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An analysis is made of the conditions under which an increase of temperature of the entire 
crystal lattice can occur during paramagnetic spin-lattice relaxation. The case of a "phonon 
bottleneck" is considered, in which the energy of the superheated "resonant phonons" is 
conveyed to the lattice oscillations of different frequencies. Solution of the heat balance 
equations permits one to find the criteria for estimating the degree of crystal heating and the 
characteristic times for the establishment of equilibrium. It is shown that when the crystal 
is cooled in liquid He II, the Kapitza boundary thermal resistance plays an important role. 
Application of the proposed model to an explanation of the experimental results of Griffiths 
and Gliittli on paramagnetic relaxation in praseodymium ethyl sulfate leads to good agree
ment of the theory with experiment, which confirms the possibility of strong scattering of 
the resonant phonons with a change in their frequencies. Possible causes of such a phe
nomenon are discussed. 

PARAMAGNETIC spin-lattice relaxation at low 
temperatures can under certain conditions give 
rise to a so-called "phonon bottleneck" (super
heating of phonons that "resonate" with the spins). 
This phenomenon is observed when the direct 
spin-lattice interactions predominate, and the 
heat capacity cp of the phonons at the paramag
netic-resonance frequency v0 (within the line 
width ~v) is much less than the heat capacity cs 
of the spin system, with this the temperature of 
the phonons resonant with the spins can rise sub
stantially higher than the equilibrium temperature. 
The phonon bottleneck effect has been studied in 
detail theoretically, [1-'7] and recently experi
mentally as well. [8- 141 In the presence of a phonon 
bottleneck, the experimentally observed time, T, 
of recovery of the paramagnetic resonance-ab
sorption signal after switching off the saturating 
power is significantly greater than the true spin
lattice relaxation time Ts· The time T is approx
imately equal to Tpcs/cp,[8) where Tp is the 
lifetime of a phonon of frequency vo and deter
mines the rate at which equilibrium sets in be
tween the resonant phonons and the thermostat. 
The heat capacity of the thermostat is usually 
taken as infinite. However, this assumption is 
really true only when the energy of the super
heated phonons is conveyed directly to the helium 
bath. If their energy passes by some means into 
the remaining lattice modes, then, under certain 

conditions which are considered below, it is neces
sary to take into account the finite heat capacity 
of the crystal as a whole. 

Until now, the possibility of increasing the 
temperature of the entire crystal in paramagnetic 
relaxation has been discussed only outside the 
context of the problem of superheated resonant 
phonons, [15- 16 ] so that the results of these works 
could not be applied directly to the majority of 
experiments. We note that Peterson, [161 con
sidered the rather unrealistic case of a com
pletely thermally isolated crystal is and made an 
error in the numerical estimates, because of 
which the size of the expected effects is exagger
ated by three orders of magnitude. 

The establishment of thermal equilibrium be
tween the superheated resonant phonons and the 
entire phonon spectrum can occur only if the time 
TP is determined by the probability of phonons 
scattering with a change in frequency and is 
shorter than the time necessary for the esbape of 
a phonon from the crystal into the helium bath. In 
fact, in many cases (ethyl sulfates doped with 
neodymium [8] or praseodymium, [141 and copper 
Tutton salts [13]) the phonon lifetime determined 
from experimental values of the relaxation time 
T under conditions of a phonon bottleneck actually 
appears to be much shorter than the value of l/v, 
where l is the size of the crystal, and v is the 
speed of sound. 
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We also note the experimental observa-
tion [1!, 14• 17 l of an abrupt reduction of the time T 

when the liquid helium which cools the crystal be
comes superfluid ( H II). This phenomenon is un
doubtedly related to the change in thermal resist
ance of the medium surrounding the crystal, and 
suggests convincingly the possibility of an increased 
temperature of the crystalline lattice during relax
ation in the presence of a phonon bottleneck. 

Thus the transfer of energy from the super
heated resonant phonons to the remaining lattice 
vibrations is quite possible, at least in a large 
number of paramagnetic crystals. To understand 
the consequence of such transfer, it is necessary 
to take into account the finiteness of the lattice 
heat capacity and the thermal resistance of the 
medium, which is determined in the most import
ant case (He II) by the Kapitza boundary resist
ance. [1 8] 

We consider a system consisting of four 
reservoirs: spin system S, phonon system P 
containing the resonant phonons having frequencies 
in a band Av approximately equal to the EPR line 
width, lattice system L containing all the vibra
tional modes of the crystal, and bath B having 
infinite heat capacity. We assume that contact be
tween the subsystems takes place only by the 
scheme S- P- L- B. In particular, we 
neglect the direct transfer of energy from the 
resonant phonons to the bath. To each reservoir 
we ascribe a corresponding specific heat Ci and 
temperature Ti. We assume the heat flow u 
across the boundary of two reservoirs in thermal 
contact to be proportional to the difference in 
their temperatures. Then we can write 

. • cs • • 
us= csTs = -(Tp- Ts), 

-rs 
• o Cs • , Cp , o 

up= cpTp = -(Ts- Tp)+-(Tp- Tp), 
Ts -rp 

• 0 Cp , , CL • , ( ) 
uL=cLTL=-(Tp-T-)+-(T8 -TL)o 1 

't'p L 'tL 

Here TL is the characteristic time for the estab
lishment of thermal equilibrium between L and B, 
equal to rcL V, where r is the thermal resistance 

between the lattice and the bath, and V is volume 
of the sample. 

