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We construct a phenomenological theory of Raman scattering of light in magnetically ordered 
dielectrics with two magnetic sublattices, where the scattering is caused both by a direct in­
teraction of the magnetic field of the wave with the spin system and by an indirect interaction 
of the electric field of the wave with the spins through spin-orbit interaction. These scattering 
mechanisms are closely connected with the electrical and magnetic gyrotropy of the medium 
which is responsible for the Faraday effect. We show that taking into account the rotation of 
the polarization plane of the incident and the scattered radiation leads to a dependence of the 
differential extinction coefficient on the size and shape of the sample. 

RAMAN scattering (RS) is caused by the interac­
tion of the electromagnetic waves with the natural 
vibrations of the scattering object. In magnetically 
ordered crystals the degrees of freedom connected 
with the spin system are important and they lead to 
the appearance of additional lines in the spectrum 
of the scattered radiation. [ 1- 31 From a phenomeno­
logical point of view these lines of the spectrum are 
connected with the modulation of the optical charac­
teristics of the medium by spin waves and therefore 
the frequencies of the incident and scattered light 
will differ by the magnitudes of the resonance fre­
quencies of the spin system. The modulation of the 
permittivity and permeability tensors E: and ~ of 
the medium is caused by their dependence on the 
magnetizations aM of the sublattices of the crys­
tal. 

In the present paper we restrict our considera­
tions to merely the linear terms in the expansion of 
E: and ~ in powers of aM. In a transparent crystal 
only the off-diagonal, purely imaginary components 
of the tensors € and ~ will be proportional to D'M; 
these lead respectively to the electrical and mag­
netic gyrotropy of the medium. The electrical gy­
rotropy (Exy• Exz• and Eyz) arises from the spin­
orbit interaction; here the angle of rotation of the 
polarization plane of the light over a distance equal 
to the wavelength 27rGe turns out to be of the order 
of the ratio of the spin-orbit interaction E so to the 
energy splitting of the levels in the crystal field 
Ecr (Ge f':j Es0 /Ecr f':j 3 x 10- 5 to 3 x10-3). The mag­
netic gyrotropy of the medium is caused by the di­
rect interaction of the magnetic field of the incident 

wave with the magnetization of the crystal; here the 
corresponding angle Gm f':j 27ry M/w, where 
y f':j en/me is the gyromagnetic ratio and w the fre­
quency of the incident light (Gm f':j 3 x 10-5). 

The mechanism of the Raman scattering of light 
by a spin system considered in the present paper 
consists thus in the modulation of the off-diagonal 
components of the tensors E: and ~ by the thermal 
vibrations of the magnetization Cl'M of the sublat­
tices. We elucidate here the close connection be­
tween the Raman scattering of light and the ''elec­
trical" Ge and "magnetic" Gm Faraday effect.[ 121 

The extinction coefficientil of the "magnetic" 
Raman scattering (MRS) hm is determined by the 
magnitude of the "magnetic" rotation of the polar­
ization plane of the light: 

w (a )3 fiQ hm ~ -Gm2 - cth--, 
c ' A. 2kT 

(1a) 

where w and A. are the frequency and wavelength 
of the incident light, a is the lattice constant 
(a f':j 5 x 10-8 em) and ~ the frequency of the uni­
form precession of the magnetization. For the 
"electrical" Raman scattering (ERS) we have 
similarly 

(1b) 

1 )The scattering intensity characterizes the differential 
extinction coefficient dh which is equal to the ratio of the 
number of photons scattered into the solid angle dO per unit 
time and unit volume of the medium to the photon current den­
sity in the incident light: h = f (dh/ dO) dO. 

