatial inhomogeneity is weak. In this case, the 
response of the system does not contain temporal 
or spatial dispersion, the phenomenological equa­
tions are valid in the usual form, and the problem 
reduces to finding statistical transport coefficients 
such as the thermal conductivity. 

Cases are encountered, however, when the 
thermal perturbation, while still small, does not 
satisfy the foregoing properties of weak temporal 
and spatial inhomogeneity. In such cases it is 
necessary to take into account the dependence of 
the response of the system on the temporal and 
spatial variations of the external field. The gen­
eralized susceptibility of the system is in this 
case a function of w and k. 

Let us consider an equilibrium system in con­
tact with a large reservoir at a temperature T0• 

The interaction between them causes the statistical 
properties of the system to be described by a 
density matrix. We assume further that the tem­
perature of the reservoir changes in arbitrary 
fashion in space and in time, but so that oT( r, t) 
= T( r, t) - T0 « T 0, where T( r, t) is the tem­
perature of the reservoir at the point r and at 
the instant t. The interaction with the reservoir 
unbalances the system and the macroscopic quan­
tities characterizing the system deviate from 
their equilibrium values. The smallness of the 
deviation of the parameters of the reservoir from 
the equilibrium values and the weakness of its 
interaction with the system make it possible to 
assume that the response of the system to the 

violation of the equilibrium of the system with the 
reservoir is a linear function of the change in the 
reservoir parameters. 

Let the system be such that the particle and 
momentum fluxes due to the influence of the 
external field, as well as the possible thermal 
expansion, can be neglected. In this case the 
deviation of the energy density from the equili-
brium value oE( r, t) = ( h ( r)) ' 
- ( h ( r) ) 0 ( ( ••• ) 0 represents averaging over the 
equilibrium density matrix corresponding to the 
temperature T0, and ( ... ) averaging over the 
nonequilibrium density matrix describing the 
state of the system at the instant t) is a linear 
function of the variation of the temperature of the 
reservoir: 

Be = C (r, t) BT. 

C ( r, t) is a certain linear integral operator. 
If the temperature of the reservoir changes 

infinitely slowly in space and in time, then the 
system can keep up with the reservoir and its 
susceptibility is the specific heat of the system 
Cv· In the general case, the behavior of the 
system is described by a generalized suscepti­
bility Cv(w, k), which can be called the "com­
plex and dependent on w and k" heat capacity of 
the system. The purpose of the present paper is 
to derive an expression for this susceptibility. 
We shall show rigorously that Cv ( w, k) is de­
termined by the autocorrelation function for the 
fluctuation of the energy density of a canonical 
system. 

Let us present examples in which the kinetic 
and the relaxation properties of the system are 
determined by the complex heat capacity. Con­
sider a complicated system that can be sub­
divided in the equilibrium state into two weakly­
interacting subsystems I and II. In other words, 
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the Hamiltonian H' of the interaction is small 
compared with the Hamiltonians HI and HII, of 
the subsystems I and II. We also assume that the 
heat capacity of system I is large compared with 
the heat capacity of system II. We place such a 
system in a weakly-alternating homogeneous field 
that changes the energy of subsystem I. Let the 
period of the external field T exceed the relaxa­
tion time TI of subsystem I. Then subsystem I is 
at any instant of time in a state of local equili­
brium, which can be described by the local tem­
perature T ( r, t). The energy of this system is 
a single-valued function of the temperature. With 
respect to subsystem II, we assume either that the 
external perturbation does not act on it directly, 
or that its relaxation time is TIT » T. 

The interaction between the subsystems causes 
the change 6En ( r, t) of the energy density of 
subsystem II to be determined completely by the 
change oq ( r, t) in the density of the energy of 
subsystem I. For the chosen field oEn lags oq 
that is, it lags also 

6T (r, t) = T (r,, t)- T0, 

where T0 is the equilibrium temperature of the 
entire system. In view of the inhomogeneity of 
the external field, the connection between OEII 
and oT has in general a nonlocal character. 
Therefore OEII is a general linear function of oT. 
The generalized susceptibility of subsystem II in 
the external field under consideration is 
Cv ( w, k) ( w < 1/TI). In accordance with the as­
sumptions made concerning subsystems I and II, 
we neglect the dependence of 6q on 6En. 

