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A method for the derivation of Chew-low type equations from the Mandelstam representation 
is proposed. The meaning of the cutoff function, which takes into account the cut from the 
process III (18) in the partial wave, is elucidated for static models. It is shown that the func
tion can also be regarded as simultaneous allowance for inelastic processes in the first two 
channels (18). 

INTRODUCTION 

THE Chew-Low equations were first established\\ 
within the framework of a special rrN scattering 
model describing the interaction with a fixed 
source [1, 2]. These equations played an important 
role in the study of pion-nucleon interaction at low 
energies. Recently interest has been evinced in 
equations of the Chew-Low type in connection with 
the study of both the symmetries of strongly-in
teracting particles and the behavior of the scatter
ing amplitudes at high energies [a]. It is therefore 
of interest to derive the Chew-Low equations on a 
more general basis than the special form of the 
interaction Hamiltonian [1, 2]. The first steps in 
this direction were made by Oehme and by Chew 
et al. (CGLN) [sJ. The authors of[5J, starting with 
the dispersion relations with respect to energy at 
a fixed value of the momentum transfer, estab
lished the Chew-Low equations in the static limit. 
They were also the first to indicate the difficulties 
of such a derivation, one of which consists in the 
need for introducing a cutoff function connected 
with a Hamiltonian formulation with finite source 
dimensions. We shall discuss this question later. 

SCATTERING OF NEUTRAL PIONS BY SPINLESS 
NUCLEONS 

Let us consider for simplicity a model example, 
that of scattering of neutral pions ( rr) by spinless 
nucleons ( N) . The method of introducing into 
consideration the variables that assume discrete 
values (spin, isotopic spin, etc.) will be indicated 
later. The amplitude of the transition of this pro
cess is expressed in terms of the S-matrix as 
follows: 

1 
(q2, P2IS -11 qt, Pt) = i(2n) 46(Pt + qt- P2- q2) (2n) 6 

M T( · ) (1) X (4 0 0 0 O)'l Ptqi, P2q2 . qt q2 Pt P2 ' 

Here qi (Pi) are the pion (nucleon) 4-momenta. 
For convenience in changing over to the case of 
real 1r N scattering, we have retained the fermion 
normalization for the nucleons. The Lorentz
invariant amplitude T ( Pt> q1; p2, q2 ) depends on 
two variables, which can be chosen to be any two 
of the Mandelstam variables s, u, and t: 

s = (p1 + q1)2, s = M2 + ,_..2 + 2q2 + 2y(M2 + q2) (IJ.2 + q2). 

u = (Pt- q2)2, t =- 2q2(1- cos 9). 
t = (Pt- P2) 2, (2) 

where q is the momentum and (J the scattering 
angle in the c .m .s. 

For the scattering amplitude we have the ex
pansion 

T (s, t) =. 4n : }:J(2l + 1)h(s)Pz ( 1 +--;), (3) 
z;;.o ' 2q 

where W is the total energy. The two-particle 
unitarity condition is of the form 

Imh(s) = q (s) lh(s) 12. 
We write down the dispersion relation ( d.r.) 

in s for fixed t: 
1 1 1 00 

T(s,t)=g2 (M2 -~+ M2 _J+n ~ lmT(s',t) 
(M+I1)' 

(4) 

X [-/-+ ~] ds'. (5) 
s -s s -u 

120 

The d.r. (5) presupposes that IT( s, t) 1- 0 as 
I s I - oo. It will be shown later that this limitation 
is immaterial. 
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We obtain the Chew-Low equations from the 
d.r. (5) by the CGLN method [51. To this end, we 
make a number of assumptions: first, we neglect 
in d.r. (5) all the inelastic processes; second, we 
confine ourselves to the lowest partial waves in 
the expansion (3), putting fZ ( s) = 0, l > 1; third, 
in the equations for the partial waves we go over 
to the static limit (!liM- 0, s/M 2 - 1). As a 
result of the second assumption, it is sufficient to 
know the d.r. for T ( s, 0) and Tf ( s, 0) in order 
to determine the equations for the S and P waves, 
since 

T(s,t)=4n :;[to(s)+3(1+ 2:J/t(s}], 

w 
T(s, 0) = 4n M(fo(s) + 3/t(s) ], 

' w 3 
Tt (s,0)=4nMZq2 /t(s). 

Differentiating the d.r. (5} with respect to t, we 
readily obtain the d.r. for Tf ( s, 0) . 

