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A general phenomenological theory of three-photon scattering of light in an isotropic medium 
in the transparencr region is developed. The theory is similar to that of two-photon scatter­
ing presented in [9 • The formulas describe, in particular, the angular dependence of the 
scattering intensity, the degree of depolarization, etc. The number of independent parame­
ters of the medium cancels out and all formulas are significantly simpler in the special case 
when the scattering tensor possesses Kleinman symmetry properties. This case is analyzed 
in detail. A quantum treatment of scattering in gases is also presented. It is shown that the 
tensor responsible for three-photon scattering can be transformed in the adiabatic approxi­
mation; the treatment is similar to that in the polarizability theory as applied to two-photon 
scattering, etc. The frequency dependence of the scattering intensity is briefly considered. 

THE use of lasers as radiation sources has made 
it possible to observe, among other new phenom­
ena, also three photon scattering (TS) of light [tJ 

From the quantum point of view, this effect can be 
treated as the vanishing of two photons of a pri­
mary beam of frequency w when the radiation 
interacts with matter, and creation of one photon 
of frequency 2w or 2w ± Wm ( wm-one of the 
natural frequencies of the particles of the medium). 
This process is described by the nonlinear terms 
of the electric dipole moment of the molecule, 
which is induced by the external field. Although 
terms of this type have been under consideration 
for quite a long time [2- 81, many questions in the 
theory of three-photon scattering have not yet 
been answered. The earlier investigations were 
devoted essentially to different aspects of the 
quantum theory in the noninteracting-molecule 
approximation. At the same time, there is still 
no general phenomenological theory of this effect. 
Such a theory is of interest since, on the one hand, 
many properties of TS, and primarily its angular 
dependence, can be successfully described even 
at this level, and on the other hand, the theory in­
dicates the quantities that must be additionally 
calculated in quantum theory in order to obtain a 
complete description. Such a combination of the 
phenomenological and quantum approaches appears 
to be the most rational. 

We have therefore developed a phenomenological 
theory of spontaneous TS in an isotropic (non­
magnetic) medium in the transparency region 
(Sec. 1). The model followed was the theory of 

ordinary two-photon scattering, an exposition of 
which is given in [9]. Section 2 contains a quantum 
analysis of the scattering in the particular case of 
gases. 

1. PHENOMENOLOGICAL THEORY OF THREE-
PHOTON SCATTERING OF LIGHT IN AN 
ISOTROPIC MEDIUM 

As explained in [al, in an phenomenological de­
scription of the scattering effect it is necessary 
to use equations that are "intermediate" between 
the microscopic and macroscopic Maxwell's equa­
tions: It is necessary to average over physically 
infinitesimally small volumes, but not average in 
time over the particle motion. The field values 
pertaining to the scattered wave, for which the 
first averaging is carried out, will be marked by 
primes, for example, D' = E' +41fP'. With this 

P/ = a'E/ + Xik.Ek + X;i~;.E3Ek + ... , (1) 

with summation over repeated indices implied 
throughout. The field of the exciting wave is as­
sumed to have the form E = E0exp [i ( k · r- wt)]. 
The first term of (1) describes the effective 
propagation of the scattered waves in the medium; 
it must be taken to mean the sum of terms per­
taining to scattered waves, with appropriate 
polarizabilities a'. The second and third terms 
are responsible for the occurrence of scattered 
radiation with frequencies w + Wm and 2w ± Wm 
respectively (as a particular case we can have 
wm = 0). The quantities Xij and Xik are propor-
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tional to exp [ 'f iwm t] and are random functions 
of the coordinates, but their tensor character does 
not contradict, of course, the isotropy of the 
medium, which appears only following the com­
plete averaging. We note that the tensor Xijk can 
be regarded as symmetrical in the second and 
third indices. 

Scattering with frequencies w ± Wm was ana­
lyzed by Landau and Lifshitz [9); we shall con­
sider here .. scattering at the frequency w' = 2w 
± Wm. For this frequency, omitting the term (1) 

and going over to the induction, we have 

The quantity to be determined is the field of 
the scattered wave at the large distance R from 
the scattering region of the body. It can be ob­
tained in the same manner as in [9J, and we shall 
therefore write out the result immediately:* 

eill.'R ro' -
E'=---[k'[k'G]], k'=-Ve' k'liR; 

e'R c 

G = P'(k') = ~ P'(r)e-ik'•dv = ~ (xE02)e-Wdv, 

q = k' -- 2k. 