113 
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We shall give estimates for the case of a ferro­
dielectric. Bearing in mind that G ~ 3 x 10-5 to 
3 x 10-3 and putting kT/lm ~ 50 we find in the op­
tical band of frequencies h ~ 10-8 to 10-12 • This is 
only a few orders of magnitude less than the Bril­
louin scattering in crystals and when lasers are 
present it can certainly be observed. E 3 l 

When one considers the scattering of light one 
usually does not take the gyrotropy of a crystal into 
account, assuming it to be small. In our case the 
very existence of the scattering is connected with 
the gyrotropy, and neglect of the rotation of the po­
larization plane of the incident and the scattered 
light is admissible only in the case of a sufficiently 
small sample so that the angle of rotation of the 
polarization plane 1/J over its length is much less 
than 1r. When the characteristic dimensions of the 
crystal are such that 1/J ~ 1r, the angular character­
istics f = .n-1 dh/de and the polarization properties 
of the scattered light depend on its shape and size. 
From a physical point of view the occurrence of 
such "shape effects" is connected with the exist­
ence of a preferential direction in the crystal: the 
direction of the magnetization 6 = M/M. The prob­
ability for the scattering of light in a well-defined 
solid angle de by a small region of the crystal de­
pends on the angle between 6 and the direction of 
the polarization of the light in it. This angle is dif­
ferent in different points of the sample and the an­
gular characteristics f = h - 1 dh/de when linearly 
polarized light is scattered will depend on the size 
and shape of the sample. This dependence can be 
neglected for small (1/J « 1r) and large (1/J » 1r) sam­
ples (see Eq. (20d)). In the latter case f does for 
linearly polarized light not depend on the direction 
of the polarization and is the same as f for natural 
light (Eqs. (16b, c)). For natural and circularly 
polarized light only the polarization properties of 
the scattered light will depend on the shape of the 
sample. 

We must note the close-analogy between mag­
netic and electric RS. The position and shape of the 
MRS and ERS spectral lines turn out to be the 
same. It may happen that in one frequency range 
w ~ w1 the Faraday effect is caused by magnetic 
gyrotropy, and in another range, when w ;::; w2, by 
the electric one. In that case MRS dominates for 
w ~ w1 and ERS dominates for w ~ w2• Also 

h(wt)/wt•G2 (wt) '-' h(w2 )/w2•G2 (w2 ), 

and in ferrodielectrics these quantities are exactly 
the same. Moreover, when natural or circularly 
polarized light is scattered f(w1) = f(w2). When lin­
early polarized light is scattered some differences 
in the properties of MRS and ERS will occur. 

In the present paper we consider RS in crystals 
with two magnetic sublattices. This is connected 
with the fact that the majority of the crystals which 
are transparent in the visible region have just such 
a structure (MnF2, FeF2, RbNiF3, and so onE 4l ). 

In conclusion we emphasize that we limit our­
selves to the linear terms in the expansion of E in 
terms of the sublattice magnetizations. We thereby 
disregard RS connected with the participation of 
two magnons. In accordance with the conservation 
laws magnons with any momentum up to the limiting 
momentum can take part in such a process. Ami­
croscopic theory is therefore essentially necessary 
to describe it which takes, for instance, the spin 
wave dispersion into account. Two-magnon Raman 
scattering can occur in first order perturbation 
theory in the parameter E ex/E cr where E ex is the 
energy splitting of the levels due to exchange inter­
action. This mechanism of two-magnon RS will not 
contain additional small parameters as compared 
to the one-magnon RS which is considered in the 
present paper from a macroscopic point of view. A 
microscopic analysis of two-magnon scattering will 
be the subject of a separate communication. 

1. THE WAVE EQUATION IN A GYROTROPIC 
MEDIUM 

Landau and LifshitzE 51 have shown that the ma­
croscopic Maxwell equations in a medium for opti­
cal frequencies do not have the usual form 

1 aB 1 aD 
rotE+--= 0, rotH--··-= 0. 

c at c at 
We shall therefore start directly from the Lorentz 
equation for the microscopic electromagnetic field 
e, h. After averaging them we get 

1 aB 
rotE+--=0, 

c at 
1 aE 4n-

rotB ---=- (pv+ j.). 
c at c 

(2a) 

(2b} 

Here E = e, B = h, p is in the case of dielectrics 
the density of bound charges, and v their velocity. 
We have here on the right-hand side of (2b) added 
the current j s caused by the spin magnetization 
Ms of the ferrodielectric. 2 > In the case of a small 
spin -orbit interaction such a splitting-up of the 
current in an orbital pv and a spin js part is un­
ambiguous for frequencies for which the macro­
scopic Maxwell equations make sense, and then E 61 