(6) 

It is convenient to change over from the vari
able s to a new variable E - the meson energy in 
the laboratory frame: 

E2- !12 
s=M2+1L2+2ME. q2= (7) 

1 +(!L/M)2+(E/M)2. 

The d.r. for Tf ( s, 0) must further be combined 
with d.r. (5) so as to obtain, in accordance with 
(6), the d.r. for the partial waves. After going over 
in the equations for the partial waves to the static 
limit, we get 

fo(w)= 2_f+~ 7 Im /f(w') dw'2 +~ r Im/o(w')dw'2, 
,2 n .l q'2 n J w'2 _ ,w2 
r ~ ~ (~ 

!t(w)=-_!:__!__!!._+_!!_2 r Im/t(w') dw'2 
3fL2W n~,q'2(w'2-w2) ' (9) 

where w = lim E and f = gJ.'i2M. 
M-oo 

Equations (8} and (9) have all the distinguishing 
features established in [5] for the n N scattering 
problem in the static limit. First, the crossing
symmetry condition T ( s, u, t) = T ( u, s, t), which 
relates different partial waves, reduces to a num
ber of uncoupled equations in the form 

/!(- w) = /!(w). (10) 

Second, the coupling of the individual partial waves 
is effected by the pole term. Furthermore, the 
equation for the S-waves contains an additive con
stant that depends on Im f1 ( w ) . 

The equations (8) and (9) differ essentially 
from the usual Chew-Low equations in one re-

spect. Thus, for the Hamiltonian of the interaction 
between neutral scalar mesons with the source 

the Chew-Low equation is of the form 

1 r Imho(w') , 
ho ( w) = -- .l --,"---;;- dw 2, 

n ~t' w "- u;-

where h0 (w) =f0 (w)/v(q2 ) and v(q2 ) is the 
square of the Fourier transform of the source 
function U ( I r I ) . Interaction ( 11) leads only to 
S-scattering. From the unitarity condition (4) 
follows the inequality 

lho(w) I< 1/qv(q2), 

(11) 

(12) 

(13) 

from which we see that for rapidly decreasing 
functions v ( q2 ) the Chew-Low equation (12) must 
be written out with a number of subtractions. 

We know very little about the function v ( q2 ). 

It is usually assumed that U (I r I ) differs from 
zero in a finite region I r I < R. We can then say 
with regards to the function v ( q 2 ) that 

(14) 

Relation (14) says nothing about the analytic 
properties of the cutoff function. In concrete cal
culations, one prefers to use for it analytically
continuable functions. For example, it is assumed 
that [S, 71 

(15) 

To be sure, a step-like cutoff is sometimes used[SJ 

v(q2)= {1 q2:s;;;;q2max (16) 
0 q2 > q2max· 

Comparing ( 8) with (12) we see that different 
functions, fo ( w) and h0 ( w) respectively, have the 
same analytic properties with respect to w. If we 
obtain the analytic properties of the partial wave 
fo ( w) from the Chew-Low equations (12), then 
they can differ appreciably from those in ( 8) as a 
result of the cutoff function. Moreover, if the 
cutoff function is not analytic, then the partial 
wave fo ( w) is likewise not analytic. To clarify 
the foregoing contradiction, which was first noted 
in [51, let us turn to the derivation of (8) and (9). 
They were obtained from the d.r. (5) on the basis 
of the analytic properties of the amplitude 
T ( s, t) with respect to s for fixed t. 

The next step in the investigation of the ana
lytic properties of the scattering amplitude is the 
Mandelstam representation [al, which postulates 
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the position of the singularities of the amplitude 
as a function of two complex variables. It has not 
been proved as yet, although recently a number of 
important results have been obtained [9l, which 
bring the analytic properties of T much closer 
to those proposed in [sJ. For the case under con
sideration, the Mandelstam representation is 

1 1 1 00 

T(s,u,t)=gz(\ __ --+--) +- r_ ds1 

M2 - s M2 - u n2 J 
(M+Il)2 

00 ( 1 1) 1 00 0C 

X ~ du1 - 1_y_!__:_z:__,--+- I d:x \ dt1p1 (x, t 1 ) 

( s - s) ( u - u) nz J • 
(M+Il)' (111-rlll' 41-'2 

[ 1 1 J 
X (x- s) (t1 - t) + (x-u) (t1 - t)) · 

The double spectral representation (17) de
scribes simultaneously three processes: 

(1 7) 

I n+N-+n' +N' s j 
(18) 

II n' +_N __..~ + N' u energy variables. 