When considering the propagation of sound in 
a system consisting of polyatomic molecules, the 
subsystem of translational and rotational degrees 
of freedom and the subsystem of vibrational de­
grees of freedom play the roles of subsystems I 
and II at low temperatures. Cv ( w, k) is in this 
case the complex heat capacity of the vibrational 
subsystem and describes Kneser processes in the 
system. 

In a paramagnetic spin-lattice system in a 
weak alternating and inhomogeneous magnetic 
field, the spin and lattice subsystems satisfy at 
low temperature the conditions imposed on sub­
systems I and II. In this case Cv ( w, k) is the 
lattice specific heat and describes the magneto­
caloric effect. 

1. DETERMINATION AND PROPERTIES OF THE 
COMPLEX HEAT CAPACITY 

The change in the energy density of a spatially­
homogeneous and isotropic system in the field of 

a thermal force can be represented in the form 
00 

6e(r,t)= ~do~ dr' L(t,r')6T(r-r',t-o). (1.1) 

Here L ( T, r) is the response function of the 
system. This function vanishes when T is much 
larger than the relaxation times of the system, 
making it possible to use infinity as the upper 
limit in (1.1). We shall assume that L(T, r) does 
not contain any singularities in T. For an un­
bounded system we get, taking the Fourier trans­
form of (1.1), 

6e(co,k)=C,(co,k)6T(co,k), (1.2) 

where 
00 

C,(,co,k) =)do) drL(o,r)ei(on-kr) (1.3) 
0 

is the generalized susceptibility of the system and 
was called by us the complex heat capacity. The 
response function can be related to the imaginary 
part of the heat capacity. By assumption, L ( 0, r) 
= 0, and on this basis the response function can 
be continued into the region of negative T, putting 

L(o,r)= -L(-o,r). (1.4) 

Then 
. dk 

L(o,r)=~~ dco ~--exp{i(kr-cot)}C,"(co,k). (1.5) 
n (2n)3 

A complex Cv ( w, k) means that the states 6E and 
6T are shifted in phase and that the entropy pro­
duction in the system differs from zero. The cor­
responding calculation can be carried out without 
difficulty for small w and k, when the thermody­
namic relations are valid. Thus, the production of 
entropy can be represented in the form 

a=- T-ZI)e6T. (1.6) 

Putting 

6T (r, t) =} {6Toe-t(rot-kr) + 6To* ei(rot-krJ}' ( 1. 7) 

we get from (1.1)-(1.3) and (1.6), averaging over 
the space-time period of the perturbation ( 1. 7), 

co 
cr(co,k) = 2T2 C,"(co,k) j6T0 jz. (1.8) 

It follows therefore that the imaginary part of the 
heat capacity determines the production of en­
tropy in the system. 

If the temperature varies infinitely slowly, 
then 

6e(k) = C,(O,k)6T(k). (1.9) 

In the latter expression the quantity Cv ( 0, k) 
describes the response to an adiabatically applied 
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inhomogeneous perturbation and can be called the 
"equilibrium wave-number-dependent" heat 
capacity of the system: 

Cv (0, k) == C, (k). 

When w and k tends to zero, Cv ( w, k) goes over 
into the equilibrium specific heat, for which we 
have the Gibbs distribution 

1 .. 
Cv= ksTo2V ((B-E)2)o. (1.10) 

It is easy to determine Cv ( k) from the last equa­
tion. 

The spectrum of the equilibrium fluctuations of 
the energy density is described by the correlation 
function 

1 ~ ~ 
<ph(r,T)=2"({6h(r',t), 6h(r'-r,t-1:)}), (1.11) 

where oh(r, t) =h(r, t)- (h(r))o. h(r, t) is 
the operator in the Heisenberg representation, and 
{ ... } is the anticommutator. From (1.3) we get 

C,(k) = ~ drK(r)e-ikr, ( 1.12) 

where 

"" 
K(r)= s d-cL(1:,r). 