Here P' ( r) = ( xE2 ) is a vector with com­
ponent XijkEjEk. 

To find the intensity of the scattered wave at 
the observation point it is necessary to form the 
tensor[ 9•10J Iij = ( Ei*Ej); the symbol (. .. )de­
notes averaging over the motion of the particles 
of the medium. We choose the z axis parallel to 
k', and designate the components in the xy plane 
by the Greek letters a and fj. Then 

Ia~ = A<G,,*G~), A= lc'4 / R2e'2, (2) 

(G;*Gj) = ~ ~ (P/*(ri)P/(r2))e-ik'(r,-r,Jdv1dv2• (3) 

As in [9J, we assume that the correlations in the 
motion of the particles of the medium extend only 
to distances on the order of intermolecular, so 
that (3) can be reduced to the form 

(G;'Gj) = VEoz"Erm:Eo.,Eusfilm,jns, 

fum,jns = ~ (Xilm0 (rt)xjns(r2))dv. 

The integration in (4) is over the coordinate 

(4) 

r = r1 - r 2, on which the integrand depends after 
the averaging1>; V is the scattering volume. 

The tensor film,jns, which is symmetrical in 
the indices l and m and also in n and s, should 

*fk'[k'G] = k' X [k' X G]. 

l)When long-range correlations are taken into account, 
film, jns should be replaced by the Fourier component of the 
quantity <Xilm *(r,)XjnsCr2)> the Fourier-transformation argu­
ment being q. Appropriate Fourier components replace also 
the parameters a, b, ... which enter in (5) and below. 

already reflect the macroscopic symmetry of the 
medium. 

The most general form of such a tensor in an 
isotropic medium is [tJ 

hzm, jns = 1/2a ( 6;lizn6ms + 6ij6ts6mn) + b6u6zm6ns 

+ 1/.c(6;m6zn6js+ {jil{jmn6js + {jil{jms6jn + 6;m6zs6jn) 

+ 1/,d(6;n6tj6ms + 6;n6zs6mj '+ 6;s6tj6mn + 6;s6zn6mj) 

+ 1hg(6u6mj6ns + 6;m6lj6ns) + 1/2g* (6;n6tm6js 

(5) 

where a, b, c, d, g, and g* are scalar quantities 
that depend on w and w', and the first four of 
them are real. 

Taking (5) into account, we can reduce Iaj:i 
[ Eq. (2)] to the form 

la~ = AV{6a~(aiEol"+ biEo2 l2)+ (cEoa*Eo~ 

+ dEoaEo~*) IEol 2 + gEoa'Eo~'Eo2 + g•EoaEo(lEo*2]. (6) 

Formula (6) is the sought-for general expres­
sion for the TS intensity. Further concretization 
depends on the state of the polarization of the 
exciting radiation. 

Let us consider first the case of linearly 
polarized light. The quantity E0 = E0e, with 
e = 1, can then be regarded as real. We choose 
the x axis in the plane containing e and k', and 
denote by J the angle between e and k'. Then, 
as can be readily verified, 

lxx = AVEo•(a' + c' sin2 'fr), lyy = AVEo•a',, lxu = 0, 
a' = a+ b, c' = c + d + 2 Reg. ( 7) 

The total intensity of the TS of polarized light 
is proportional to the quantity 

ln=lxx+Iuy=ln(90°) (1- 1 -Pn cos2-fr), 
\ 1 + Pn • 

I a' 
Pn= lxx(;Oo)= a'+c'' ln(90")=AVEo4 (2a'+c'). 