2 )For the sake of simplicity we first of all consider a ferro­
dielectric. The final results will be equally valid also for crys­
tals with two magnetic sublattices. 
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j, = crotM,. (3) 

In contrast, the splitting of the current pv into a 
"polarization" and a "magnetic" part loses clearly 
its meaning for optical frequencies when the "po­
larization" current exceeds the "magnetic" one. [ 5 J 

This follows because for such frequencies the con­
cept of orbital magnetization and of the polarization 
of the substance loses its unambiguous meaning. In 
accordance with this we shall by definition assume 
that 

aPjat = pv. (4) 

Moreover, we define the vector D as follows: 

We must add to the Maxwell equations (2) the 
equation of motion of the magnetic moment. Bearing 
in mind that Q « w and M ~ Ms we have for vibra­
tions of frequency w 

aM. ----at = y[MH(ro)] + y[M(Q)H•:t(ro=)], (8) 

where y is the gyromagnetic ratio. From (2)-(8) 
we get the Maxwell equations for frequency w. 
Eliminating H from them we get a wave equation 
forD: 

V2D + k02D + 2i(GV)rotD 

= 4n {rot rot [AD•:t] +rot [C rot ne:~:]}, 
(9) a fJ 

-D =-a (E + 4nP). 
at t 

(4a) k02 = e{ro/c)2, 

Then 
divD = 0. 

where the gyration vector G = - 21fw -i (g + y )M and 
(5) the source vectors have the form 

We restrict the considerations to such cubic 
crystals where Morb « Ms. Neglecting spatial 
dispersion we write down the material equation 
which connects the w-Fourier components of D 
and E in the form 

Da:(ro) = 8a:ll{ro, Morb, M,)E11(ro). 

Taking into account that the spin-orbit interaction 
is small we expand Ea.{3 in a series in Morb• 
Ms(M = Morb + Ms, M II Morb• Ms) and restrict 
ourselves to the linear terms. We use here the 
general properties of the tensor E a.{3 [ 7 J 

8a('l· ( ro, Morb, M.) = Ball (- ro, Morb, M.)' 
8a('l(ro, Morb, Ms) = 8Jia{ro,- Morb•- M,) 

and we shall assume that the crystal is transparent: 
* Ea.{3 = E{3a.• Then 

E(ro) = D - 4nig(ro) [MD(ro)] (6)* 
e(ro,10,0) roe{ro,O,O) ' 

where E and g are real even functions of the fre­
quency w. 

When there is an external electromagnetic field 
nex, Bex present it is necessary to add to the ex­
pression for E(w) a nonlinear term caused by the 
thermal vibrations of the moment M(t). Bearing in 
mind that the eigenfrequencies of the spin system 
Q « w we may assume that up to terms of the order 
of Q/w 

E = D(ro) _ 4nig [MD(ro)] _ 4nig [M(Q)D•:t(ro""")]. (7) 
8 (1)8 (1)8 

Here 
- 1 r- -M(Q) = "2x£ J dtM(t)etot, ro = ro•:t + Q. 

-oo 

*[MD]= M X D. 

A(Q) ='_!M(Q), C(Q) = _yM(Q). 
w (I) 

In a dielectric with two sublattices 1M and 2M 
the final Eq. (9) has the same form. Here 

roG = -2n{(g + y+)M + (q + y-)L; (lOa) 
roA(Q) = gM(Q)+ qL(Q). 

roG(Q} = y+M(Q} + y-L(Q), (lOb) 

where 

2y± = V1 + Vz, M = 1M + 2M, L = 1M - 2M 

and so on, and the phenomenological quantities g 
and q are real even functions of the frequency w. 

2. THE FARADAY EFFECT 

When there is no external electromagnetic field 
Eq. (9) becomes homogeneous and describes the 
propagation of plane waves D ~ eik• r in the me­
dium. It has a non-trivial solution for two values 
of k: 

k± = ko[1 + 2aG]-'I• = ko[i ± aG], a= k/k, 

corresponding to the propagation of waves which 
are right-hand and left-hand circularly polarized. 
The rotation of the plane of polarization per unit 
length of the sample is koa · G and the dimension­
less parameter 21rG « 1 is the angle of rotation of 
the polarization plane for G II a over a distance 
equal to the wavelength. 