0 

Using (1.11) and (1.12), we represent (1.10) in the 
form 

___!_ S <ph(r,O)dr = S K(r)dr. 
k8 To2 

(1.13) 

The latter take place for any V, and therefore the 
integrands are equal. For Cv ( k) we get 

C,(k) = 2k:T02 ( {6h(r', t). 6h(r'- r, t)}>k. (1.14) 

From the dispersion relation for the real and 
imaginary parts of the complex heat capacity we 
can relate Cv ( k) with C~ ( w, k): 

C,(k)= r dro C,"(oo,k) . 
n (I) 

(1.15) 
-oo 

2. FLUCTUATION-DISSIPATION THEOREM FOR 
THE HEAT CAPACITY 

Our purpose is to find a dynamically justified 
expression for the complex heat capacity 
Cv( w, k). 

Inasmuch as a thermal perturbation cannot be 
uniquely represented in the Hamiltonian of the 
system, it is impossible to apply the usual 
methods [3•4] directly to the problem under con­
sideration. To get around this difficulty, we shall 
show that the problem (1.1) can be reduced to a 

dynamic problem that admits of a simple treat­
ment. 

We introduce the k-component of the response 
function 

L(1:,k)= S dre-ikrL(-c,r) (2.1) 

and represent (1.1) in the form 
co 

<'le (k, t) = S L (-c. k) liT (k, t- -c) d1:. (2.2) 

Let 6T( k, t) vary as follows: 

BT(k, t)= { OT(
0
k)est t::;;;; 0 

t>O. 
(2.3) 

Such a character of the variation of the parame­
ters of the reservoir denotes that when t = -oo 

the system and the reservoir are in equilibrium 
at a temperature T0, when t E. ( -oo, 0) the 
temperature of the reservoir changes adiabatically 
from T0 to T0 +6T(r)eEt, andwhen t2:: 0 the 
system is placed in a thermostat whose tempera­
tures is T0• For t 2:: 0 we find from (2.2) that the 
energy density varies as follows: 

00 

~e(k.t}=) L(-c,k)d-c·6T(k). (2.4) 

The relaxation properties of the system are 
described by the function 

co 

<I> (k, t) = S L (1:, k) d-r. (2.5) 

The introduced relaxation function can be con­
nected with the complex heat capacity of the sys­
tem by using (1.5) 

Cl»(k,t)=~ f C,"(oo,k) e-imtd,ro. (2.6) 
·n J oo 

-<X> 

We get therefore for t = 0 

<l>(k, 0} =Cv{k) (2. 7) 

and for t = oo 

<I> (k, 00) = 0. (2.8) 

The function <P ( k, t) describes the relaxation of 
the energy of the system from 

«''e(k, 0) = C,(k)BT(k) (2.9) 

at t = 0 to 0 at t = oo. We can then use (2.4), 
(2.5), and (2.9) to reduce the problem (2.2) to the 
following form: 

Cl»(k.t) (2.10) 
6e(k,t)= Cv(k) <'le(k,O). 

Formula (2.10) describes the relaxation from a 
specified value 6E ( k, 0), of the energy of a sys-
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tern situated in the reservoir having a tempera­
ture T0• 

For the system and reservoir under consider­
ation, the relaxation law is determined only by 
the magnitude of the initial deviation of the energy 
density from the equilibrium, and does not depend 
on how the indicated deviation is produced. This 
means that if a deviation oE ( k, 0) from 
( h ( r )) 0 is produced in our system by any suit­
able external field before the instant t = 0, but 
there no longer any field when t > 0, then the 
relaxation of oE ( k, 0) occurs in accordance with 
(2.10). 

In our system the external fields do not pro­
duce particle fluxes, so that the only mechanism 
producing oE ( k, 0) can be an external field that 
leads to a direct energy effect. Such a field is 
the gravitational field proposed by Luttinger [2]. 

