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Averaged equations are deduced under nonstationary conditions for an electromagnetic field 
in a one-dimensional resonant medium, without expanding the field in eigenfunctions of an 
empty resonator. For weak nonlinearity or small coherence, the equations are identical with 
those of the balance theory. Equations for stationary conditions are derived as a special 
case. 

1. INTRODUCTION 

THE operating features of quantum amplifiers 
and generators are frequently analyzed by using 
balance-theory equations derived under the as­
sumption that the transitions in the atoms are de­
termined only by the number of photons of given 
frequency. Such an analysis is valid if there are 
no phase relations between the photons. These 
conditions are usually satisfied in quantum am­
plifiers (see, for example, [1, 2]). In generators, 
the interference between the direct and backward 
waves is significant, and allowance for it is es­
sential. 

In the exact theory of quantum generators it is 
necessary to start from equations that take into 
account the presence and the interaction of many 
natural oscillation modes that fall within the 
width of the emission line of the active medium. 
The fields satisfying Maxwell's macroscopic 
equations can be expanded in the eigenfunctions of 
the unperturbed resonator, as is done in the 
theory of the two-mode generator [a-sl, and one 
can start from the system of ordinary differential 
equations for the amplitudes of the proper waves. 
Such a method is useful only in those cases when 
the number of modes in the resonator is small, 
and can hardly lead to the desired purpose in a 
multimode generator. 

Another possibility of simplifying Maxwell's 
equations lies in the high monochromaticity of 
the laser emission. By representing the field in 
the form of monochromatic waves with slowly 
varying amplitudes, propagating in opposite direc­
tions, it is possible to lower the order of the dif-

ferential equations and rewrite them in simpler 
form for these amplitudes. The slow dependence 
of the indicated amplitudes on the coordinates 

and on the time correspond to allowance for the 
multimode character. For a generator operating 
in the stationary regime, such an approach has 
been developed for dipole transitions in [6] and for 
arbitrary transitions in [1]. However, operation of 
solid-state lasers is essentially nonstationary, so 
that it is important to have equations for the non­
stationary regime. 

The present paper is devoted to the derivation 
of such equations for a one-dimensional generator. 
The initial system is made up of the equations of 
quantum electrodynamics [T] averaged over an 
infinitesimally small physical value [81. By repre­
senting the field in the form of a superposition of 
waves traveling in opposite directions and by 
averaging over the spatial period of the wave, we 
obtain first-order equations for the slowly varying 
amplitude. These equations take explicitly into 
account the coherence effect, and when the ampli­
tudes are small they coincide with the balance 
equation. On the other hand, if the time depend­
ence of the amplitudes is neglected, these equa­
tions go over into the equations of the stationary 
generator [1•61. We use the derived equations to 
analyze certain examples and to determine the 
corrections that must be introduced into balance 
theory to allow for the coherence effects. 

2. DERIVATION OF THE AVERAGED EQUATIONS 
OF A GENERATOR IN THE NONSTATIONARY 
REGIME 

Quasiclassical equations for a resonant medium 
with arbitrary transition multipolarity were de­
rived in [8]. If allowance is made, in the usual 
fashion, for the relaxation of the transition current 
r for the nonresonant and spontaneous losses f1 
and 1/T, and also for the pump W, then the initial 
system of equations for the projection of the po-
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tential A in the direction of the matrix element 
of the transition current p and for the level pop­
ulation ~ in the one-dimensional case takes the 
form 

(~~+ ~~-v~)A = -4n[M( i!_)p* 
v at2 at ax2 ax 
+ M* ( - t a: ) p] , ( 1) 

ap + iro0p + __!: p = _!__ llM (- i !_) A, 
flt 2 eli ox 

(2) 

oil+ ll ( W + .!) - n ( W- _!__) 
f}t . 't 't 

2i r . ( a 0 . ( a )] =- pM i- -p M -i---- A, 
eli L ax ax 

(3) 

where v is the wave velocity in the medium, w0 

the transition frequency, n the density of the ac­
tive atoms, and M the transition matrix element. 
We represent, as usual, the potential and the 
current in the form 

A = A' e-irot + A'• eirot, p = p' e-irot, ( 4) 

where w is the emission frequency ( w - w0 

« w0 ), and the amplitudes A' and p' vary slowly 
with time compared with exp ( -iwt). In terms of 
the new variables, the equations (1)-(3) of the 
active medium take the form 

2iro aA' u>2 a2A' ( a ) 
----~+-A'+tro~A'+v--=4nM* -i- p'. 