III n + n'-+ N + N' t 
From the spectral representation (17) we readily 
obtain the d.r. (5). Here Im T(s, t) has, as a 
function of the variable t, cuts located outside the 
physical region of the process I: 

lmT(s,t)=_!_! Pt
1
(s,t1

) dt1 

:rr 41'' t -- t 

1 (M-~I'l'-s p (s, 2M2 + 2r-t2 - s- t 1 ) 

-- ~ 
n f-t · 

(19) 

00 

In order to represent most clearly the conse
quences that follow from the presence of cuts with 
respect to the variable t in Im T( s, t), we shall 
use the Cini-Fubini approximate spectral repre
sentations [tol. Following Cini and Fubini, we 
represent the imaginary parts of the scattering 
amplitude in the form 

Im T(s,t) = {lm T(s, t)} el +{Im T(s, t)} inel (20) 

It follows from the spectral representation (17) 
that the first term in (20) has a cut in t, starting 
with t = 16J,.!2, and the second, which differs from 
zero only at s > ( M + 2J,.! )2, starting with t = 4J,.!2• 

We substitute (20) in d.r. (5) and neglect the 
dependence on s and u in the integrals of the 
second term. Such an approximation is justified 
in the region I s I ~ I u I < ( M + 2J.L) 2: 

( 1 1 1"" 
T(s, u, t) = g2 ---+ --) +- I {Im T(s1 t)}let 

M2 -s ·M2 -u l't J ' 
(M+Il)' 

X r-,-1- +-1-]ds1 +_!_ r __r:j!J_dt'. (21) 
Ls-s s1 -U nJf-t 

41'' 

The presence of a cut in t, starting with t = 4J.L2, 

is connected with the fact that the amplitude T 

describes also the process III. If the last goes 
via intermediate states with small lifetime, then 
the function c ( t) - the imaginary part of the 
process III - can be reasonably approximated by 
a series of a-functions: 

c(t) = n ~- c;b(t- ti). 

Even if c ( t) is a smooth function, the influence 
of the last integral in (21) on processes I and II, 
for which t < 0, can be well accounted for by a 
system of poles. Therefore, with an aim at obtain
ing the Chew-Low equations for processes I and 
II, we transform (21) into 

T(s,u,t)=g21 
-

1---t.-1-\ +1_- r {ImT(s,t')}et 
JVJ2-s 'M2 -u·J Jl j 

(M+I-l)' 

r 1 1 J 1 ~ C; X L -,--+ -, -- ds + LJ--··. 
s - s s - u . i t - t; 

(22) 

The separation of the partial waves from (22) will 
be carried out by a differential procedure proposed 
in [ttl, i.e., by combining the spectral representa
tion (22) for forward and backward scattering 

4n Wfo(s) = T (s, 0) + T (s, -4q2) 

M 2 
W T(s,O)- T(s, -4q2) (23) 

4nM/1(s)= 6 

It is seen from formulas (23) that fo ( s) and 
f1 ( s) have the same system of poles ti. Going 
over then to the static limit in (23), we find that 
the functions f0 ( w ) and ft( w) satisfy Eqs. ( 8) 
and (9), the right sides of which contain the same 
system of poles in w. This system of poles is 
symmetrical with respect to the line Re w = 0 
(imaginary axis). If we were to take into account 
the higher waves, then the different partial waves 
could have different systems of poles, which 
originate, however, from the same set of poles in 
t of the amplitude T ( s, u, t). 

The last step in the derivation of the Chew-Low 
equations from the representations (17) consists 
in constructing the auxiliary function 

IT 1 V1(q2) 
Vz(q2) = --- vz(q2) = ----. 

i w- wu V1(-1) 
(24) 

Then we can consider in lieu of the partial wave 
fz ( w) the function fz ( w )/vz ( q2 ) = hz ( w ), the 
analytic properties of which coincide with those 
in the Chew-Low equation 

We have started from d.r. (5) and the repre
sentation (17) in the so-called non-subtracted 
form. Since we do not know beforehand how many 
poles must be introduced on going from (21) to 
(22), it is clear that it is impossible to specify 



DERIVATION OF THE CHEW-LOW EQUATIONS 123 

ill w 

II II 

m ,_ 

a b 
w w 

c d 

beforehand the number of the subtractions in the 
Chew-Low equations. We shall therefore write 
them out without carrying out the subtractions 
(12), assuming that they can always be carried out. 

