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The relation between the field strength H and induction B is not linear under conditions of the 
de Haas-van Alphen effect and instability regions are possible on the H(B) state diagram. [ 31 

A domain structure should exist in this case in samples with a nonzero magnetization factor. 
The domain wall whose shape is determined by the "inhomogeneity energy" is investigated 
The induction distribution in the transition layer is determined and the surface tension at the 
domain interfaces is calculated. 

1. IN the theory of the de Haas-van Alphen effect 
(see, for example, [ i, 21 ), the magnetization M is 
usually calculated as a function of the magnetic 
field H with the aid of the thermodynamic relation 
M = - v-1an/aH (V is the volume of the system). 
In this case the thermodynamic potential Q is as­
sumed equal to -TIn Sp exp ( -.'JC/T), where T is 
the temperature and :JC is the Hamiltonian of the 
system in an external field H. This, strictly 
speaking, is incorrect,since the field acting on the 
charges is the induction B. If account is taken of 
the difference between H and B, and the corre­
sponding substitution is made in the formulas de­
rived in the theory, then Q as a function of the in­
duction B will, as before, have the meaning of the 
thermodynamic potential. The part of this quantity 
that depends on the magnetic field, calculated per 
unit volume, is equal to the work of the magnetiza­
tion (1/47r) jHdB, minus the field energy B2/87r. 
Thus, 
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dition for the occurrence of ambiguity is the in­
equality (8M/8B)max > 1/47r. The region of the 
curve between the points B1 and ~. which are de­
termined from the condition that the shaded areas 
be equal, corresponds to the unstable states. The 
points of the extremum of the function H(B) are the 
stability limits with respect to an infinitesimally 
small homogeneous perturbation. In principle it 
can be assumed that the region of instability rela­
tive to the inhomogeneous perturbations is broader; 
however, it will be shown below that this is not the 

1 iJQ 
-- =-M(B) v aB 

(1) case, and that homogeneous phases with inductions 
B1 and B2 can exist, and the surface tension on the 

and the oscillations of the magnetization are de- separation boundary is positive. Therefore, in a 
scribed by the same formulas as before, in which, long cylinder situated in a longitudinal field, equal 
however, H must be replaced by B. [3 1 to Hk (see the figure), a first-order phase transi-

The difference between H and B becomes sig- tion should take place, with an induction jump equal 
nificant only when the amplitude of the magnetiza- to B2 - B1o and in a sample having a nonzero demag-
tion oscillations is not small compared with their netization factor, a domain structure should 
period. In this case, for specified value of the exist. [ 31 

field H, there can exist several values of the in- In a thin plate situated in a magnetic field H0, 

duction B[ 31-see the figure. (The dependence of H the stratification into domains occurs in the inter-
on B is always single-valued.) val B1 < H0 < ~· The concentration of each of the 

At the extremum points on the H(B) curve, the phases is determined by the condition of conserva-
derivative 8M/8B is equal to 1/47r, so that the con- tion of the magnetic flux c1B1 + c2~ = H0• The 
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period a of the domain structure is determined by 
the energy of the surface tension, which when cal­
culated per unit area of the sample surface is pro­
portional to Z/a (Z-thiclmess of the plate); it is 
also determined by the energy of emergence of the 
domains to the surface. The domain boundaries 
become bent near the surface, and the values of the 
induction B inside each domain differ from the 
values inside the sample both in magnitude and in 
direction. In this sense, the domain structure in 
our problem differs from the ferromagnetic struc­
ture, and is more readily similar to the intermedi­
ate state of superconductors. In connection with the 
fact that the connection between H and B is non­
linear, the corresponding magneto static problem 
does not reduce to a potential-theory problem. 
Therefore the calculation of the energy of emer­
gence of the domains to the surface is a rather 
complicated problem. From dimensionality consid­
erations we get only that this energy is propor­
tional to a, so that a= ..fl. 

2. In the transition region, the induction B 
changes from B1 to B2, and therefore the connec­
tion between H and B is not the same as in the 
homogeneous case. The inhomogeneity must be 
taken into account, for if the connection between H 
and B were to remain unchanged, then the thick­
ness of the transition layer and the surface tension 
would be equal to zero. 