( 8) 

Let us consider further the case of natural ex­
citing radiation. Now E0 can be represented in 
the form [toJ E 0 = ueia + veif:i, where u and v are 
mutually perpendicular real vectors of equal 
length, and a and f3 are real phase factors which 
are independent random quantities in time or over 
an ensemble. It is accordingly necessary to av­
erage additionally over the ensemble (or over the 
observation times if the source is an ergodic 
system); we designate it by a superior bar. As a 
result we get 

EoaEo~· = 1/21Eol 2 (6ap- Sas~), IEo2 l2 = 1/2IEol•, 

EoaEo~Eo*2 = 1/4 I Eo 14 ( 6a~- Sc.S~), 
IEol 2 = 2u2, s = k/k. (9) 
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Taking (9) into account we get 

lafl = AVJEoJ 4 (6a~a" -sas~c"), 

a" = 1/ 2 (2a + b + c + d + Reg), 

c" = 1/ 2 ( c + d +Reg). (10) 

This time we choose the x axis in the plane of 
the vectors k and k' and denote by 8 the angle 
between these vectors. Then 

lxx = /11 = AVIEol 4(a"- c"sin2 8), 

11111 = /1_ = AVJE6J4a", fxy = 0, 

( 1- p \ 
l=h+Iu=l(90°) 1+--cos2 e1 . 

1+p 

I (90°) 
p = ~· /(90°) = AVJE0 J4 (2a"- c"). (11) 

As seen from (8) and (11), the intensity of the 
scattering can be expressed in both cases in terms 
of two experimentally observed quantities: the 
intensity and degree of depolarization for the case 
of perpendicular observation. I is expressed here 
in terms of the given quantities in the same 
manner as in two-photon scattering [11 • 121 . There 
exist, however, also essential differences from 
the latter case. First, in the general case, it is 
impossible to indicate the connection between the 
quantities p and Pn, whereas for two-photon 
scattering such a connection exists in the form [121 

p = 2pn/ ( 1 + Pn). Second, the connection between 
the quantities a' and c' on the one hand and a" 
and c" on the other with the microscopic parame­
ters is different than for the corresponding quan­
tities in two-photon scattering, and therefore the 
limits of variation of the quantities p and Pn also 
turn out to be different. 

In the transparency region, we can use addi­
tionally, Kleinman's approximate symmetry 
properties [13•141, according to which the tensor 
Xijk should be regarded as symmetrical in all the 
indices2>. Then, as can be readily verified, 
a= d/2, b = c/4 = g/2 = g*/2, and only two 
parameters of theory are left, a and b, making 
it possible to obtain a number of additional rela­
tions. Above all, a' =a + b, c' = 2a + ab, and 
a" = 2a + 7b/2 and c" =a+ 3b, hence 

2)These properties, strictly speaking, were established for 
the tensor of the nonlinear dielectric constant, but in the 
transparency region it was analogously [14] possible to intro­
duce into consideration the part of the free energy responsible 
for the scattering with frequency w', and to establish by simi­
lar reasoning the symmetry with respect to all indices also for 
our tensor Xijk which describes processes such as Raman 
scattering. 

We see that a definite connection is established 
between the quantities p and Pn· Further, choos­
ing in (4) and (5) different concrete values of the 
indices, it is easy to obtain for the quantities a 
and b the following inequalities 3>: 

~ (Xxy.z(rt)xxyz(r2)) dv = a/2 ~ 0, a~ 0; 

~ (x:xx(ri)xxxx(rz)) dv = 3a + 9b ~ 0, b ~- a/3. (13) 

From this and from ( 12) it follows that the 
quantities p are bounded by the following limits4>: 

1/9,;;:;;; Pn < oo, 1/7,;;:;;; p < 1. (14) 
Let us assume now that the exciting radiation 

consists of two waves of different frequencies and 
different wave vectors 

E = E1 + E2 = Etoei(k,r-ro.t) + Ezoei(k,r-.,t) 

and scattering is observed with frequency 
w' = w1 + w2 ± wm· The analysis of this case as 
a whole is similar to the proceding one, but a 
number of complications arise. First, it is nec­
essary to take into account the fact that the cor­
responding tensor Xijk does not have in the gen­
eral case symmetry with respect to permutation 
of the indices. Therefore all fifteen terms must 
enter into the expression (5) for film,jns with 
different coefficients ai. If we number them in 
the same sequence as in (5), then we can only 
state that a 7 = a 5*, a10 = a 9*, a14 = a13*, a1 5 = a12*, 
and the remaining ai are real. 