If the potential of the field is denoted by 
c2</J ( r, t), then its contribution to the Hamiltonian 
of the system is equal to 

6H(t)=- ~ drh(r)\jl(r,t). (2.11) 

Let us place the system and the thermostat, 
which are in equilibrium at the temperature T0, 

in a gravitational field which had been turned on 
adiabatically at t = -oo and was turned off at 
t = 0. Assume that the field is such that prior to 
t = 0 the deviation of the energy density of the 
system from the initial value is 6E ( k, 0). The 
field is turned on adiabatically, the system is in 
equilibrium with the thermostat if t E. ( -oo, 0), 
and the energy varies isothermally. The response 
of the system at t = 0 is the response to a con­
stant perturbation 

{)H =- ~ drh(r)\jl(r) (2.12) 

and 
Sp e-~o(H+6llJh (r) Sp e-~oHk(r) (2 .13) 

{)e (r, 0) = .. .. .. 
Sp e-~o(H+6Ii) Sp e-~oH 

(/3 0 = 1/kBTo). In the approximation linear in oH 
we have 

6e(k.O) = :xT{k)\jl(k), (2.14) 

where 
1 ~ ~ 

:XT(k) = --({M(r, t), 6h(r- r', t)})k (2.15) 
2ksTo 

is the "wave-number-dependent" isothermal 
susceptibility of the system in the gravitational 
field. Comparing with (1.14), we get 

ToCv(k) = :xT{k). (2.16) 

When t > 0, the value of OE ( k, t) is deter­
mined by the relaxation function of the system, 

which we obtain for the gravitational field in ac­
cordance with the usual procedure [31. 

6e(k, t) = <D.p(:k,t)'ljl(k)~ 
.co 

<l>.p(k,t)= ~ S ([h(k,t),h(-k,t'--r)])0d-r. (2.17) 
t 

The presence of a thermostat having a tempera­
ture To causes the averaging to be carried out 
with respect to the canonical distribution function 
at the temperature T0• Using (2.15), we get 

<l>.p(k, t) (2 18) 
~e(k,t)= ToCv(k) 6e(k,O). · 

From the equality of (2.10) and (2.18) it follows 
that 

To<D(k,t)= <l>.p(k,t). (2 .19) 

Taking into account the connection between the 
Fourier transforms of the relaxation and corre­
lation functions [3] and using (2.6), we get 

:n: ~ ~ fiw 
Cv"(w, k) =- ({M (r', t). 6h(r'- r, t- -r)} ).,,k th -2k T • 

fiTo B o 

(2.20) 

The last relation is the analog of the fluctuation­
dissipation theorem for the heat capacity, and co­
incides, accurate to 1/T0, with the formulation of 
tae theorem for the dynamic susceptibilities [41 . 

3. SOME EXAMPLES 

In the case of slow space-time variations of 
physical quantities, the equations of hydrodynamics 
are valid and the properties of the system are de­
scribed by the transport coefficients and by the 
relaxation times. Knowledge of the exact expres­
sion for Cv ( w, k) makes it possible to obtain for 
these quantities dynamically justified expressions. 

In analogy with [51, we have proceeded as 
follows. Using different hydrodynamic models, 
we get an expression for Cv ( w, k) with w and k 
tending to zero, and compare the results with the 
exact expression (2.20). 

Let us consider a closed system in which there 
is a temperature gradient. In the case of slow 
space-time variations of the temperature gradient, 
the heat flux can be represented in the form 

• X JQ(r,t)= --Ve(r,t). (3.1) 
Cv 

Here K is the thermal conductivity coefficient and 
Cv the specific heat of the system. Since, by 
assumption, there are no particle fluxes in the 
system, the energy flux in the system coincides 
with the flux (3.1). Since the system is closed, we 
can, using the conservation law, represent the 
time variation of the energy in the form 
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X 
lle(k, t)+ k2 C, Oe(k, t) = 0. 

(3.2) 

We multiply the last equation by eiwt and inte­
grate with respect to time from zero to infinity; 
then 

00 

(-i(J)+k2 c" H dtefmtl)e(k,t)=l'le(k,O). (3.3) 
v 0 

We assume that the temperature varies like (2.3), 
and get, in accord with (2.9) and (2.4), 

lle(k t)={C,(k)OT(k)est t::;;;;o, (3 .4) 
, <l>(k, t)OT(k) t ~ 0 

where ~ (k, t) is given by (2.6). Then we get 
from (3.3) 

