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Total-energy and normal-energy distribution functions of field emitted electrons are cal
culated (for T = 0 and T > 0) as integral characteristics of the dispersion law and are in
vestigated for various cases. The temperature dependence of the field emission current is 
considered and it is shown that in some cases it can be decreasing. 

IN the preceding paper[t) we calculated the trans
parency coefficient of the potential barrier for 
electrons in a metal, and the cold-emission current, 
for an arbitrary dispersion law. The expression 
for the field-emission current is 

l:(E) 

2e ~ j, = -- fl>(E)f(E)dE, 
h3 

fl>(E) = ~ D(E,P)d2P(1) 

(the z axis is directed outward from the metal per
pendicular to its surface). Here f( E) is the Fermi 
distribution function, ~(E) part of the projection of 
the equal-energy surface on the PxPy plane, con
tained in the central Brillouin zone of the plane 
lattice (representing the projection of the recipro
cal lattice on the PxPy plane) ; P is the component 
of the quasimomentum (p) tangential to the surface 
of the metal; D(E, P) is the effective transparency 
coefficient (which takes into account all the Bloch 
waves with given E and P incident on the surface). 
Apart from the pre-exponential factor, which is of 
the order of unity, D depends only on the energy V 
(denoted E<2> in[1J) of the electron motion (outside 
the metal) along the z axis, equal to V = E 
- p2j(2mo): 

4 -( I \'I• 8(v) 
D(E,P)~e-s(V>, 6(V)="3l'2 -V )T• 

e'I•F'I• -~ 
v=--

-V' 

(2) 

where I = m0e4/ti 2 = 27.2 e V is the atomic energy 
unit, m0 and e are the mass and charge of the elec
tron, F is the intensity of the external electric 
field, and e is a function that decreases from 1 to 0 
when the argument increases from 0 to 1 (a table 
of its values is given in[2J, Appendix 1); the energy 
is reckoned from the energy of the electron outside 

principally by the maximum value of the transpar
ency coefficient at E ~ -w (-w is the Fermi level 
and w is the work function), namely DMax 
~ exp{-~(Vmax)}. The main result of[l] is as 
follows: The equality VMax = -w, which holds for 
free electrons, is satisfied in the case of a compli
cated dispersion law only when the Fermi surface 
crosses the Pz axis; otherwise VMax < -w, i.e., 
the effective work function W =- VMax is larger 
than the true work function, and from the difference 
W- w we can estimate the distance from the Fermi 
surface to the Pz axisn. 

In this paper we estimate the energy distribution 
of the emitted electrons and the temperature de
pendence of the field-emission current; these quan
tities, naturally, contain a larger amount of inform
ation on the dispersion law than the effective work 
function. 

To measure the energy distribution of the elec
trons one customarily uses the decelerating poten
tial method (see, for example, [2], Sec. 14), which 
ensures a fairly high resolution (Young and 
Muller[3] give a value 0.02-0.03 eV). Since this 
method makes it possible to obtain the distribution 
both with respect to the total energies E (in the case 
of a pointlike emitter and a spherical collector[3J), 
and with respect to the energies V of the motion 
normal to the surface of the metal (in the case of 
flat electrodes), we shall consider both cases. 

1. DISTRIBUTION OF THE EMITTED ELECTRONS 
WITH RESPECT TO THE TOTAL ENERGIES 

It is seen from ( 1) that the distribution function 
of the current j z with respect to the total energies 

the metal in the absence of an external field. It is l)If the quantity VMax is connected with an anomalously 
assumed that ~ (V) » L small group, then the effective work function determining the 

It is obvious from (1) and (2) that at zero tern- exponent in the expression for jz is larger than -VMax (see['],. 
perature the order of magnitude of jz is determined footnotes 5 >6 >). 
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of the electrons is proportional to <I> (E) f( E). As 
shown in[t] (formulas (13)-(18)), we have 

CD(E) ~ S(E)exp {- 6(E- t1(E) )}, 

2 
t1(E) = Pmin(E)/(2mo), (3) 

where for large groups S(E) are slowly varying 
functions, and for small groups S(E) ~±(E- Eg) 
(the upper sign pertains to the electrons and the 
lower to holes; Eg is the value of the energy at 
which the groups are respectively created or van
ish), and Pmin(E) is the minimum value of P in the 
region I:(E). Expression (3) is valid if 

6(E-t1(E))~1 or (Emin-E) 

X [1-t1'(Emin)]/e(Emin)~1; (4) 

here Emin is the minimum energy at which the 
electron can leave the metal over the potential bar
rier2>: 

Emin- t1(Em;n) =- e'hF'h, i.e., 6(Emin- t1(Emin) )= 0; 

( 5) 

1 
e(E) =----

£' (E - t1 (E)) 2y2J[- E + t1(E)] 

2 -E+t1(E) 
= 3 a(v1)8(v!) £(E-t1(E)), 

(6) 

v1 = e'hF'I>j[- E + t1 (E)], a (vt) = [8 (v!)- (2/a) v16' (vt) ]-1 

(a(v1) decreases from 1 to 0.9004 when v1 increa
ses from 0 to 1); 

e (Emin) = a ( 1) ( e'"F'I>) 'hj (2 fil). (7) 

In the derivation of inequality (4) and in anum
ber of similar cases which will be encountered 
later on, we assume that the corresponding expan
sions are valid. 