Calculation of the quantities Iaf3 =A ( Ga *Gf3) 
= AVE10zE 20m E10nE20sfalm,/)ns leads to the 
following result: 

I a~ = A V {oa~ [ad E10 12 1 E2o 12 + a2J (EwE2o *) 12 

+ a3J (E10E2o) j2 ] + a4E2oa.E2ofllE101 2 

+ asEioa*EzofJ(EtoE2o*) + ll6E1oa*E1ofllE2ol 2 

+ as*E2oa*E!Dfl*(Ew*E2o) + asEioaEJOB*JEzol 2 

+ agEwaE2oB • (E10 *E2o) + ag* E2oaEw~ • (EwE2o *) 

+ a11E2oaE2ofl*JE10J 2 + a12E1oa*E2oB·(EwE2o) 

+ a1sE20a * Elofl• (E!oEzo)+ a13 • Etoa:E2ofl (E1o *E20*) 

+ a12 * E2oa:E loll (E10 *E2o *)}. (15) 

3 )In ( 13) there is no summation over the indices x, y, and 
z. It is easy to verify that the integrals in their left sides are 
positive by using considerations similar to those used in [•], 
Sec. 93, in the investigation of similar integrals. The choice 
of other combinations of indices does not yield any new re­
sults. 

4 )When the properties of the scattering medium are more 
concrete specified, the intervals of variation of the quantities 
p and Pn may become still narrower, as can be seen from['], 
where scattering of freely rotating molecules by a gas is con­
sidered. 
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Let us consider again the particular case when 
both waves are linearly polarized, so that Eto 
= Etoet, E2o = E2oe2, and e1,2 = 1. For this case, 
(15) takes the form 

I a~= A VE!o2E2o2 {6rx.~ [a+ b ( e1e2)2] + cefrx.Cf~ 
+ de2rx.e2~ + (ge1rx.e2~ + g*e2rx.C1~) (e1e2)}, 

a = a1, b = a2 + a3, c = as + as, d = a4 + aH, 

g=as+ag+ai2-l-a1a". (16) 

Formula (16) solves the problem. The reduc­
tion of the two-dimensional tensor IajJ to the 
principal axes and the determination of its prin­
cipal values, which are proportional to the inten­
sities of the mutually-perpendicular polarized 
components, entails no difficulty. 

In the transparency region we can neglect the 
dependence of the quantities ai on the frequencies 
w1 2 and w', since, just as in the case when 
w'' = 2w ± Wm, symmetry conditions of the Klein­
man type arise, according to which the tensor Xijk 
is symmetrical with respect to all the indices. 
With this, a1 = a2 = a 8 = a 9 = a 9* = a11 =a, a 3 = a4 
= a5 * = a6 = a12 = a12 * = a13 = a13 * = f, and b = c 
= d = a + f, g = a + 3f. Further 

lrx.ll = AVE102E2o2a{6rx.Bli + (1 + '11) (e1e2) 2 ] 

+ (1 +'I']) (efrx.Cf~ + C2rx.C2Jl) 

+ (1 + 3'1']) (e1e2) (e1rx.e2~ + e2rx.e1~)}, 'I']= f I a. (17) 

We see that, just as in the preceding case, the 
scattering intensity is determined only by two 
constants, a and TJ. Let us consider also the 
particular case when the three vectors et> e2 and 
k' lie in one plane, which can be chosen to be the 
xz plane. Denoting by J 1 2 the angles between 

I ' 
e1,2 and k and putting J =J1 - S2, we get 

I xx = AVE to2E202a [1 + ( 1 + '11) ( cos21't + sin2 '{}1 + sin2 '{}z) 
+ 2( 1 + 3'1']) cos 1't sin {}I sin ''t2], 

11111 = AVEto2E202a[1 + (1 + 'I'J)cos2 -f}], lx11 = 0. (18) 

We now assume that the excitation is made by 
natural radiation, so that we can put 