Obviously, the value of the magnetization at any 
particular point is determined by the distribution of 
the induction in a region of dimensions on the order 
of the cyclotron radius r 0 of the electrons. We 
shall consider essentially the case when the thick­
ness of the transition layer is large compared with 
r 0; this, as will be shown, takes place if the differ­
ence B2 - B1 is small compared with the period of 
the oscillations. In this case the derivative 8M0/cm0 

in the instability region differs little from 1/ 47r, 
and 8H0/8B « 1. Putting for simplicity 

4:rtMo(B) = a sink!!, (2) 

where B = B- (B1 + B2)/2 and ak = 1 + K2 with 
K 2 « 1, we find that in the region of the instability 

H0 (B)- H"- ~ - xHJ + k2/J3/6, (3) 

and the limits of this region are equal to 

JJ1,2 =+X l'B/k. (4) 

When (8M0/8B)max increases, the difference 
~ - B1 approaches the value of the oscillation 
period. 

1)Here and henceforth the quantities calculated for the 
homogeneous case are designated by the index zero. 

The correction to the magnetization, which is 
connected with the inhomogeneity and which is pro­
portional in the case of weak inhomogeneity to Y' 2B, 
will be calculated in the first approximation of per­
turbation theory, using a thermodynamic relation 
that generalizes (1) to include the inhomogeneous 
case: 

M(x) = -6Q I I'IB(x). (5) 

To this end we put B = B0 + B', where B' is the in­
homogeneous addition, and obtain Q accurate to 
terms of second order in B'. Such an approxima­
tion is perfectly sufficient for our purposes, and 
especially for an analysis of the stability against 
small perturbations. 

We shall assume that Bo and B' are parallel to 
the z axis and that B depends only on y. The vec­
tor potential A is conveniently chosen as follows: 

y 

A!(Y) =- ~ B'(y)dy, 
(6) 

Ay =Az = 0. 

The single-electron Hamiltonian of the perturba­
tion is equal to the sum of the terms of the first and 
second orders ;;e<t> and :;;e< 2 >: 

e ~ e2B0 e2 
Je<!J =--At (Y)Px- --yA1 (Y), Je<2l = --A12 (y), 

me m& 2m& 
(7) 

where e and m are the charge and mass of the 
electron, c the velocity of light, and Px is the op­
erator of the x-component of the generalized mo­
mentum. We confine ourselves to the free-electron 
model and disregard the electron spin, the influ­
ence of which reduces only to a change of the phase 
of the oscillations. 

The wave functions of the unperturbed problem 
are characterized by the quantum numbers n, Px• 
and Pz· It is very important that the perturbation 
is diagonal in Px and Pz· In particular, 

lelwo 1 ~ 
(n,px, Pz I JC(!) In', Px,Pz>=--c- Ly LJA! (q) eiqy, (n I yeiqy In'), 

q 

(8) 

where w0 = I e I B0/mc is the oscillation frequency, 
Yo = cpx/ I e IB0 its center, and In) and In') are the 
wave functions of the oscillator with center at the 
point y = 0, while A1 (y) is written in the Fourier 
representation (Ly is the y-dimension of the nor­
malization volume). 

To calculate the thermodynamic potential Q, we 
use the formula of the thermodynamic perturbation 
theory:[ 41 

_ ~ IVM•I 2 w~o. 1 _ _ 
Q-Qo=V~o.~o.+ LJ --(V~o.~o.2 -V~o.~o.2 ) ( 9) E<0J- E<OJ 2T ' 
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THEORY OF A DOMAIN WALL IN METALS 1169 

where E~> and EW are the unperturbed energy 
levels of the system, V A.A.• are the matrix elements 
of the perturbation operator, wA. is the probability 
of finding the system in the state A., and the supe­
rior bar denotes averaging over the Gibbs ensem­
ble. 

The correction to n can be readily expressed in 
terms of the single-particle matrix elements. The 
first-order correction is of no interest, since it 
does not contain the derivatives of the inductions: 

Q<1> = -MoLxLz ~ dyB'(y). 