C,"(ffi1 k) +~,. C,"(ffi',k) dffi' = C,(k) . (3.5) 
ffi n ffi1 (ffi- ffi 1 ) -iffi + k2x/C, 

Equating the real quantities on the left and on 
the right, we get 

C,"(ffi, k) = C,(k)k2ffix/C,. 
(J)2 + (k2x/C,)2 

(3.6) 

Thus, at small values of w and k the values of 
C~ ( w, k) depend essentially on the relative 
values of w and k2• In the limit when w and k 
tend to zero, we obtain for C~ ( w, k) two different 
limits at w « k2K/ Cv and k2K/ Cv « w. In the 
"fast case" with k2K/ Cv « w ( k approaches 0 
more rapidly than w) we have 

Therefore 

II k k2 C, ((!), ):=:::-x. 
(!) 

(3.7) 

x=limlimk~C,"(ffi,k). (3.8) 
CD-+0 k-+0 

Using (2.20) we obtain a dynamically-justified 
expression for the thermal conductivity coefficient 

n (!) A A 

x= liT lim lim-k2 ({M(r', t),M(r'-r.t-'t')})m,k 
0 CD-+0 k-+0 

/i(l) 
X th--. (3.9) 

2k8 T0 

From the continuity equation we get 
A 1 

Oh(ro,k) = -kjs(ffi,k) (3.10) 
(!) 

and 

n A A 

x= 2k. T 2lim lim({j.,8 (r',t),j,,S(r'-r,t-'t')})m,k, (3.11) 
E o m-+0 k-+0 

which agrees with the result of Luttinger [2J. 
In the foregoing derivation it was assumed that 

the establishment of the equilibrium in the system 
is determined by transport processes, and that 
no energy leaks out of the system. In the case 
when Cv( w, k) describes a slow subsystem, if 
one can neglect the energy exchange between the 

slow and fast subsystems, then (3.11) determines 
the contribution of the slow subsystem to the total 
thermal conductivity of the system. 

Thus, when considering the thermal conductiv­
ity of a system of polyatomic molecules, where 
the transformation of energy from the vibrational 
subsystem into translational energy can be neg­
lected, Eq. (3.11) describes the thermal conduc­
tivity of the vibrational subsystem. Such a sub­
division of the thermal conductivity system into 
parts corresponding to the conductivities of the 
vibrational and translational subsystems is in 
agreement with Euker's calculations [G]. 

Similarly, (3.11) determines the lattice thermal 
conductivity for the case of a spin-lattice system 
at low temperatures, if energy exchange between 
the spins and the lattice can be neglected. 

Let us consider now the opposite limiting case, 
when exchange of energy between the fast and 
slow subsystems plays the principal role in the 
establishment of equilibrium between the sub­
systems. In this case the time variation of the 
energy of the slow subsystem can be represented 
in the form 

. 1 
Oe(k,t)=- 't'(k) l'le(k,t). (3.12) 

Here T ( k) is the relaxation time of the k-com­
ponent of the energy density. Just as in the pre­
ceding case, we get 

C "( k) = ffi-r(k)C,(k). 
" ro, (1)2-r2 + 1 (3.13) 

When k = 0, such an expression for the imaginary 
part of the vibrational thermal conductivity is ob­
tained in the theory of Kneser relaxation. From 
(3.13) we get in the "slow case" (w tends to zero 
more rapidly than k) 

C,"(ro,k):::::: ro't'(k)C,(k) (3.14) 

and 

. . C,"(ro, k) 
li I (3.15) 

't'= m 1m C (k) . 
k-+0 CD-+0 (I) 1l 

Using (2.20) and (1.14), we obtain a dynamically­
justified expression for the relaxation time of the 
slow subsystem: 

2kanTo. . 
1' =·--- hm Inn 

li k-+0 CD-+0 (3.16) 
( {llh{r', t)~ llh(r'- r, t- 't')} )m,k th(/i(J)/2ksTo) 

X ~-~~-~--~~-~~~~~~~ 
ro( {6h(r', t), 6h(r'- r, t)} )k 

In the examples indicated above, the last ex­
pression provides an estimate of the spin-lattice 
relaxation time and of the time of relaxation of 
the excitation in a system of polyatomic molecules. 
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