Equation (1), in which temperatures are used 
in place of particle numbers, is correct only for 
small deviations from equilibrium (i.e., for a 
small degree of saturation; all differences must 
satisfy I Ti - T j I « TB). Since the asymptotic 
behavior of the saturation decay curve is usually 
studied in investigations of the phonon bottleneck, 
such a consideration is quite justified.[7] 

To determine the conditions for which a sig
nificant increase in TL can be expected, one must 
solve Eqs. (1) assuming continuous saturation of 
the EPR signal by an rf field. By this means, it 
is not difficult to show that, in the presenc~ of 
phonon bottleneck we have 

!'!.TL ~ !'!.Tsf (1 + cLTpCp-1-rL-1) 

so that the criterion for an increase in TL is 

cp/-rp~ cL/-rL = 1/rV. (2) 

Condition (2) has a simple physical interpreta
tion: the thermal contact between subsystems P 
and L must not be worse than that between L and 
B. If the inequality in (2) is great, then TL ~ Ts 
and the cooling time for the entire system after 
removal of the saturation is given by 

(3) 

The criterion (2) is not always convenient, since 
it contains Tp. whose value is usually difficult to 
estimate. One can show, however, that (2) clearly 
is fulfilled if 

where T is the experimentally observed relaxa
tion time. Notice that Eq. (4) is a sufficient, but 
not necessary, criterion for an increase in TL 
under phonon bottleneck conditions. 

(4) 

The quantity r in Eqs. (3) and (4) includes the 
thermal resistance rcr of the crystal itself, the 
boundary thermal resistance, rb, and the thermal 
resistance of the surrounding medium (helium) 
rm· Boundary resistance (first observed by P. L. 
Kapitza [18 ]) arises on cooling the sample with 
He II and is accompanied by an abrupt change in 
temperature at the boundary dividing the two 
media. The thermal conductivity of superfluid 
helium is practically infinite, and so rm can be 
neglected. Comparison of experimentally meas
ured values of rb [19 ] with the usual values of 
thermal conductivity of single crystals at low 
temperatures (see, e.g., [20• 21 l) shows that rb » r cr 
for a sample thickness of 1 mm. Further, the 
quantity rb = R/S, where R is the Kapitza re
sistivity per unit surface S, plays the determining 
role in the most frequently encountered case of a 
crystal cooled in liquid He II. 

At temperatures above the helium i\-point 
(2.18°K) one has rm » rb (for the thermal con
ductivity of He I, see, e.g., [22 l), and the time TL 
is determined from the solution of the correspond
ing equation for the thermal conductivity. In any 
case, TL must increase greatly in the transition 
from He II to He I. 
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COMPARISON WITH EXPERIMENT 

Griffiths and GUi.ttli [17] observed a jump in the 
paramagnetic relaxation time when a sample of 
praseodymium ethyl sulfate, of size 3 x 3.5 x 5 mm 
and cooled in liquid helium was passed through the 
helium A.-point. These authors, correctly pointing 
out the decisive role of the helium thermal resist
ance in the relaxation above the A.-point, assume 
however that below the A.-point the usual phonon 
bottleneck occurs without heating of the entire 
crystal. The strong temperature dependence 
( T-3 to T-4) of T from 1.4 to 2.1°K is explained 
by them to be the result of phonon diffusion due 
to reabsorption by paramagnetic ions.[3•6J 

We will show that in this experiment it is not 
permissible to neglect the effect of the heating of 
the whole crystal lattice. First, we estimate the 
upper limit of the phonon mean free path, A, due 
to scattering with a change in frequency. Using 
the data on experimental conditions and EPR line 
width cited in the paper of Griffiths and Gllittli, 
and assuming v = 2 x 105 em/sec we obtain, 
using a Debye distribution, cp = 5.85 
x 10-1 Joule/deg-cm3 and cs = 0.79 
x 10-3 Joule/deg-cm3 at T = 1.5°K. The measured 
relaxation time T at this temperature is 0.36 
x 10-3 sec. Assuming that T cannot be shorter 
than Tpcg/cp, we obtain Tp::: 2.7 x 10-7 sec. 
Thus A ::: 5.4 x 1o-·2 em, i.e., considerably less 
than the linear dimensions of the sample, so that 
in this case scattering of the resonant phonons 
occurs with transfer of their energy to the entire 
lattice. 