IJ at V OX2 flx (5) 

ap' . ' r ' i M( . a )A' ( -;--- +- zep + -p = -ll - z-- , 6) 
iJt 2 eli ' ax 

~ll + /l( W + _!_)- n( W- !__ \ = 2i p'M"( i!_)A'" 
f}t 't ' 't J eli a.c 

2i,.( {})' ---p M -i- A, 
eli ' ax 

(7) 

where E = w0 - w. 

To simplify these equations we take into ac­
count the fact that in real solid-state generators 
the relaxation time is much shorter than the 
characteristic generation times and we neglect 
the derivative Kp'/Kt in (6) compared with rp'/2. 
It then follows from (6) that 

, ill M( 8) , p = -i- A. 
eli(f/2 + ie) ax 

(8) 

Substituting this value of p' in (5) and (7), we get 

2tro iiA'· (1)2 82A' 
---+-A'+ tro~A' + v--

v at v f)x2 

(10) 

-- 2f/l [M* (t_!_) A'" ]r M(- i_!, )A'] 
- e2h2(f2/4 + 82) ax L OX • • 

We resolve the potential into forward and back­
ward waves in the following manner: 

(11) 

and assume, as usual, that 

(12) 

In order to be able to separate the waves A1 and 
A2 from each other in (9), we average over the 
spatial period of the wave. We then get 

oAt 1 OAt ~ A _ 2n __ / -ittxM" ( _ · !__) 
ax +-;;---at+2 f- e1iro(r/2+ie)l\e 'ax 

(13) 

- &Az ~ iJA2+l_Az= - 2n (eikxM*(-t_!_\ 
ax + v at 2 ehro(f/2+ie) ox! 

ll{M(k)Ateikx + M (-k)A2e-ikx]), (14) 

oil +ll(W+_.!)-n(w-~) at -r , -r 

=- 2fll IM(k)Ateikx-M(-k)A2e-ikxl2 
c2/i2(f2/4 + e2) · 

(15) 

The angle brackets in the right sides of (13) and 
(14) denote the averaging indicated above. To 
carry out this averaging, we represent ~ in the 
form 

(16) 
n=-co 

the validity of which will be demonstrated later. 
For the time being it is important only that the 
~n• as functions of x, vary much more slowly 
than exponentials. Substituting (16) in (13) and 
(14) we get 

OAt+--~ OAt +_!_At 
ax v at 2 

= 2llM*(k) {M(k)lloAt+M(-k)ll1A2}, (17) 
liroe(ie+f/2) 

(18) 
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We introduce the following notation for the 
cross sections: 

0"1,2 = 2nrJM(±k) J2 I nCCJ) (r2 I 4 + 82), (19) 

and in lieu of the fields A1, 2 the potential normal­
ized for the flux: 

A1,2 = (2nnc/w)'l•a1,2 Ja1,2l 2 = /1,2. (20) 

In the mixed products of the type M*( k) M ( -k), 
we neglect the phase difference of the matrix 
elements M ( k) and M ( -k), since they are 
cancelled out in final analysis by the same phase 
factors which are contained in ~±!· For fields 
a1, 2, the equations take the form 

~ + d (w + -~ l- n (w- -1 ) = -n [2atl1 + 2a'll2 
iJt 't) 't 

Equation (22) is of first order in the time and 
can be formally solved with respect to ~: 

(22) 

t. = t. (0, x) v (t, x) exp{ -4 l'G1a2J z (t. x)jcos [arg z (t, x) -2kx]} 

'. 1) t·dt' { --+nl W-- v(t,x)j-,-exp -4l'a1G21z(t,x) 
't ·av(t,x) 

- z(t', x) I cos(arg [z (t, x)- z(t', x) ]- 2kx) }; 
(23) 

We have introduced here the notation 

v(t,x) = exp {- (w + ~ )t 
t 

- 2 ~ {a1l1 (t', x) + a2l2(t', x)] dt'}. (24) 