( Ut. Vt) and ( u2, v2) are two pairs of real vectors 
of equal length, which are arbitrarily located in 
planes perpendicular to k1 and k2 and are 
mutually orthogonal; at. 2 and /31,2 are random 
functions. We choose the vectors u1 2 perpendicu­
Lar to the plane u of the vectors k1, ;, and the 
vectors v1,2 to lie in this plane, so that u1 II u2 

and Vt · v2 = v1v2 cos cp = u1u2 cos c.p, where c.p is 
the angle between the vectors k1 2• To go over to 
the observable quantities, it is n~cessary, in 

analogy with (9), to average additionally over the 
ensemble (or over the observation times) fourth­
order combinations of the components of E1,20 
which enter in (18). The averaging yields 

I (E10E2o*) 12 = I (E10E2o) 12 = (u1u2) 2 + (v1v2) 2 

= 2u12u22 cos2 ('cp I 2), 

E1oa E10BIE2ol 2 = 2ut2U22 (6rx.ll- S1rx.S!~), 

E;oaE2o~(EwE2o*) = Uf2Uz2 (SaSB + Sirx.Szll cos qJ), 

S!,2 = Vt.2/ Uf.2 

and similarly for other quantities of the same 
type as those written out. As a result we get 

I all= AVIIE10 J2 JEzol 2 [ 6rx.ll( a+ b cos2 ~) + ·~ (6o:B- Sfrx.St~) 

( 19) 

In the Kleinman approximation, expression (19) 
goes over into 

{ ( 1-1-'11 cp) fafl=AVJEtoi 2 JE2oJ 2a 6rx.ll 1+-2-cos2 2 

1+'11 
+-2-(26rx.Jl-S!rx.S!~-S2rx.S2~) 

In the particular case when the vector k' is 
located in the plane u, which can be chosen as 
the xz plane, we have 

lxx =A VJ EtoJ 2J E2ol 2i{ 2 + (1 + '11) [ cos2 81 + cos2 (81- cp) 

+eos2 ~ J + (1 -1- 3'1']) cos H1 cos (91- cp)cos cp }, 

11111 = AVJEtoi 2 JE2ol 2 ~(1 + 'I'J) ( 5 + cos2 .!_), lxy = 0, 
2 , 2 I 

(20) 

where 01 is the angle between k' and k1. The 
angles 01 and cp must be taken with equal signs 
if they are reckoned from k1 in the same direc­
tion. 

It can be verified that expressions ( 17) go over 
into (7) in the particular case when e1 II e 2, and 
Eqs. (20) go over into (10) when c.p = 0, as should 
be the case. The case w' = w 1 - w 2 ± Wm is 
treated in exactly the same manner. Finally, we 
note also that, in accordance with (2), the quanti­
ties lap are in all cases proportional to w'4• 
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2. CASE OF GAS 

In order to illustrate the connection between the 
phenomenological theory and the microscopic 
theory, let us consider the case of a gas. As is 
clear from the foregoing, in the microscopic 
theory it is sufficient to find the quantity film, jns 
[Eq. (4) 1 or the related quantity Mij ( r 1 - r 2 ) 

= (I\ 1*( rt) P/*< r 2 )) • The method of finding it is 
in principle the same for two- and three-photon 
scattering. For simplicity we shall first discuss 
two-photon scattering W 1 = w ± wm. 

In the quantum-mechanical analysis, it is 
necessary to replace the quantity P 1 ( r) by the 
operator of the specific dipole moment averaged 
over the physically infinitesimally small volume 
~v ( r) near the point r (see [9]). This operator is 
of the form 

v 

Pv and R 11 are the dipole-moment operator and 
the radius vector of the center of mass of the 
v-th molecule; the function D ( r) is equal to 
( ~ v) - 1 if the end of the vector r lies within the 
volume ~v( 0), and vanishes otherwise; the 
summation over v is performed for all the gas 
molecules. The quantity P1* ( r) must be replaced 
by P + ( r) = P ( r). It is thus necessary to calcu­
late the quantum-mechanical mean of the operator 
Lij = Pi ( r 1) Pj ( r 2 ). The results will describe 
the processes of scattering of different types and 
frequencies, and is therefore necessary to pick 
out from it the terms corresponding to the re­
quired frequency w 1 • 