In antiferromagnetics which are odd in Turov's 
terminology[ BJ we have L--L under an inver­
sion M- M. Then g is a tensor and q a pseudo­
tensor of second rank (q = 0). Moreover, y 1 = y2, 

i.e., y- = 0 and M = 0 without an external mag­
netic field. Hence in pure antiferromagnetics G = 0 
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(see (lOa)) and there is no Faraday effect without 
an external magnetic field. In even antiferromag­
netics under an inversion M - M and L- L and 
weak ferromagnetism, q -1 0, is possible and there 
is a Faraday effect caused both by ferromagnetic 
and by antiferromagnetic moments. 

3. THE GREEN FUNCTION OF THE WAVE 
EQUATION IN A GYROTROPIC MEDIUM 

We shall solve the inhomogeneous Eq. (9) by a 
Green function method. To do this we consider 
first the corresponding equation with point sources: 

V2D + k02D + 2i(GV )rotD = -4:rrno (r- r'), In I= 1, 

in the k-representation it becomes algebraic and 
can easily be solved. Taking the inverse Fourier 
transformation3> we get the Green function of the 
wave Eq. (8) in a gyrotropic medium: 

1 
D (r- r') = 21 r _ r'l { (n- i [an] - a (an)) exp ika+ I r- r'l 

+ (n + i[an]- a(an) )exp ika- lr- r'l 
(11) 

+ 2a(an)exp ikolr- r'IL 

where k~ = ko(l ±a· G) and a= (r- r')/lr- r'l is 
the direction of propagation of the scattered light. 
In a non-gyrotropic medium, when G = 0, the quan­
tity k± = ko and Eq. (11) goes over into the well­
known Green function of the d'Alembert equation: 

D(r-r')= exp{ikjr-r'l}. 
lr-r'l 

4. LIGHT SCATTERING IN A GYROTROPIC 
MEDIUM 

Using the Green function (11) we can easily write 
down the solution of Eq. (9) in the wave zone (r » r'; 
r' varies within the limits of the source). Integrat­
ing the expression obtained by parts we get after 
simple but tedious calculations 

where 

8(!)2 
D(r) = - 2-[a{aK(r)]], 

c2r 
(12a) 

K(r)= exp(ika+r) ) d3r'(P+- i[aP+])exp{- ika+(ar')} 

+ exp(ika-r) ~ d3r'(P- + i[aP-])exp{-ika-(ar')}, (12b) 
P± = {CDexJ + i [A umex]], fl = kex I kex. (12c) 

3 )It is convenient to write the integral over d'k in a spheri­
cal coordinate system, choosing the z-axis along the direction 
of r - r'. Repeatedly integrating it over X = cos e we get an 
expansion of D · (r- r') in inverse powers of k 0 I r - r'l >> 1 
and we restrict ourselves to the first term. After that the inte­
gration over cp and I k I is elementary. 

Characteristic for the scattered radiation is the 
Hermitean second rank tensor 

where 

(D;D;) IS(ffi + ffi') = D;(ffi)Di(ffi'), 

while the bar indicates averaging over the time. In 
these equations i and j take on the values x and y 
and we assume that the scattered light is propagated 
along the z-axis. Using (12a) one shows easily that 

(!)4 
1· ·(ffi) = -- (KK)ro. 

I) 4c4r2 I J 
(13) 

The expressions for Kx and Ky which are of 
interest to us can be obtained from (12b): 

Kx = X+exp (ika+r) +.1t'-exp (ik.&-r), 

- iKu = X+exp(il.&+r)- X-exp(ika-r). 
(14) 

x± has a very simple form if the incident light 
is circularly polarized: 

(Dex)± = Dxex ± iDuex = D± exp{ik~±(jJr) }. 

In contrast to (13) and (14) here the z-axis is II p, 
the x-axis ll[a xp], and k,s± = ko(l + P· G). Then 

2X+(D±) = D± ~ d3rS±exp{ik~±(jJr)- ika+(ar)}, 

2.X-(D±) = D± ~ d3rT± exp{ik~±(jJr)- ika- (ar)}, 

-S±=(A±C, [a!J]+i(a+P)), 
-T±=(A=t=C, [ap]-i(a+P)). 