0 

t 

.z(t,x)= ~ a1 *(t',x)~(t',x)dt'. (25) 
0 

To determine the coefficients ~n we make use of 
the formula 

+oo 
e-z cos <P = ::S ( -1} n In (z} e-in<P, 

n=-x> 

where In are Bessel functions of imaginary argu­
ment. Taking this expansion into account, we de­
termine from (23) the populations ~o and ~±1: 

no= t.(O, x)v(t, x)Jo(4 l'a1a2l z(t, x) I)+ n ( W- ~) 
\ 't 

t dt' -
X y(t.x) ~ -,-l0 (4ya1a2 lz(t,x)-z(t',x) 1}, (26) 

0 y(t,x) 

n±1 = -n (0, x)v(t, x)l1(4l'a1a2lz(t, x) J) 

X exp {+iargz(t, x)} 

( 1 t dt' 
-n W--)v(t,,x} ~ --11 (4l'a1a2 lz(t,x) 

't 0 v (t', x) 

- z(t',x) I) exp {+iarg[z(t,x)- z(t',x)]}. (27) 

Thus, (21), with the notation (24)-(27), are the 
equations of a resonant medium in the nonsta­
tionary regime. Unlike the balance equation, they 
take explicit account of the coherence effects via 
the interference between the forward and backward 
waves [the factor z ( t, x) ]. This interference, as 
can be readily seen, is significant, first, when the 
nonlinearity of the medium is large and, second, 
when the coherence is good. In the opposite case, 
when 

4l'atcr2J z (t, x) I~ 1, (28) 

we can put ~1 = 0 in (21). We then get the equa­
tions 

()]1 1 iJ/1 -+--+ ~/1 = O"tfiolh 
iJx v iJt 

()]2 1 ()]2 --+ ~- + ~l2 = G2Aol2, (29) 
iJx v iJt 

iJfio +no (w + _!_)- n( W- ~) =- Zno(aJ1 + a2l2), at . -r .. 

which coincide with the balance equations. This 
shows that (28) should be regarded as the condi­
tion for the applicability of the balance equations. 
Inasmuch as the forward and backward waves are 
coupled with each other by the boundary conditions, 
the magnitude of the interference integral z will 
be determined by the coherence of one of the 
waves. 

3. STATIONARY REGIME 

Let us ascertain the conditions under which 
(21) have stationary solutions. If a 1 and a 2 do not 
depend on t, then it follows from (24) and (25) that 

z = a1*a2t, v = exp {- (W + 1/1;)t- 2(a1l1 + 0"2/2) t}. 
(30) 

In order for the right sides of (21) to be independ­
ent of t in this case, it is necessary to assume 
that 

(W + 1/-r)t> 1. (31) 

When this condition is satisfied, the first terms in 
the populations ~0 and ~1 can be neglected, and 
the integration with respect to t can be extended 
in the second terms to infinity. By the same 
token, we neglect in fact the exponentially small 
terms. Taking into account also the formula 
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r ~v J e-axfv(~x)dx = • (a>~), 
o ia2- ~2(a + ia2- ~2) 

we get 

~0 = n(W- 11/r) [ (W + 1/r + 2crt11 + 2cr2J2)2 

- 16cr1cr2Jd2] '", 

11+1 = n (w -~) 
4hh"Ycr1cr2 ,; (32) 

x{t- W + 1/,; + 2crt11 + 2cr.;1_2 __ -}a a • 
[ (W + 1/,; + 2crd1 + 2crzl2) 2- 16cr1cr2J1hl'" 1 2• 

and .6._1 is obtained from .6.+1 by replacing the 
factor a1at by aia2. 

Substituting (32) in (21) and rewriting the equa­
tions for the fluxes J 1, 2, we get 

ah n ( 1 \ 
----+~lz=- W--1 ox 4 . 't I 

which coincide with the stationary equation equa­
tions obtained in [1, 6 l. Thus, if a stationary regime 
exists at all, it sets in for the time t » ( W + 1/rr1 

and is described by Eqs. (33). 