Using the completeness property of the system 
of the wave functions of the gas perturbed by the 
field ( 0, F) (the index 0 pertains to the initial 
state), we can easily verify that 

Looij = ~Pi,oF(r!)Pj,Fo(rz) = ~2 ~ Pv,i; otPv,j; toei(klo-k)(r ,-r,), 

F vfk1 
(21) 

Here V is the volume of the region occupied 
by the gas; ( 0, f) is the aggregate of the per­
turbed states of an isolated molecule located at 
the origin; kfo = kf - k0, the quantities k0 and kf 
being the quasimomenta of the molecule in the 
states ( 0, f). The summation over kf can be 
replaced by integration, thereby introducing 
V 6 ( r 1 - r 2 ) • The quantities Pv, of actually do not 
depend on v. Each of them contains terms with a 
time dependence of the type exp ( iw 1 t) 
= exp [ i ( w - Wfo) t 1 [1, 2J, responsible for the 
scattering with the given frequency w 1 • We de­
note the coefficient of such an exponential by 

p 1 i, of· On going from L00ij to Mij ( r1 - r 2 ), it is 
necessary to retain only the term with the re­
quired f. In the case of vibrational transitions 
with registration of integral scattering-line in­
tensities, it is necessary to sum over all the ro­
tational components. It is more convenient, how­
ever, to regard the relatively-slowly-varying 
rotational variables as classical parameters from 
the very outset, and then summation over v in 
(21) reduces to averaging over all the orientations 
of the molecule. In addition, it is necessary to 
average over the initial states, which we shall 
arbitrarily denote with the aid of g0• As a result 
we have 

M;j (r1 ·- rz) = Ngo (p~,otP;,fo) rot 6 (r1- rz), (22) 

where N is the molecule concentration. 
The final formula (22) of course remains in 

force also for TS, if we replace the quantities 
p1 of by those coefficients in the terms of Pof 
which have the time dependence 
exp [ i ( w1 + w2 - Wfo) t], which appear when Pof 
is calculated in second order of perturbation 
theory. The quantities p 1 of and p 1 fo can be 
represented in the form [G, 7 J p 1 j, fo 

fo E E d I fo*E* 'E* =a jns ton 2os an P i,of = O!ilm toL 2om. 
and therefore we obtain for film,jns [ Eq. (4)1 and 
for the analogous quantity fil ,jn characterizing 
two-photon scattering, the following intuitively 
clear result 

~ fO• fO 
film,jns = N go ( aizm a)ns) rot, 

~ fO• jO 
fn,jn = N go (ail Ujn) rot. (23) 

The tensor aijkfo is best called the tensor of 
three-photon Raman scattering (or Rayleigh 
scattering when f = 0). In the theory of two-photon 
Raman scattering extensive use is made of the 
polarizability-theory approximation [11 ' 12J, in 
which the corresponding tensor ailo is repre­
sented in the form of an expansion (we omit the 
indices fO) 

a;i = [ a;l + ~ a;~,>I'(QI'- Ql'0 ) + ... J , (24) 
v'v I' 

where Qfl. and Q/ are respectively the normal 
coordinate of the vibrations of the nuclei and its 
equilibrium value in the electronic ground state, 
and [ ... 1 v 1 v denotes the matrix element of the 
wave functions of the vibrational motion in the 
initial and final states of the molecule. The proof 
of the possibility of introducing the tensor (24) 
was considered in a number of papers [11 ' 12• 15• tsJ 

It is of interest to obtain an expansion of the 
type (24) for the tensor Cl!ijk· This can be done in 
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the adiabatic approximation, using the explicity 
expression obtained in [6] for aijk• as well as a 
method similar to that described in [171 • Without 
writing out tb.e rather complicated relations, we 
shall illustrate this by using as an example the 
following term: 