(15) 

From this we easily obtain expressions for the 
correlators we need. E. g., 

4 (X+ (D±p~·- (D±))., = (D± )2 (T±S±) "'ex_.,, q 

X ~ d3r exp {2ik0 (aG) (ar)}. 
v 

Here V is the volume of the scattering medium, the 
integral is taken over that volume, q = ko (a - p ), 
and 

(S±S±)0 , q = ) d3r (S±S±)g exp (iqr). 

For the sake of simplicity we shall assume in the 
following that one kind of scattering, e.g., magnetic 
scattering (A -1 0, C = 0) dominates. 

The differential extinction coefficient dh/dB is 
by definition equal to 

dh(ffi) 

ae 
e2R2 Spl(ffi) 

VIDexj2 

If the incident light is circularly polarized (Dex± 
-1 0), then 
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8 
dh±(w) e2oo4 { ~ } 

dB = ~ LJ (A;A;)o, q + 2 Im (AaA1) 0 , q . (16a) 
i=f 

Here w = wex + Q and 

At = A [a~]. A 2 = A~, Aa =· Aa. 

In natural light right-hand and left-hand polariza­
tion occur with equal probability. Therefore 

dh(w) = _! (dh++ dh- )= e2m2 ~(A-A) (16b) 
de 2 .7n .Jn 4 4 LJ 3 J 0, q. 

u.u u.u c i=i 

Light which is linearly polarized with an angle 
cp to the direction of [ap] at the origin is a super­
position of left-hand and right-hand polarized 
waves, and D± = D e±icp. Using (15) and (16a) we 
get for linearly polarized light 

3 
dhq~(w) e2oo4 { ~ . 2 

_..:..;_-'- =·-4- LJ (A;A;)o, q+ -y[(AtAt)o, q 
d8 c4 '1 3= (16c) 

- (A~z)o, q + (AaA3)o, q] ~ d3rcos2(ko(G~) (~r)+ cp) 
v 

-~(AtAz)o,q+(A~1)a,q] ~ d3rsin2(ko(G~) (~r)+cp)}· 
v 

The extinction coefficient for the scattering of lin­
early polarized light depends thus on the size and 
shape of the sample. When the polarization plane of 
the incident light undergoes many rotations along 
the length of the sample, one can neglect the last 
terms in (16c) and the extinction coefficients of lin­
early polarized (16c) and natural light (16b) are the 
same. By averaging (16c) over the angle cp we ob­
tain again (16b). 

We obtain similar results in the case when not 
the magnetic but the electrical Raman scattering 
(A = 0, C f. 0) dominates: to obtain dh±/dB and 
dhcp /dB we must in Eqs. (16) replace A by C and 
change the sign to its opposite in front of the in­
tegrals in (16c). 

The extinction coefficients of MRS and ERS can 
in magnetically ordered dielectrics thus be ex­
pressed in terms of the correlators of the ferro­
magnetic and antiferromagnetic moments: 

(.MiNtlt>o, q, <.MiL,)o, q, (L;L,.>o, q. 

To evaluate them it is necessary to make well­
defined assumptions about the kind of the mag­
netic structure of the ferrite. 

5. CALCULATION OF THE CORRELATORS 

Using the theory of non-thermodynamic fluctua­
tions of several quantities[ 91 one can show that 

iii •11<1· all liQ 
(a.M;II.Mit)a,q= 4n(XI<i (Q,q)-:X.ilt (Q,q))cth 2T. (17) 

Here X ru' (Q, q) is the magnetic susceptibility 
tensor of the a-sublattice in the case where the 
magnetic field with frequency Q and wavevector q 
acts only upon the p-sublattice. When there is no 
interaction between the sublattices, X~ ~ Oap and 

we are led to an obvious result: there is no corre­
lation between the sublattices. 