4. CLOSED RESONATOR 

Let us consider a closed resonator with in­
stantaneous Q switching. Since generation de­
velops in such resonators very rapidly, the in­
fluence of the pump and of the spontaneous losses 
can be neglected ( W = 1/T = 0). We assume also 
that the initial conditions do not depend explicitly 
on x and are such that a1 = a2 (this corresponds 
in fact to excitation of one longitudinal mode in 
the resonator at the initial instant). Let us con­
sider the case CT 1 = CT 2 =CT. It is then easy to show 
that at any instant of time a1 = a2 (total interfer­
ence). Equations (21) for the fluxes J 1 = J 2 = J 

take under these conditions the form 

~ dJ + f3J = _ cr~(O) 
v dt 4 

d t t 

X &{ exp[ -4cr ~ J(t')dt'] 1{ 4cr ~ l(t')dt' ]} . (34) 
0 0 

Integrating this equation with respect to t and 
introducing the symbol 

t 

U(t)= 4cr~ l(t')dt'~ 
0 

(35) 

we obtain the equation 

dU jdt = 4crJ0 + crvll(0)[1- e-UJ0(U)]- vf3U (36) 

( J 0 = J ( 0)), which can be readily integrated: 

u dx 
t = ~--- . (37) 

0 [4crfo + crv~(O)]- avil(O)e-Io(x)- vi}x 

Balance theory corresponds to putting unity in 
lieu of the function ! 0 ( x) under the integral sign. 
Let us determine the total output during the gener­
ation time (i.e., U ( oo)). The value of U ( oo) is 
determined by the poles of the integrand, i.e., by 
the condition 
4crJ0 + avil (0)- avil (0) e-u(oo)J0 {U ( oo)]- v~ U ( oo) = 0. 

(38) 
Assuming that 4 CTJ 0 « CTV .6. ( 0) and putting 

a= ~(0)/Llthr (39) 

we get the following equation for the determina­
tion of U ( oo): 

U(oo) 
a= . 

1- e-U(oo)Jo[U(oo)] (40) 

On the other hand, if we solve the same problem 
in the balance equation, we get 

U5(oo) 
a = .,-------::-'---:':---~ 

1 - exp {-U 6 ( oo)} · (41) 

Comparison of these formulas shows that when 
0! « 1 and 0! » 1 the values of u ( oo) and ub ( oo) 
are practically the same. The maximum differ­
ence between these quantities takes place at 
a~ 3, when U(oo)/Ub( 00 ) is approximately 0.75. 
The foregoing example shows that even the 
crudest measurements (energy measurements) 
make it possible to determine the extent to which 
a theory that takes coherence into account devi­
ates from the balance theory. 

5. PASSAGE OF STRONG RECTANGULAR PULSE 
THROUGH A RESONANT MEDIUM 

As another example, let us consider the pas­
sage of a strong rectangular pulse of duration T 
through an active medium, the right end face of 
which is reflecting with a reflection coefficient r. 
We shall assume that the input signal is so strong 
that in first approximation its variation as a re­
sult of the passage can be neglected. We then 
substitute for a1 and a2 in the right sides of (21) 
their limiting values, and obtain the corrections to 
a1 and a2 by perturbation theory. The limits of 
applicability of this method are determined by the 
condition 2CT U 0r » 1, where U 0 is the total num­
ber of quanta initially incident on the left end face. 
We denote the radiation output on the right and on 
the left by U1 and U2 respectively. The same 
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quantities calculated by balance theory will be de­
noted U1b and U2b· We note that for a rectangular 
pulse of duration T, the role of coherence length 
is played by the quantity Lcoh = vT. 

We shall not present the general formulas here. 
Detailed results of the calculations, together with 
the computations, will be published separately. 
We note only the following: If Lcoh « L ( L -
length of the active medium), then the results, as 
expected, do not differ in practice from the re­
sults of balance theory. In the opposite limiting 
case, when 4crU0L/Lcoh « 1 and r is not very 
close to unity (2crU 0(1- r) » 1), we obtain the 
following simple formulas: 

( . ll.L) [ AL J U1=(1-r) Uo+ 2 , Uu:;=(i-r) Uo+ 2(i+r) , 

U26=r[Uo+~l:_] (42) 
(1 + r) ' 

where A is the initial level population. As seen 
from these formulas 

I!!.L 
U1+U2= U16+U26= Vo+q-. (43) .. 

i.e., the total output from the left and from the 
right is the same as in balance theory. However, 
this output is distributed between u1 and u2 dif-

ferently. The differences between U1,2 and U1,2b 
may turn out to be appreciable. 

The author is grateful toM. L. Ter-Mikaelyan 
for numerous stimulating discussions. 
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