R _ 1 ~ Pa.,OIPP.liPv.if 
pa.llv -- LJ 

fi.Z lj ( W10- W) ( WjO- 2w) 
(25) 

which enters as a component part of a in the case 
when w' = 2w - Wfo [6]. The quantities Pa, ol, 
Pfj,l j• and Py,jf are the matrix elements of the 
components of the dipole moment of the molecule, 
calculated from the unperturbed wave function; 
wt 0 = wz- w0 and hwz are the energy levels of 
the isolated molecules. We separate the vibra­
tional and electronic quantum numbers, so that 
the initial and final states are ( Ov) and ( Ov' ) , 
and the intermediate states are (lvz) and ( jvj ); 
the summation in (25) should be over l, j, vz, and 
Vj· The matrix elements in (25) can be repre­
sented in the form ( Pa ol )vvl etc., where Pa ol 
are the matrix elements of the electronic parts of 
the wave functions. Using the fact that the functions 
of the states ( Ov) and ( Ov') decrease rapidly 
with increasing distance between QJ.J. and Q~, we 
can expand Pa ol in powers of Q J.J. - Q~. and ex­
pand the frequency factors 

lO 
(w, 1,- ul)-1 = ( Wzo1 - w)-1(1 + ~)-1 

in powers of 

~ = (w~01,- wzo')/(wzo'- w), 

where w 'z 0 is the frequency of the Franck­
Condon transition 0-- l at QJ.J. = Q~. Using the 
completeness property of the system of the eigen­
functions of the operator of the nuclear-motion 
energy in the Z-th electronic state, in perfect 
analogy with the procedure used in [171, we can 
prove that 

(0) (I) ) 
~a.llv = [~a.Pv + ~a.llv(Q- Qo)+ · · · v'v (26) 

(we leave out, for simplicity, the summation 
over J.J.), where 

/" 
(O) 1 ~ Aa.~v 

~a.llv = -li2 LJ ( 1 ) ( , 2 ) 
l lj Wzo - W WjO - W 

lj 
(I) _ 1 ~ { Ba.llv 

~a.II'V - --.;--2 LJ ( I ) ( I : <).,..) 
f£ lj Wzo - (t) Wjo - .<.W 

A~11v [ 1 (dCJJzo1 (Q) \ 
- (Wzo1 - w) (Wjo1 - 2w). Wzo1 - W oQ ) Qo 

+ 1 (ow;o1 (Q)) ]} 
Wjo1 - 2w oQ Qo ' 

(27) 

wz 0'( Q) is the frequency of the Franck-Condon 
transition for arbitrary Q. When v' = v (Rayleigh 
case) it is necessary to take in (26) the first term, 
when v' = v ± 1 the second term, etc. 

The expression (27) for f:J~p Y' is obtained, 
strictly speaking, in the following fashion: the 
first term in the curly brackets corresponds to 
the term with ; raised to the zero power and to 
allowance for the dependence of the product of 
the matrix elements p~ Pkjpt0 on Q in the linear 
approximation. The second term corresponds to 
terms linear in ; , in which the matrix elements 
P&Z etc. are already taken with Q = Q0• In these 
terms, as can be seen from (25), there appear in 
the numerators the quantities 

T,,, = ~ (v1d Vz) h(w;~,- Wzo1 )(vzl v), 

which, by virtue of the completeness of the sys­
tem of functions { vz} in Q-space, can be trans­
formed for v' = v ± 1 into 

-A,zlv) = (v'IHO(Q)+ yzo(Q) lv) = (v'l V10 (Q) lv) 

( owzo' ( Q) ) 
= h ( Q - Qo) v'v•· ao •Qo 

Here H0 and Hl = H0 + v1 - V0 = H0 + v10 are the 
operators of nuclear-motion energy in the initial 
and l-th electronic states, V0 and vl are the 
corresp,onding potential energies, and the quanti­
ties Avl do not depend on Q and therefore 
(v' I AvZI v) = 0. When the foregoing is taken into 

(1) b account, the structure of both terms 13a{3y e-
comes clear. 