When T = 0, there exist three types of distribu
tion, depending on the value of the energy (denoted 
EM) at which max <I>(E) is reached (see Fig. 1). 

E~-w 

Each type corresponds to a definite case consid
ered in[1J (Sec. 2): EM= -w to case 1, EM= Em 
(<I>'(Em) = 0) to cases 2, 3b), and 3d), and 
EM = E2 to case 3a). It follows therefore that it is 
possible to distinguish between these cases experi
mentally (primarily between case 1 on the one side 
and cases 2 and 3 on the other), which is essential 
for the interpretation of the effective work function 
in terms of the dispersion law. 

2)For more details concerning this quantity see [•], Sec. 1. 
For simplicity, we do not consider the case b) of [4 ],. when the 
function 6-(E) has a discontinuity at the point E = Emin; the 
generalization to this case is trivial. 

4,=-w 
FIG. 1. Typical curves showing the distribution of emitted 

electrons with respect to the total energies at T = 0. 

The change of the distribution with increasing 
temperature has the following character: If EM 
= -w (case 1), the distribution shifts towards higher 
energies and the total current is appreciably in
creased; if EM= Em or EM= E2 (cases 2 and 3), 
no significant change takes place in the distribution, 
and the total current is somewhat decreased (until 
the temperature becomes so high that higher bands 
or higher groups of the same band begin to take 
part in the emission). 

It is of interest to trace the variation of the po
sition of the maximum of the distribution function 
as a function of the temperature. When T > 0 the 
sharp (peaked) maximum corresponding to a jump 
of the derivative of the distribution function, provi
ded a "gap" with a center at the origin occurs in 
I:(E) at this value of the energy. In any other case, 
the maximum is smooth and its position is deter
mined in the usual fashion from the equation 
d[<I>(E)f(E)]/dE = 0, i.e., 

w(E)={T{1+exp{-(E+w)/T}]}-1 or 

E =- w- Tln{(w(E)T]-1-1}, 

where w(E) = <I>'(E)/<I>(E) = S'(E)/S(E) 

( 8) 

+[I- ~'(E)]/E(E). Equation (8) and all that follow 
is based on expression (3), i.e., it is valid in the 
energy region bounded by the inequality ( 4) ; it is 
assumed with this that in any case ~ (- W) » 1. It is 
seen from Eq. (8) that for any temperature its root 
E satisfies the inequality w (E) :::: 0, i.e., E ~ Em 
or E ~ E2 (the latter in the presence of a sharp 
maximum of the function <I>(E) at the point E = E2). 

To investigate the function Em(T), which is 
specified in implicit form by Eq. (8), we introduce 
the auxiliary variable u = (E + w)/T (we neglect the 
temperature dependence of the work function). The 
connection between u and E is given by 

u/(1 + e-u) = (E + w)w(E), (9a) 

and between u and T by 

u = -ln{Iw (- w + uT) T}--1- 1}; (9b) 
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-4 

u 

FIG. 2. Plot of the function u/(1 + e-0 ). 

actually it is more convenient to use in lieu of (9b) 
one of the relations 

T = (E + w)/u = [w(E) (1 + e-u))-1. (9c) 

Figure 2 shows the plot of the function 
u/(1 + e-u). When u = -u0 it has a minimum equal 
to - (u0 - 1), where u0 = 1. 278 is the root of the 
equation e-u- u + 1 = 0. Plots of the function 
~ = (E + w)w(E) in the region of interest are shown 
schematically in Fig. 3 3>. These plots were con
structed with allowance for the fact that the transi
tion from the positive to the negative values of w(E) 
with increasing E occur either at the point E = Em, 
where w(E) vanishes (variants a and c), or at the 
point E = E2 (in the case when a gap appears in 
l:(E), where w(E) experiences a jump (variants b 
3Ed d)). Variants a and b pertain to case 1 of[1 J 
(EM =-w, w(-w) > O),~vari~t c pertains to the 
cases 2, 3b), and 3d) (EM = Em), and variant d to 
case 3a) (EM= E2). Let us examine these variants. 

Variant a. Plots of the functions u(T) and 
E = 'Em(T) are shown schematically in Fig. 4. The 
positions of the characteristic points of the plots 
are determined by the relations 

(10) 

Tm = {1-1 I Uo) I w(Emmin} = (-w- Em min} I Uo, 

and if 

a==~[-1-] ~-1-, 
dE w(E) E=-w Uo-1 

we can put 1/w(Em min) ~ T 1. If Emin < Em, then 
the tails of the curves become meaningless in view 
of the inequality ( 4) . 