To estimate the possibility of a rise in temper
ature of the crystal we use the sufficient condition 
(4). We take the value of R. from the experimental 
data of Johnson and Little. [ta] These authors 
showed that for a wide class of solids, including 
metals, semiconductors, and dielectrics, the 
Kapitza boundary thermal resistance varies little 
from substance to substance, and depends weakly 
on surface condition. For all materials studied by 
them, it is found that R = R 0T-n, where R0 varies 
from 7 to 39 deg-cm2/volt and n varies from 2.5 
to 4.15. In particular, at 1SK, the value of R 
for different materials varies within the small 
range from 2.4 to 9.5 deg-cm2/volt. Using these 
values together with the above values of cs and T 

at 1SK, and assuming also that V/S = 6.1 
x 10-2 em. we obtain T = (0.8-3.1)RcsV/S. Thus 
the values of T and res V are of the same order 
of magnitude, and one cannot neglect the rise in 
lattice temperature in this case. It is easy to show 
using the formulas of Giordmaine and Nash [SJ that 
this conclusion is not changed even when T is de-
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Temperature dependence of the relaxation time in praseo
dymium ethyl sulfate. Experimental points are data of Griffiths 
and Glattli; [17] curves 1 and 2 are calculated from Eq. (3) for 
different values of R. 

termined by phonon diffusion. 
We turn now to the direct comparison of ex

perimental results [17] with Eq. (3), which corre
sponds to significant heating of the crystal lattice 
(we assume that r is determined by the Kapitza 
boundary resistance). This comparison is facili
tated by the fact that the heat capacity of praseo
dymium ethyl sulfate has been measured experi
mentally at low temperatures [251 and there is no 
need to resort to the Debye approximation. The 
figure shows the time T' calculated according to 
Eq. (3) together with the experimental points of 
Griffiths and Gllittli [17] at 2.1 °K. Curve 1, which 
corresponds to a typical value of the Kapitza re
sistance R = 22.3 T- 3 deg-cm2/volt, agrees satis
factorily with the experimental data; curve 2, 
calculated with R = 18 T- 2·5, agrees even better 
with the experimental values of T. The deviation 
of the temperature dependence of R from the 
theoretical relation [23 •241 R ~ T- 3 is not sur
prisin~ in view of the experiments of Johnson and 
Little 191 mentioned above. The values of R used 
in the calculation of both curves agree excellently 
with the experiments of these authors. 

Taking into consideration the approximations 
used, the agreement of theory with experiment, 
both in the temperature dependence and in the ab
solute value of T (see the figure), is very good. 
Evidently, the condition cp/Tp » CL/TL is in 
fact satisfied in this example. Thus, one can infer 
that Tp « 2.7 x 10-7 sec and A« 5.4 x 10-2 em, 
which agrees with the estimates of Larson and 
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Jeffries [141 for magnetically diluted ethyl sulfates 
of lanthanum and yttrium doped with praseo
dymium. 

CONCLUSIONS 

The considered model of paramagnetic relaxa
tion (spins - resonant phonons- all lattice vibra
tions - thermostat) in fact can be realized exper
imentally, and leads to a significant crystal heat
ing. This means that, at least in certain cases, the 
scattering of phonons with change of frequency 
plays a decisive role in cooling the phonons 
"resonating" with the spins. However, estimates 
of the probability of such scattering due to an
harmonic ity of the lattice vibrations [!' 261 leads to 
a large mean free path A. In fact, using the cal
culations of Klements, [261 we obtain 

pv6 1 
A= 1.5·1Q-2D----r2 vT4, (5) 

where p is the crystal density, and r is the 
Grlineisen constant, which is usually close to 2. 
For p = 1.8, v = 2 x 105 em/sec, v = 30 GHz, and 
T = 1.5°K, we find A = 2.8 em. which exceeds by 
about a factor of 50 the upper limit for A obtained 
in the preceding section. Scattering from impuri
ties also cannot give a substantial reduction in 
A. [26 ·5] Thus there clearly exists some additional 
mechanism for phonon scattering. It has not been 
excluded here that an important role can be played 
by the low-lying optical modes of the lattice oscil
lations. Such a mode, with excitation energy of 
only 3.4°K, is observed in particular in the ethyl 
sulfates, [271 where it gives a significant contribu
tion to the thermal conductivity at low tempera
tures. Equation (5) is obtained without taking the 
optical modes into account. 

Another cause of the lower probability of 
escape of the resonant phonons to the helium bath 
can be the reabsorption of the phonons by the 
paramagnetic ions.E3•6] This phenomenon leads to 
an increase in the time necessary for the phonons 
to reach the crystal boundaries, and consequently 
to an increase in the probability of scattering with 
transfer of energy to vibrations of different fre
quencies. Reabsorption of phonons is particularly 
important in crystals with strong inhomogeneous 
broadening of the EPR line; [6] just such a situa
tion is observed in praseodymium ethyl sulfate. 

We remark that we have observed experimentally 
an increase in lattice temperature during para
magnetic relaxation, and the associated abrupt 
change in the time T in the transition of the hel 
helium across the i\-point, in crystals of 
gadolinium hexa-antipyrinate-tri-iodide. A strong 
inhomogeneous broadening of the EPR line occurs 
in this substance also. 

The author extends thanks toM. E. Zhabotinskil, 
A. V. Frantsesson, and L. V. Levkin for their in
terest in the work and for useful discussions. 
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