We shall evaluate (x~C )" = (1/2i)(xf! - x1ia> in 

the case when there are no losses. We shall assume 
that aM- aM + am, am ~ ei<q · r - nt>, the ex-
change fields are A. 2M, -A. 2M, and the internal aniso­
tropy fields 1HA, 2HA are directed along the axis of 

symmetry of the crystal and act in opposite direc­
tions and that the external field H0 is directed 
along the same axis (z-axis). For the sake of sim­
plicity we shall not take into account the static de­
magnetizing field. However, we shall take into ac­
count the demagnetizing field of the spin wave Hp 
which is important for evaluating the correlators 
for frequencies comparable to 47ryM. [!OJ 

The equations of motion have the form 

where 
- iQam = va[(aM +am), (aH + ab}] 

1H = H0 + Hp + 1R~ + A.(2M +2m), 

2H = H0 + Hp +2HA + J..(1M + tm), 

H __ 4 q ( qtm + q2m) 
p- n . q2 

Here ah ~ ei<q • r-nt> is a high-frequency field 
acting upon the a-sublattice. In the usual consider­
ation of ferromagnetic resonance[ 111 there is no 
necessity to separate 1h and 2h as we are inter­
ested in the quantity Xik(Q) determined by the equa­
tion 

(im, + 2mt) = :X.il• (ihlt + lhlt). 
However, we are interested in the susceptibility 
Xap • ma = xaP Ph (there is here no summation 

ik' i ik k 
over k or p). In the initial equations of motion we 
have not taken the energy losses into account and, 
of course, when solving them we get the Hermitean 
part of the tensor x~C· We find its anti-Hermitean 

part from dispersion relations. [ 91 Substituting this 
expression into (17) we get the correlators 
(aMi PMk) through which in ~n o_Evious _wa:r we 
can express the correlators (Mi Mk), (Mi Lk ), and 

(:Li i:k>· 
It is convenient to write down separately the 

final expressions for them for a ferromagnetic when 
we can neglect the external field Ho and the aniso­
tropy field HA compared with the difference be­
tween the exchange fields for the sublattices and 
for an antiferromagnetic when it is impossible to 
do so. 
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The correlators for a ferromagnetic far from 
the compensation points have the form: 4> 

n/iy+ /iQ 
(M;M")o. q~o = -- cth -{M2Q;"111 (Q2 - Ql) 

M 2T 

+ 1M2M(y-Jv+)2Q;"•I\(Q2- Q.z)}, 

(.M;L">o.. q-+o = \L;Mn)o., q~o 

ny+h hQ 
= ---cth- {MLQ;hf6(Q2- g 1z) 

M 2T 
+ 1MZM(y-Jv+) Q;""I\(Q2 _ gez) }. 

n/iy+ /iQ 
(L;L")o., q-+o = ~cth2T{L2Q;"fi\(Q2 - Ql) 

(18a) 

+ 1M2}[1Qil,_"l\ (Q2-Qe2)}. 

Here 

Qzkf = Qk/ = Qxu" = Qhf = 0, Q.,/ = Qyx"f 

= Qxye = Qyx •e = iQ, Qxxf = Q/, Qy/ = Q2f, 

Qt2 = Q/Qzl, Qz!- Q 1f = 4ny+M sin2 ( ;i'M); 

Qjj = v+ [ Ho + ~ (IHA + 2HA) J - ferromagnetic 

resonance frequency 

Qxx• = Qyy" = Q. = A.(y+M + y-L) -exchange 

resonance frequency 

For an antiferromagnetic ("easy axis" type) 

1/ HA nhy+L hQ 
= V H (L;Lh)o.,q-+o = --2-cth2f" 

where 

(18b) 

!J~x = !Jh = !J± = yV (ALHA) ± yH0 are the antifer­
romagnetic resonance frequencies. In all expres­
sions for the correlators 

z lill = M/ M, y II [llq]. 