3 >we confine ourselves to consideration of only that band 
and that group in which emission takes place at T = 0. Actu
ally, as already mentioned, for sufficiently high temperatures, 
higher groups may get involved in the emission, as a result of 
which additional maxima of the distribution functions are pro
duced. In particular, such a situation must take place in cases 
2 and 3 of [1],. which correspond to variants t: and d below. 

FIG. 3. Different variants of the energy dependence of the 
quantity ~ = (E + w)w(E). 

In the limiting cases, the function T(E) or T(u) 
can be expressed explicitly. If u » 1 (the maximum 
of the distribution function is situated in the Boltz
mann tail of the Fermi function), i.e., (E + w)w(E) 
» 1, then, as follows from (9c), 

T ~ 1/w(E). (11) 

As seen from Fig. 4, the intervals of the values of 
T and E, where u » 1, are bounded from both sides: 
from the right-either by the inequality 

Em-E~{-(Em+ w)w'(Em)]-1 
(w'(Em) < 0), i.e., T~Em + w, 

or by the inequality ( 4), and from the left by the 
inequality 

E + w~ T1, i.e., (if a~ 1) 
(T- Ti) ITt ~a; 

if these inequalities are incompatible, then there 
exists no region where u » 1. 

If IE+ wl = luiT « T 1/a then, expanding 
w- 1(-w + uT) in (9b) in powers of uT, we get 

T ~ T tf ( 1 + e-u - au). (12) 

The condition luiT « T tfa, which is equivalent to 
(1 + e-u) /lui » a, is satisfied in the vicinities of 
the points T = 0 and T = T0• When a« (u0 - 1)-1 

these vicinities overlap, i.e., formula (12) is valid 
in the entire region u < 0 (T < T0). On the positive 
side of u, the region of validity of (12) is bounded 
by the condition u « 1/ a, i.e., 

(T- To)/To~ 1 for a> 1, (T- Tt)/T1 ~ 1 for a~ 1. 

For sufficiently small a, the regions where formu
las (12) and (11) are valid become superimposed, 

E u 

Em~----------~---

FIG. 4. Schematic plots of the functions u = u(T) and 
E = Em(T) for variant a. 
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and in the common section the T(E) dependence is 
linear: T- T 1 F::J a(E + w). 

Finally, if eu « 1/a, then we can put in (9b) 
w(-w + uT) F::J w(-w) and we obtain in lieu of (12) 
an even simpler formula T F::J T 1/(1 + e-u) or 4> 

E ~- w- Tln[(T1 - T)/T]. (13) 

The condition e-u » a is equivalent to (T 1 - T) /T 1 

>>a, i.e., 

With increasing temperature, the current of the 
above-the-barrier electrons assumes an ever in
creasing role, and ultimately the emission becomes 
thermionic. The field emission (i.e., essentially 
tunnel emission) remains under the condition 

<D (E}/(E} ~ <D (Emin) /(Emin) (E = Em(T)) 

or, taking (3), (5), and (9c) into account 

ln[S (E) IS (Emin}) 
(14) 

- 6 (E -!l (E)}+ (Emin- E) u) (E) [1 + e-u<E>) ~ 1. 

We note that (14) is a stronger inequality than 
( 4), with the possible exception of the case when 

S'(E)IS(E)~[1-Il'(E))Ie(E). 
~ 

If Emin < Em, then, expanding the left side of the 
inequality (14) near the point E = Emin at which it 
vanishes (for which purpose we extrapolate the u(E) 
dependence defined by (9a) down to E = Emin), we 
gets> 

Emin- E~eu<EmiB>Iw(Emin) for u(Emin)~ 1, (14a) 

(Emin- E) 2 ~ -2/ w' (Emin) for u(Emin) ~ 1. (14b) 

Of course, it is necessary that these inequalities 
be compatible with the performed expansion; in 
particular, (14b) must not contradict the condition 
u(E) » 1. If Em< Emin• then the left side of the 
inequality (14) vanishes at a certain value of E 
which is smaller than Em, and the expansion must 
be carried out in the vicinity of this value. 

Variant b. If Emin < E2, e~erything is the same 
as in variant a when Emin <;_,Em. 

If Emin > E2, then when Em(T) < E2, correspond
ing toT < T2 (T2 is determined from (8) or from (9) 

4>Fonnula (13) for the model of free electrons is contained 
in the paper of Young [5]. The same paper gives plots of the 
distribution function for several values of T. 

5>Multipliers of the order of unity are not discarded in the 
inequalities pertaining to the exponents. 

FIG. 5. Schematic plots of the 
functions u = u(T) and E = Em(T) 
for variant c. 