The second-order correction is equal to 

Noe2 ~ Q<2> = --LxLz A12(y)dy 
2mc2 

e2mwo2 L L ~ ~ ____ x_z dpz dqiAi(q) 12. 
c2 (2:rt) a 

where ii = n + %. 
The off-diagonal elements in formula (10) cannot 

be calculated in the quasiclassical approximation, 
since the differences 

vanish in this approximation. In calculating the 
sum over n, this is very important, since the total 
contribution from the off -diagonal and diagonal 
matrix elements turns out to be in the quasiclassi­
cal approximation, the total derivative with respect 
to n of a function that vanishes when n = 0 and ii 
= oo, i.e., the resultant expression oscillates when 
B0 is varied. In order of magnitude, the result is 
smaller than that obtained if we were to retain in 
(10) only the diagonal matrix elements, by a factor 

.../J.L0/w0 » 1 (JJ.0-chemical potential of the elec­
trons). 

00 1 
x~{2wn,pz ~k[l(nlyeiqyln+k)l 2 

n 1<.=1 

-I (nl yeiqy In-k) 12] 

The zeroth term of the expansion (11) exactly 
cancels the term proportional to J A~(y)dy in for­
mula (10). The expansion terms proportional to q2 

(10) yield 

The first term in this formula is connected with the 
diagonal matrix elements of the quantity Ai(Y) and 
N0 is the number of electrons per unit volume. In 
the second term, wn P are the single-particle 

' z 
occupation numbers. 

In calculating the matrix elements in formula 
(10), it is convenient to express them in terms of 
Laguerre polynomials. Using the generating func­
tions for the Hermite and Laguerre polynomials, 
we can readily obtain the relation 

(n I eiqy In + k) = v. nl. t"zkl2e-z/2 L "(z) 
(n + k)! n ' 

z = q2/2mw0~ 
hence, 

q v n! d \nlyeiqyln + k) = -- t~<-1 {zl<./2e-z/2Ln"(z)}. 
mw0 (n + k) I dz 

Expanding the matrix elements in powers of q, we 
get 

00 1 q2n q• ( _ 1) ~ ... =-----+-- 3n2 +-
l<.=l 2mwo m2wo2 4m3w03 4 

24 q: (5n3 + 2n) + ... , (11) 
m Wo3 

(12) 

e2LxL•s s ~a 
Qo(2> = mc2 (2:rt)a dp, dq IB'(q) 12 Ll on (n2wn,Pz>· 

n 

We have used here the relations I qA1(q) I= I B'(q) I 
and 

Wo OWn, Pz 
TWn, Pz (1-Wn, Pz) =------an:-· 

Starting from the formula for the thermodynamic 
potential in the homogeneous case 

Qo = - 2T m L(::~· ~ d Pz ~ w0 In ( 1 + exp lIto -;n, Pz ] ) , 

n 
(13) 

where En, Pz = iiw0 + pi/2m are the energy levels 

of the electrons, we can readily show that 
fJMo e2 2m (' a 
8B =-~ (2n) 2 J dp. ~an (nzwn,Pz). (14) 

n 

Therefore 

Q <2>= _ LxLz aMo\ d B'z( ) 
0 2 an .l Y Y ' 

which is an addition to the thermodynamic potential 
neglecting the energy of the inhomogeneity. The 
latter is given by the next term of the expansion in 
q (actually the expansion is carried out over the 
parameter qr0, r 0 = CPo I e IB0, Po is the Fermi mo­
mentum): 

(15) 
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In calculating the sum over n we must use the 
Poisson formula 

00 co 

:Sf(n+1!2)= :S (-1)1) dxf(x)e2nilx. 
n 

The non-oscillating term with l = 0 is missing in 
our case. The main contribution to Qinhom is 
made by the term n3aw/8n, i.e., the diagonal ma­
trix element in (10). An important role in (15) is 
played by large ii ~ JJ-olw0 and small Pz· Equating 
(15) with (14) we can, without calculating the inte­
grals in the Poisson formula, verify that 

1 aMo LxLz) I 
Qinhom= --ro2-- dq q2 JB (q) 12 

8 aB 2:n: 

1 aMo ~ ( aB )z = --ro2LxLz dy -8 aB · · ay ' 
(16) 

from which it follows that in the case of weak in­
homogeneity (qr0 « 1) we have 

8Mo(B) 82B 
H=H0(B)-n ro2 --. (17) 

aB oy2 

The energy of the inhomogeneity, as can be 
readily seen, can be negative (owing to the pres­
ence of the oscillating factor BMo/BB). In this con­
nection, an analysis for stability against infinitesi­
mally small inhomogeneous perturbations is essen­
tial. To this end, we must calculate n< 2> for arbi­
trary values of qr0• 