4 )For a ferromagnetic one can obtain the correlators 
< MJ\1k >from (18a), putting y- = 0. We then obtain expressions 
which by other means were obtained by Akhiezer and Bolo­
tin.['"] 

6. ANGULAR CHARACTERISTICS AND 
SPECTRUM OF RAMAN SCATTERING 

We shall assume for the sake of simplicity that 
the ferromagnetic resonance frequency !Jf > 41Ty+M. 
Then !Jl = !Jf = !Jf and all correlators occurring in 
the theory of MRS and ERS will have the same sim­
ple structure: 

(A;Ah)o.,q == (A2)Jgl.q'tih(Q), 

'tkz = 0, 'txx = 'tyy = 1, 'txy = iQ/ I Q 1. (19) 

Using only this property of them which is more 
general than the model assumed by us of the mag­
netic structure we can obtain the angular charac­
teristics of the scattering. For natural light, e. g., 
it follows from (16) and (19) that 

dh(uP + Q) e2w4 
= {1- cos a~ cos all cos ~6]-2- (A2)Jol, o. 

de c4 
(20a) 

Here, as usual, a and {3 are the directions of 
propagation of the scattered and incident light, and 
fJ the direction of the magnetization. For scatter­
ing at right angles cos a{3 = 0 and the extinction 
coefficient dh/de is independent of the direction of 
the magnetization. 5> Integrating (20a), we get 

/'. 

[ cos2 ~I) J 2ne2w4 (ZOb) h(w•x+Q)= 1--3-~-c-4-(AZ)J!lJ,o. 

In the case of scattering of circularly polarized 
light we have instead of (20b) 

/'. /'. 

h±(w•x+Q)=[ 1-~szt~ + l~lcos:~J2ne2:\Az)JoJ,0. 
(20c) 

The intensity of the Stokes and the anti-Stokes 
components can thus be essentially different (by a 
factor three when cos {3fJ = 1). Moreover, the in­
tensity of the Stokes component when right-handedly 
polarized light is scattered is the same as the in­
tensity of the anti-Stokes component for left­
handedly polarized light, and vice versa. In the 
case of linearly polarized light the total extinction 
coefficient h looks the same as for natural light 
(see (20b)). However, the angular distribution of 
the intensity depends on the direction of the polari­
zation of the light, and on the size and shape of the 
sample. For scattering at right angles for a sam­
ple, the shape of which has a center of inversion 

dhcp e2w4 "" 
de= ~(A2)JoJ,o{1 + 2cos(~6) (20d) 

/'. /'. 

X (cos cp cos fl6 + sin cp cos a6) 11. 

5 )When the assumption !Jf » 4rry +M is no longer satisfied 
we get in a ferromagnetic for the case a .1 f3 
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where 

J = ~~cos [2ko(Gf') (rfl)] d3r. 
v 

Here cp is the angle between the plane of polariza­
tion in the center of the sample and the direction 
[ax~]. For a spherical sample of radius R 

l= ~[ s~¢ -cos¢]. 

Here 1/J = 2Rko (G · ~) is the angle of rotation of the 
polarization plane over a length equal to the diam­
eter of the sample. When 1/J « 1r this expression is 
equal to unity and vanishes for the first time when 
1/J ~ 7f/6. 

For a parallelepiped with edges lx• ly, lz 

J = sin "i'x sin ¢y sin ¢z
7 

'¢x¢y¢z 

where 1/Jx = ko (G · ~) (lx • ~) is the angle between the 
polarization planes of the light at opposite faces 
(along the direction lx) of the parallelepiped. 

We note that Eqs. (20a, c) refer equally well to 
ERS; in (20d) it is only necessary to change the 
sign in front of J. 

In conclusion we estimate the intensity of the 
one-magnon Raman scattering of light. From (10), 
(18a), and (19) we get for a ferromagnetic: 

( G ) 2 nliv+ 1iQ (21) 
(AZ)IIll. 0 = ~ 2M cth2T 6(Q- QJ). 

Substituting this into (20b) and bearing in mind 
that 7r)lfi/ 2M ,.., a3 where a is the lattice constant, 
we get easily the estimates (1a) and (1b). 

From (18a) it is clear that an estimate of the 
quantity (A2) I!JI, 0 for an exchange line of a ferro­
magnetic will contain an additional small parame­
ter (y -l·/)2 < 10-3• In an antiferromagnetic an es­
timate of (A2)1QI, 0 also will contain the additional 

parameter ..J (HA/A.L) which can be small: 

..J(HA/HE) = ..J(HA/A.L) ~ 0.5 to 10-2• Similar esti­
mates can also be made for ERS. 
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