E u 

in which we must put E = E2 - 0), everything is the 
same as in variant a. When T > T2, the maximum 
of the distribution function becomes peaked, and 
regardless of the temperature, it remains at the 
point E = E2• If 

Tz < (Emin- Ez)l {6(Ez) ~ ln[S(Ez)IS(Emin)]} = Ta, 

the condition for the subbarrier current to be 
negligible assumes in lieu of (14) the form 

(Ta-T) /Ta ~{6(Ez) -ln[S(Ez) IS(Emin)]}-1• 

Variant c. Plots of the functions u(T) and 
E = :Em(T) are shown schematically in Fig. 5. At 
all temperatures, the maximum is smooth, u < 0, 
E :::; Em:::; -w. The values of Tm and Em min are 
determined by the same equations (10) as in variant 
a. 

For sufficiently small values of Em- E, linear
izing w(E) in (8) and recognizing that w(Em) = 0, 
we get 

E- Em= {w'(Em}T 

X [1 + exp { (-w-E) IT} ]}-1. 
(15) 

If this relation is vali~ for E = Em min (meaning 
also for all values of Em(T)), then 

w' (Em) (Em min -Em) · 
X (-w- Em min} = Uo -1. 

When T « - w - Em, the quantity Em - E is ex
ponentially small and from (15) we get for it the 
explicit expression 

E- Em= exp{(w +Em)/T}/w'(Em) T. 

Variant d. If (E2 + w)w(E2 - 0) > -(u0 - 1) (we 
recall that in our case E2 < -w), then Eq. (8) (or 
else the equations (9)) has for E = E2 - 0 the two 
roots T~ 1 > and T~2>. When T~ 1 > < T < T~2 > the maxi
mum of t,.9e distribution function is smooth, and the 
functi~ Em(T) decreases from a value E2 to a 
value Em min in the ,temperature interval [T~ 1 >, T ml, 
and increases from Em min to E2 in the interval 

(2) ~ [Tm, T2 l (Tm and Emmin are determined by Eqs. 
(10)). Outside the interval [T~t>, T~2 >], the maximum 
is sharp and is located at the point E = E2• 

If (E2 + w)w(E2 - 0) < -(u0 - 1), then Eqs. (8) and 
(9) have no roots at E = E2 - 0, so that the maximum 
of the distribution function is sharp at all tempera
tures and is located at the point E = E2• 
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Let us specify the results for the case when 1:(E) 
contains a large vicinity near th! origin in the en
tire energy interval of interest Em min < E < Emin 
(this is the situation, in particular, in the free
electron model). In this case ~(E) = 0, 

S(E) = 2:n:moe(E) and 
w (E) = [1 + e' (E)] I e(E), 

e'(E)= ~(v)e(E)/(-2E) 

= a(v)~(v)8(v)/36(E)~1 (16) 

(see (6)); here v = -e312F1' 2/E, {3(v) = 1 
+ 2va'(v)/a(v); {3(v) decreases from 1 to 0.76 when 
v increases from 0 to 1. The order of magnitude of 
the characteristic temperatures is determined from 
(10) and (16): T 1 ~ 10-2-10-1 eV ~ 102-103 degrees. 
The value of Emin• which is equal to -~3 12 F1 1 2 

(see (5)), is smaller than that of E2 or Em, so that 
variant a or b is obtained. The parameter a is 
equal to 

a~ e'(- w)~i. 

Using (9a) and (2), we can readily show that 

u(Emim) > 2l'21/w{1- vo)/a(1)vo'/, 
'/, > Vo 6(-w)~ 1, v0 = e%F'I•/w. 

This means that the region of applicability of the 
asymptotic formula (11), T"" E(E)/[1 + E'(E)], is 
bounded from the left by the inequality (T - T 1) /T 1 

» a and from the right by the inequality ( 4) , and 
the compatibility of these inequalities is ensured 
by the condition ~ (-w) » 1 if this inequality is 
sufficiently strong. The same condition allows us 
to rewrite the inequality ( 4) in the form 

(T max- T)/T max~ 8 1 (Emin) ~ ~{1) T max/2e'12P'h, 

where Tmax = E(Emin)/[1 + E'(Emin>l (see (7)). 
The inequality (14b) (which is stronger than (4)) 
takes the form 

(- e'hF'f,- E) 2 ~ 4e'I•F'I2T max/~ { 1) 

or 

[(T max- T) /T max]2~ ~ (1) T max/e'hF'I•. 

This inequality serves as a criterion for neglecting 
the above-the- barrier current, if it is compatible 
with the condition u(E) » 1, i.e., if 

- 'I 
{ 1- vo) 2 ~ l'2 a ( 1) (w/1) 'l•v0 •, 

which is the stronger requirement than ~ (-w) » 1. 
In any case, the above-the-barrier current is 
negligibly small when T = T 0, for at this tempera
ture (14) is equivalent to the inequality ~ (-w) » 1. 