The diagonal matrix elements in (10), which 
make the principal contribution to the terms with 
l f. 0 in the summation in accord with the Poisson 
formula, can be calculated in the quasiclassical 
approximation: 

1 (n 1 yeiqy 1 n) 12 = r2J12 ( qr); r2 = 2n/ mwo, qr ~ !lo/ wo, 

where J1 is the Bessel function. Derivation simi­
lar to the preceding ones, lead to the following gen­
eral expression for Q <2>: 

8Mo LxLz \ iq 1 I 
Q<2> =-2-·-- J --N(qro) IB (q) 2. 

8B 2n q2r02 
(18) 

In the analysis of the stability it is necessary 
to consider the thermodynamic potential n' which 
is equal to 

Q = Q +) dx(B2/8n- HB/4:n:), (19) 

and to vary B for a specified H. The first-approx­
imation addition to Q vanishes, and the second­
approximation addition is equal to 

"" LxLz ~ { 1 8Mo 1 } Q<Zl=-- dqiB1 (q)J2 ---2-·--lt2(qr0). (20) 
2:n: 8n BB q2r02 

It is positive if 8M0/8B > 1/47r, since J 1(x)/x::;% 
(the equal sign holds when x = 0). Thus, the meta-

stability limits are the points at which 8M0/8B 
= 1/47f. 

It follows from (18) that the density of the ther­
modynamic potential is determined by the value of 
B averaged over the area of the orbit: 

B(y)= ~ dy1 K(y- Y1 )B(y1 ). (21) 

The Fourier transform of the function K(y - y') is 

K(q)= 2/i(qro)/qro. 

In the coordinate representation we get 

y<ro 

y >ro 
(22) 

The analysis of the instability against infinitesi­
mally small perturbations can be generalized to in­
clude the case in arbitrary electron dispersion. 
Calculating in the quasiclassical approximation the 
diagonal matrix elements of the perturbation oper­
ator vA1 (v-electron-velocity operator), we can 
readily show that the kernel K(y) in relation (21) is 
equal to 

K(y) = S-1D(y). (23) 

Here D(y) is the dimension of the extremal orbit 
with center at the point y = 0 along the x axis at a 
fixed value of the coordinate y, and S is the area 
of the orbit. The Fourier transform K(q) reaches 
in this case also the maximum value (equal to 
unity) at the point q = 0. Replacing in formula (20) 
the quantity 2J1(qr0)/qr0 by the kernel K(q), we find 
that the metastability limits are the same as in the 
free -electron model. 

3. So far we have investigated the case of per­
turbation parallel to the field Bo· Let us consider 
now the case of a perturbation B' parallel to the x 
axis and dependent only on y. This is necessary in 
order to ascertain whether the direction of the in­
duction B varies in the transition layer (in general, 
the direction of B can vary along an axis perpen­
dicular to the domain boundary). It will be shown 
below that actually the direction of B remains con­
stant. 

Choosing the addition A1 to the vector potential 
in the form 

11. 

Atx = Aty = 0, A1z = Ai(y) = ) B 1 (y)dy, (24) 

we find that 

(n, Px, Pz 13f(t) I n1 , Px, Pz> =- ....!!!2_ ,:S A 1 ( q) eiqy, (n I eiqy I n1 ). 

mcLy 
q (25) 

The second-order addition to the thermodynamic 
potential is 
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X ~ { ~ ~ (I (n I eiqy In + k) 12 - I (n I eiqy In - k) 121 
n k=1 

(26) 

where we took into account the fact that 

2£T~ ~ OW e ,.,._..z 2 2 n, Pz 
mc2 (2n)3 dq I A1 (q) I dpzPz ~---an:-

n 

Expanding the matrix elements in formula (26) in 
powers of q, we get 

oo q2 3nq~ q6 ( 5 _ 7 ) ... =-----+-- -n2+- +···• ~ 2mw0 8m2ro02 m3roo3 48 576 
k=1 (27) 

(28) 

i.e., the expression in the curly brackets in for­
mula (27) is, in the approximation under consider­
ation, the total derivative with respect to n, just 
as in the preceding case. The energy of the inho­
mogeneity is equal to (when qr0 « 1) 

. - 3e2 L.,L. \" d ZIB'( ) 12 
Qmhom- 8 3 2. • (2 )3 J q q q 

mcwo~ n 

Bx 3n- 82Bx 
H.,= Ho(B)B- 4 xro2 ayz . 