SCATTERING OF MESONS BY NUCLEONS 

The reasoning presented above can be general
ized without difficulty to include the case of meson
nucleon scattering. With this, the amplitude T in 
formula (1) will have isotopic and spin structure 

T =A + 1/2 (qt + q~) B, A = A<+>BaflBt,t, + A<->1/2 ha'Tfl]t,t, 

and an analogous formula for B, where a, 
{3 ( t1, t 2 ) are the isotopic indices of the pions 
(nucleons). 

(25) 

We shall not repeat the foregoing procedure for 
the amplitude specified by formula (25). We pre
sent a more formal exposition of the derivation of 
the Chew-Low equations from the Mandelstam 
double spectral representations. We deduce from 
the representation (17) the analytic properties of 
the partial waves fi ( s) [12• 131 • The arrangement 
of the cuts is shown in Fig. a. 

We change over to a new variable 

E = (s- M2- JJ.2)/2M (26) 

and take the limit 

w =lim E. (27) 
M--><oo 

The system of cuts of the partial wave fi ( s) in 
the w plane is shown in Fig. b. Further, we 
model the cut - oo i, +i oo from process III by 
means of a system of poles Win (Fig. c). The 
poles must be symmetrically disposed relative to 
the imaginary axis. It is obvious that for different 
partial waves fi ( w) the systems of poles Wi, n 
will in general not coincide. We set up a union 
wn of all the Wi,n whose partial waves are con
nected by the crossing-symmetry relation 

(28) 

where Aij is the crossing-symmetry matrix. In 
accordance with the aforementioned union, we 
construct the function 

v 2 - V(q2) 
(q )- V(-1) ' 

1 V=Il . 
n w-wn 

(29) 

It is then obvious that the functions hi ( w) 
= fi (w)/v(q2) have the analytic properties shown 
in the Fig. d, i.e., they satisfy the Chew-Low 
equations 

h; (w) = A.; + ~ r[ lm h;(w') + Aii lm hi(w'~J dw' (30) 
w :rt w' - w w' + w ' 

I! 

which have been written out, as usual, without sub
tractions. The necessary number of subtractions 
can always be easily introduced. 

CONCLUSION 

We have proposed a scheme for deriving the 
Chew-Low equations; this scheme is based on 
analytic properties, specified by the Mandelstam 
representation, of the scattering amplitude. It is 
a development of the CGLN paper [51, in which the 
Chew-Low equations are derived from d.r. at 
fixed t. During the course of the derivation, we 
have shown that the cut-off function v ( q 2 ) of the 
static model approximates the cut from the 
process III. The representation of the function 
v ( q2 ) in the form (29) is probably one of the 
possible methods of taking into account the cut 
from process III, but not the only one. 

On the other hand, inasmuch as the strong 
dependence of the scattering amplitude T ( s, u, t) 
on the variable t (cut in t from t = 4J..L2 ) is due 
to allowance for the inelastic processes (20), it is 
clear that the cut-off function can be regarded 
also as a certain model of these inelastic pro
cesses. We note that inelastic processes were 
neglected in [51, so that the derivation presented 
in that paper of the Chew-Low equations had a 
more formal character. 

The derivation of the Chew-Low equations is 
based essentially only on the analytic properties 
of the partial waves. The latter have been better 
substantiated [9) than the Mandelstam representa
tions [B). With this, in two of the channels de
scribed by the scattering amplitude T ( s, u, t), 
we can confine ourselves to several of the lower 
partial waves, and avoid violation of either ana
lyticity or crossing symmetry. However, the rule 
for substitutions, of course, is violated here too, 
since the amplitude is represented by a polynomial 
in t, meaning that it has no cut, starting with the 
threshold of the remaining reaction III. The pres
ence of this cut is taken into account within the 
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framework of the static model by means of the 
cut-off function v ( q2 ). It is clear from the fore
going that the proposed method for taking into ac
count the cut from process III can probably be 
used not only within the framework of static 
models. 

The author is deeply grateful to Academician 
N. N. Bogolyubov for interest in the work. 

Note added in proof (15 June 1967). We note that in the 
derivation of (30), the concrete form of the scattering ampli
tude (25) is immaterial. Therefore, Eqs. (30) hold for any or
der of the matrix Aij. Their solution for this case was pre
sented by the author in Dokl. Acad. Nauk SSSR 174, No. 5 
(1967) [Sov. Phys.-Dokl. 12, in press]. 
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