Figure 6 shows a plot of E = Em(T) for the case 
under consideration with w = 4.5 eV and F = 2 
x 107 V/cm; at these values of the parameters 

f,eV 

-1,5 

-2,0 

-2,5 

-3,() 

-3,5 

-4.0 

-4,5 
0 

-4.3 

Tm 

!DO 1500 
T"K 

FIG. 6. Plot of the function E = Em(T) for the case when 
w(E) is determined by formula (16); w = 4.5 eV, F = 2 x 107 

V /em; T m = 224°, T 0 = 514°, T, = 1029° = 0.0887 eV, 
T max = 1520° = 0.1310 eV. The main curve was constructed 
from the exact equations (9a) and (9c); the section not satis
fying the inequality (4) is shown dashed. The dashed lines 
correspond to the asymptotic formulas (11) - (13). 

Emin = -e312 F112 = 1.697 eV and ~(-w) = 26.6. 
Without writing out the rather cumbersome 

formulas for the case of a small group with ~(E) 
= 0, we note only that in this case it is expedient, 
in the derivation of the asymptotic formulas, to ex
pand not the entire function w(E) ± 1/(E- Eg) 
+ 1/E:(E), but only the term 1/E(E). 

2. DISTRIBUTION OF EMITTED ELECTRONS 
WITH RESPECT TO THE NORMAL MOTION 
ENERGIES 

The distribution of the electrons with respect to 
the energies V of the motion along the z axis can be 
obtained in analogy with the distribution with res
pect to the total energies (see[tJ, derivation of 
formula ( 11)), by changing over from the integration 
variables Px• Py• Pz in the initial expression for j z 
to the variables Px• Py• E. This yields 

j.=- ~~dV ~D(V+P2/(2mo),P)f(V+JJ2/(2m0))d2P, 
!l(V) 

where fl(V) is that part of the projection of the sur
face 6'(p)- (p~ + p~)/(2m0) = V = const on the PxPy 
plane, which is contained in the central Brillouin 
zone of the plane lattice; the remaining notation is 
the same as before. Assuming 

6(V)~1~ i.e. - e'!.F'I•- V~e(Emin) 

(cf. with (4)) and using relation (2), we get 

2e \ iz =-hs J e-,<V>x(V)dV~ 

x{V) = ~ f(V + P2/ (2mo) )d2P; 
O(V) 

(17) 

(18) 
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thus, apart from a pre-exponential factor of the 
order of unity, the distribution function of the cur
rent jz with respect to Vis proportional to 

e-~(V)x(V). Owing to the factor e-~(V), it 
decreases rapidly with decreasing V, so that the 
region -w- V » E(EM) is of no interest (EM is 
determined by the relation EM- .t.(EM) = -W). 

Let us consider the function x(V), which depends 
on the dispersion law. Calculation of the integral 
(18) in polar coordinates leads to the expression 

:x,(V) = m0 ~ :x.v(l'2m0u)f(V + u)du, (18a) 

where Xy(P) is the total length (in radians) of those 
parts of the circle of radius P with center at the 
origin, which lie within Q(V) (cf. the quantity cpE(P) 
in[1], formula (14)). As can be readily seen, these 
are the same parts of the circle which lie within 
the confines of the figure !:(V + P2/(2m0)) (inasmuch 
as the cylinder P = const intersects the surfaces 
V = const and E = const (E = V + P 2/(2m0)) along 
the same line) . 

We can draw a number of consequences from the 
connection established in this fashion between the 
figure Q(V) and the figures !:(E). Thus, the equa
tion of the boundary of Q(V) can be obtained from 
the equation for the boundary of !:(E) by substituting 
forE the expression V +(pi+ p~)/2m0). This de
notes, in particular, that if !:(E) is bounded by the 
curves 

(Px- p,0)2'/2m1 ± (py- py0 ) 2/2mz = ± (E- E0 ), 

then the boundaries of Q(V) are also second-order 
curves (certain particular cases are considered in 
the Appendix). Further, xy(P) = cpV+P2/(2m 0)(P), 

from which it follows, in turn, that the minimum 
value of P in the region Q(V) (which we denote by 
~min(V)) coincides with Pmin(E(V)), i.e., o(V) 
= .t.(E(V)), where o(V) = ~~in(V)/2m0 , E(V) is the 
smallest root of the equation s> E- .t.(E) = V loca
ted in the interval in which the function E - .t.( E) 
grows. It follows from these relations that 

V+<I(V) =E(V), EM=E(VMax-0). (19) 

We note that the functions o(V) and E(V) have 
discontinuities at the points V = Vmax• where Vmax 
is the maximum of the quantity E- .t.(E) (higher 

6 >sesides the forbidden intervals, there can exist also cer
tain intervals of V in which the equation E - L\(E) = V has no 
roots of the required type and E(V) is determined in a different 
manner, but such intervals are of no interest to us in what fol
lows. We note that Emin = E(-e3 1 2 F 1 1 2), as seen from formu
la (5) (with account of the remark 2 >). 

than that lying to the left), so that E(V max- 0) is 
Em or E2; at these points, the parts of the figure 
Q(V) that are close to the origin vanish. The jumps 
of these functions at the discontinuity points are 
positive, i.e., E(Vmax + 0) > E(Vmax- 0) or if 
(Vmax• V1) is a forbidden interval, we have 
E(V1 + 0) > E(Vmax- 0) and analogously for o(V). 