(31) 

In the transition layer Hx = 0 (this follows from 
Maxwell's equation curl H = 0 under the assumption 
that all the quantities vary along the axis perpen­
dicular to the separation boundary). The term with 
the derivative in (31) is small compared with Bx, 
i.e., the equation does not have non-zero slowly­
varying solutions. Consequently, in calculating the 
domain wall it is necessary to use the formulas ob­
tained in the preceding section. 

4. If the jump of the induction is small com­
pared with the period of the oscillations, then we 
can put in (17) 8Mo/8B = 1/47r, and H0(B) can be 
replaced in accordance with formula (3). Recog­
nizing that H = Hk, we obtain a simple differential 
equation for the determination of the function B(y): 

k2lJ3 ro2 d211 
- x2J1 + -- = ---. 

6 4 dy2 
(32) 

The boundary conditions are 

11(+ oo) = + xi6/k. (33) 

Introducing the dimensionless variables u and ~ 

k11 
u=--=, 

xy6 

y s=-, 
d 

we rewrite relations (32) and (33) as follows: 

(34) 

- u + u3 = 2u", u(+ oo)= + 1, (35) 

after which we can readily obtain the solution 

u==th(s/2). (36) 

X~ dpzpl• ~ :n [ ( n2+ 112) Wn,pz] · 
<29) The surface tension D. is determined by the 

n 

Using the formula for the magnetization in the 
homogeneous case, which is obtained from (13) by 

. differentiating with respect to B and integrating 
with respect to Pz by parts 

lei I 2"' a -Mo = -2- 2 - J dpzPz LJ -0 (nwn,p.), 
nmc n 

n 

it is easy to show that 

. _ 3 - 2 1 ( aB., )2 
Q mhom- 32 xro LxLz J dy ay , (30) 

where X = M0(B)/B. Thus, the energy of the inho­
mogeneity in the case under consideration is much 
smaller (by a factor p.0/ w0) than in the case of a 
perturbation parallel to Bo; this is natural, since 
the longitudinal susceptibility is much larger than 
the transverse one. 

The field Hx in the presence of an inhomogene­
ous addition Bx should be equal to 

relation 

1 00 [ Bw> . 2 aB 2 ] 

!!.. = 4n ~ dy ~ (Ho(B)-Hk)dB+ r; (ay) ~ (37) 
-oo B1 

which is conveniently transformed into2> 

!!.. = 3roxa S ds [_!_(1- uz)z + u'2] . (38) 
4y2nk2 • 4 

-co 

After simple calculations we get 

rox3 rox (B2 - Bt) 2 
!!,. = --- = --'-----'--

y2:rr.k2 24 )'2:rr. 
(39) 

It is convenient to write the surface tension D. in 
the form 

1 (8Ho) A= -d - (Bz-Bt) 2• 
24:rt 8B 1,2 

(40) 

2lThe solution of (36) can be obtained by minimizing this 
functional under the condition u( ± oo ) = ± 1. 
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The obtained result has a simple physical meaning, 
since the quantity (8H0/8Bh 2(Ba - B1)2 is the char-

' acteristic difference of the energy densities of the 
unstable state and of the state with induction B1 or 

Ba· 
In the case when B2 - B1 is not small com-

pared with the period of the oscillations, including 
in the limit when (8M0/8B)max » 1, the dimension 
of the domain wall d is of the order of r 0• In this 
case formula (40) gives the correct order of magni­
tude of the surface energy. 

The author is grateful to L. P. Gor'kov and I. E. 
Dzyaloshinsku for numerous discussions on the 
questions touched upon here. 

1 R. E. Peierls, The Quantum Theory of Solids, 
Oxford, 1955. 

2 I. M. Lifshitz and A. M. Kosevich, JETP 29, 
730 (1955), Soviet Phys. JETP 2, 636 (1956). 

3 J. H. Condon, Phys. Rev. 145, 526 (1966). 
4 L. D. Landau and E. M. Lifshitz, Statistiches­

kaya fizika (Statistical Physics), Nauka, 1964. 

Translated by J. G. Adashko 
209 