The remaining terms a ijk can be transformed 
similarly. The resultant formulas not only 
demonstrate the possibility of a changeover to 
polarizability theory, but also facilitate the prob­
lem of investigating the tensor a in different 
concrete cases, since summation over virtual 
vibrational sublevels is eliminated; they also 
make it possible to assess the frequency depend­
ence of the scattering intensity, especially if the 
number of actual electronic states is not too 
large. Just as in two-photon scattering [11 •12•17•181 

it is possible to distinguish between two frequency 
regions. In the first region, w or 2w is close to 
the actual electronic absorption band l 0, whereas 
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the other bands are quite remote from either w 
or 2w. In this region, the main contribution to a 
is made by the term {3 [Eq. (27)], and dominating 
in {3 is the second term, which contains a stronger 
frequency dependence and the large factor 
(owl 0o(Q)/oQ)Q0• due to the virtual transitions 
on the steep wall of the potential curve of the 
electronic state l 0 (cf. estimates given in [12•181). 
The frequency dependence of the scattering in­
tensity corresponds approximately to 5> 

I~ w14 (wl 0o'- w)-4 or I~ w14 (wz 0o'- 2w)-4• 

The second frequency region corresponds to the 
case when 2w « w'zo for all the actual electronic 
transitions (it is called the Placzek region in the 
theory of two-photon scattering). The vibrational 
structure of the electronic states l and j, to­
gether with the second term of (27), cease to be 
important in this case. The dispersion of the first 
term of {3 can also be neglected, and I ~ w 14 • The 
Kleinman symmetry conditions referred to above 
are valid precisely in this frequency region. A 
more detailed discussion of the problem of the 
frequency dependence is outside the scope of our 
present problem. 

1 R. W. Terhune, P. D. Maker, and C. M. 
Savage, Phys. Rev. Lett. 14, 681 (1965). 

2 C~ A. Coulson, A. Maccoll, and L. E. Sutton, 
Trans. Faraday Soc. 48, 106 (1952). 

3 A. D. Buckingham and J. A. Pople, Proc. 
Phys. Soc. A68, 905 (1965). 

4 A. D. Buckingham and M. J. Stephen, Trans. 
Faraday Soc. 53, 884 (1957). 

S)We do not discuss here the question of the possible 
change in the form in which the tensors a and {3 are rewritten 
on the basis of the sum rules. 

5 Y. Y. Li, Acta Physica Sinica 20, 164 (1964). 
6 S. Kielich, Physica 30, 1717 ( 1964); Bull. 

Acad. Polan. Sci. Ser. Math. Astr. Phys. 11, 193, 
201 (1963); 12, 53 (1964); Proc. Phys. Soc. 86, 
709 (1965). 

7s. J. Cyvin, J. E. Rauch, and J. C. Decius, 
J. Chern. Phys. 43, 4083 (1965). 

8s. A. Akhmanov and D. N. Klyshko, ZhETF 
Pis. Red. 2, 171 (1965) [JETP Lett. 2, 108 (1965). 

9 L. D. Landau and E. M. Lifshitz, Electrody­
namics of Continuous Media, Addison-Wesley, 
1960. 

10 L. D. Landau and E. M. Lifshitz, Classical 
Theory of Fields, Addison-Wesley, 1962. 

11 G. Placzek, The Rayleigh and Raman 
Scattering, Handb. Radiologie, 1934 (Transl. 
Lawrence Rad. Lab, Univ. of Calif., 1959). 

~ 2 M. V. Vol'kenshte1n, M. A. El'yashevich, and 
B. I. Stepanov, Kolebaniya molekul (Vibrations of 
Molecules), 2, Gostekhizdat, 1949. 

13 D. A. Kleinman, Phys. Rev. 126, 1977 (1962). 
V. M. Fain and Ya. I. Khanin, Kvantovaya radio­
fizika (Quantum Radiophysics), Sov. Radio, 1965. 

14 N. Bloembergen, Nonlinear Optics, Benjamin, 
1965. 

15 M. Born and Kun Huang, Dynamical Theory 
of Crystal Lattices, Oxford, 1954. 

16 M. D. Zepe, Trudy, Phys. Inst. Latv. SSR, 6, 
99 (1953). 

17 I. I. Kondilenko, P. A. Korotkov, and V. L. 
Strizhevskil, Optika i Spektroskopiya 9, 26 (1967). 
I. I. Kondilenko, V. L. Strizhevskil, ibid. 11, 262 
(1961). 

18 L. L. Krushinski1 and P. P. Shorygin, ibid. 
11, 151 (1961) and 19, 562 (1965). 

Translated by J. G. Adashko 
27 