As seen from formula (18), at zero temperature 
x(V) is equal to the area of the part of the figure 
Q(V) which lies inside the circle (pi + p~) /2mo 
~ -w- V, which henceforth will be denoted 
C(-w- V) (compare with the function <I>(E) for 
thermionic emission, formula ( 6) of[ 4 J) 7>. Conse
quently, the upper limit of the distribution V max 
= -w (see footnote 0 ) is the largest value of Vat 
which Q(V) has a common point with the circle 
C(-w- V) (compare with the definition of the quan
tity Emin in[4J), i.e., allowing for a possible dis
continuity of the function o(V) at the point V = VMax, 
VMax + o(VMax- 0) + w ~ 0 and either VMax 
+ o(VMax + 0) + w ~ 0 or V1 + o(V1 + 0) + w ~ 0 (the 
latter if (VMax• V1) is a forbidden interval). 

With the aid of (19) we can reduce these inequali
ties to the form 

E(VMax-0)+ W =EM +w:::::;; 0, 
(20) 

E(VMax + O)+w ~ 0 and Er(Vi +O)+ w ~ 0. 

It follows therefore that either V Max ¢ V max (the 
function E(V) is continuous at the point V = VMax) 
and EM= -w (case 1 of[tJ), or VMax = Vmax and 
E(V) is discontinuous at the point V = VMax and 
EM= Em (case 2 in[t]), or else EM= E2 (case 3 
in-tlJ. In case 1 either Q(-w) contains the origin 
(o(-w) = 0) and VMax = -w, i.e., C(-w- V) vanishes 
when V = VMax• or o(-w) > 0, VMax < -w and when 
V = VMax the figures C(-w- V) and Q(V) become 
tangent; in cases 2 and 3 when V = V Max the parts 
of Q(V) situated inside C(-w - V) vanish, whereas 
the circle C(-w- V) no longer touches the other 
parts of Q(V) (if they exist) (compare with the var
iants of the definition of Emin [ 4 J). 

Unlike the distribution function <I> (E) f( E) with 
respect to the total energies, which vanishes jump
wise at the point E = -w when T = 0, the function 
x(V), and with it the entire distribution function 

7 >Comparing (17) with formulas (5) and (6) of [4], we can 
readily verify that if the circle C(~w- V) is contained in 
O(V) for all essential values of V (-w- V < £ (-w)) and an 
analogous situation takes place for thermio;ic emission, then 
the distribution functions of the cold-emission current with re
spect to -w - V and of thermionic current for E + e 3 12F 1 I 2 

forT = £(-w) coincide (apart from a normalization factor). For 
the free-electron model, this symmetry was noted by Young]"]. 
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with respect to V, is continuous (in particular, 
x(VMax) = 0) with the exception of special cases 
when the equation of the boundary 1:(E) takes the 
form P 2/(2m0) = E- E0 and the figure Q(V) vanishes 
jumpwise for a certain value of V (see the Appen
dix, variants 1b and 3b). 

When T > 0 the integral (18) is similar in its 
structure to the expression (1), so that the investi
gation of x(V( is similar to the investigation of 
<I>(E) in[t] (the relations obtained below are valid, 
of course, also in the limit when T = 0). Formula 
(18a) is conveniently represented in the form 

x(V) = mo ~ xv("}"2mo[ll(V)+ U])f(E(V)+ U)dU. 

where Umax(V) = S"kax(V) /(2m0) - o(V). Owing to 
the decrease in the Fermi function, an appreciable 
contribution to the integral can be made only by the 
interval 0 < U < U0, where U0 + E(V) + w ~ T if 
-w- E(V) » T and U0 ~ T in all other cases. 
Consequently, in order of magnitude x(V)/f(E(V) is 
equal to the area of that part of the figure Q(V) 
which lies inside the circle C(o(V) + U0). 

If Q(V) is so small that f(E(V) + Umax(V) 
~ f(E(V)), then x(V)/f(E(V)) is equal to the area of 
Q(V). If xv(v'2m0[o(V) + U]) = const in the entire 
interval 0 < U < Umax(V), then 

X ( V) = moxv T {In [ 1 + exp ( - w -/ ( V) ) J 
-ln[t+exp(-w-E(V~-Umax(V) )]} (21) 

(concrete examples are given in the Appendix). 
When Umax > U0 we have 

x(V) = moxvTln(1 + exp{[- w-E (V) ]/T} ]; (21a) 

for this formula to be valid, it is actually sufficient 
to have xv(v'2m0[o(V) + U]) = const only in the in
terval 0 < U < U0 (for example, in order that the 
region Q(V) include a sufficiently large vicinity of 
the origin. 

If the boundary of Q(V) in the section that is es
sential for x(V) can be approximated by arcs of two 
symmetrical surfaces of radius .9t (for which it is 
necessary, in general, that the quantity 
f!M.J't + S">min)/moUo be large), then when o(V) « U0 

the quantity x(V) is expressed by formula (21a) with 
Xv = 2n, and when o(V) » U0 we have 

x(V) = 4mol'~(V)/{6(V) [.9t(V) +SOm;n(V)]} 

X T'I•F•J, ([ -w- E(V)] / T), (22) 

where r s'l•ds 
F•t,(v) = J 

o 1 + e•-v 

is a function (introduced in[6]) whose plot is shown 

-4 -J -2 -t o t 2 a q. u 
FIG. 7. Plot of the function F 112(v). 

in Fig. 7. The asymptotic formulas for F1; 2(V) are 
as follows: 

F•t,(v) ~ 1 (-}";tJ2)ev (-v~ 1) 

2/3 v'J, ( 1 + :rt2/8v2) (v ~ 1) 

Fy,(O)=( 1- -y~)r (~)~(f)= 0.678. 

We note that 

~I(~+ SOm;n) = R(1- ~')I (R + Pm;n) 

(the argument V is implied in the left side of the 
inequality, and the argument E ( V) in the right side) , 
where R(E) is the radius of curvature of the boun
dary of the figure 1:(E) at the point P = Pmin(E). 
The radii are assumed positive when the curve is 
convex in the direction of the origin, and if .6/l < 0 
then -!fi >§">min· The case when-$= S"min• i.e., 
when the internal boundary of Q(V) is a circle with 
center at the origin, is described by the formulas 
of the Appendix, variants 1c (V < Eg) and 3a 
(V>E2). 

Let us separate the temperature-dependent term 
of the function x(V)' putting x(V) IT=O = Xo(V). If 
w + E(V) + Umax(V) ~ 0, for which it is necessary 
to have V ~ VMax (see (20)), then x(V) - x0(V) ~ 0, 
and if w + E(V) ~ 0, i.e., V ~ VMax (see (20)), then 
x(V)- x0(V) ~ 0, x0(V) = O; the equality x(V)- x0(V) 
= 0 holds for those values of V, at which Q(V) does 
not exist and x(V) = x0(V) = 0. The figure Q(V) does 
not exist in the forbidden intervals of V, and if we 
disregard the higher groups (their contribution is 
exponentially small for large [w + E(Vmax + 0)]/T 
or [w + E(V1 + 0) ]/T), then they do not exist for all 

V ~ Vmax· 
The expression for x(V) - x0(V) simplifies in the 

limiting cases w + E(V) » T and -w- E(V) 
- Umax(V) » T, owing to the transformation of the 
Fermi distribution function into a Boltzmann dis
tribution function (for electrons and holes respec
tively). If w + E(V) < 0, i.e., V ~ VMax (see (20)), 
and w + E(V) + Umax(V) > 0, then x(V) - x0(V) can 
have any sign. 

In the limiting case when 



1150 F. I. IT SKOVIC H 

-w-E(V)~T and w+E(V)+Umax(V)~T, 

we get 
nZ d --

:x;(V)-:x;o(V) ~ mo-1'2-d %v(1"2mou) lu=-w-v, (23) 
6 u 

if the function xv(hmou) is linearizable in the in
terval lu + w + VI ;S T (see, for example, [7], 
formula (57 .1)) ; on the other hand, if xv is constant 
in that interval, then x(V) - x0(V) is determined by 
the exponentially small terms which have been left 
out from (23) (if xv is constant for all values of the 
argument at which xv ;<! 0, then these terms can be 
obtained from formula (21)). In the immediate 
vicinity of the point V = VMax• formula (23) is not 
applicable, for by virtue of the first of the inequali
ties (20) and the obvious relation B> Umax(Vmax- 0) 
= 0, either the first condition (case 1 of[t]) or the 
second (cases 2 and 3) condition of its validity is 
not satisfied. 

Figure 8 shows schematically the function x(V) 
near the point V = VMax in typical cases without 
allowance for the influence of the higher groups. In 
case of[1J, when VMax = -w- D.(-w) < Vmax• x(V) 
increases with increasing temperature; with this, 
formula (21a) is applicable if D.(-w) = 0 (Fig. Sa), 
and formula (22) is applicable if D.(-w) > 0 (Fig. Sb) 
(the particular case when fA =-S'l min is discussed 
in the Appendix, variant 3a, TJ > 0) . In cases 2 and 
3 of[tJ, when VMax = Vmax > -w- D.(-w), x(V) de
creases with increasing temperature (Fig. Be); 

cases 3a and 3d, with an effective mass that is iso
tropic in the projection on the PxPy plane, are con
sidered in the Appendix, variant 3a, TJ > 0, and var
iant 2, t < 0. 

In concluding this section let us consider the 
question of the position of the maximum of the dis
tribution function. When T = 0 the distribution 
function near V = VMax is proportional in typical 
cases to (VMax- V)Se-~(V); for the cases shown 

X{V} X(V} 

~Lv ~Lv 
VM'a.:z: Vmaz VMa 

a b c 

FIG. 8. Schematic plots of the function x(V) in the vicinity 
of the point V = V max. The dashed lines are shown for the 
plots at T = 0. 

8 )This relation is incorrect only in the general case, when 
at the point V = Vmax the figure O(V) vanishes abruptly (see 
the Appendix, variant 3b, Tf > 0), but in this case formula (23) 
is nontheless applicable, since XV is constant. 

in Figs. Sa, c, and Sb we have s = 1 and s = 3/2, 
respectively. If this dependence extends sufficiently 
far, then the maximum is reached at V ~ VMax 
- SE(EM). In view of the complexity of the expres
sion for the distribution function with respect to V, 
it is impossible to trace in general form the varia
tion of the position of its maximum Vm(T) with the 
increasing temperature. We therefore confine our
selves to the case when formula (21a) with E(V) = V 
is valid in the entire interval Vm(O) < V < -e3/2F1/2 
of interest to us (this is the situation, in particular, 
in the free-electron model). 

The investigation of the function V m(T) is sim
ilar in this case to that of Em(T) in the preceding 
section. The initial equations determining Vm(T) 
are 

(V + w)/e(V) =a/ (1 + eu)ln(1 + e-u), 

T / e (- w + uT) = 1/ ( 1 + eu )ln ( 1 + e-u), 

and one of them can be replaced by any one of the 
relations 

T = (V + w)/u = e(V)/ (1 + eu)ln(1 + e-u). 

We see therefore that Vm(T) is a monotonically 
increasing function. When T = T~0 > /(2 ln 2), where 
T~o> = E(-w), v = 0 and V = -w. If V + w » T1°>, 
i.e., (T- T~o>;T~ » a<o>, where a<o> = E'(-w) « 1, 
then u » 1 and T ~ E(V) (compare with formulas 
(11) and (16)). If IV+ wl « T~0>;a<0 >, i.e., T < T~o> 
or (T- T~Ol /T~Ol « 1, then 

T ~ T1<0>/[(1 + eu)ln(1 + e-u)- a<O>u]. 

The regions where the two asymptotic formulas are 
valid overlap, and in the common section we have 
T- T1°> = a<0>(v + w). If T « T1°>, then -u » 1 and 

V ~ -w -(1- a<o>)T1<0>[1- exp {-(1- a<O>) rfG> /T}]. 

3. TEMPERATURE DEPENDENCE OF THE FIELD 
EMISSION CURRENT 

If the temperature is not too high (T 
« 1/ lw(-w) j), and the temperature-dependent term 
is small compared with the value of the current at 
T = 0 (jjz- hoi « jz0), then this term can be calcu
lated in general form from Eq. (1), using formula 
(57 .1) of[7] : 

2e :t2 
jz- j,o ~- h36T2<D'(-w) 

2e n2 
= -h3"61'2<D(-w)ro(-w). (24) 

This expression is valid if the function <I>( E) is 
linearizable in the interval IE+ wl ;S T; in the op
posite case, when the value of the chemical potential 
-w is close to the point E = Em, where <I>'(E) van-
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~[ 
Eg -w 

p.<l i:L=I 

ishes, it is necessary to retain that term of (57 .1) 
which is proportional to T 4. 

In case 1 of[t] we have <I>'(-w) > 0 andjz increa
ses with increasing temperature. In cases 2 and 3, 
<I>'(-w) can be negative, i.e., the current can de
crease with increasing T; incidentally, when -w 
- EM » E. The temperature term is exponentially 
small: 

iz-izo <D(-w) 
~""' <!>(EM) ""'exp {- [~(-w)- ~(EM)]}. 

If formula (21a) with E(V) = V is valid in the 
entire region where the distribution function with 
respect to V is essentially different from zero 
(i.e., at v = w < (1/T -1/Ti0>f1, -w- v < Tf0>), 
then we can calculate from ( 17) the temperature 
dependence of the current in a broader temperature 
interval (T~0>- T)/T~0 > » f8.\072, in which the 
function ~ (V) is linearizable (and remains large) 
until the distribution function falls off. Using the 
formula 

00 

~ eUITdn(f + e-UIT)dU = nTt/sin(nT/T1) 

-oo 

we obtain 

iz nT / . nT 
izo = T<OJ sm T<Ol; 

1 1 

(25) 

this result was first obtained by Murphy and Good[a] 
for the free-electron model. 

Similar calculations can be carried out for the 
several cases considered in the Appendix. They 
yield the following results: 

variants 1a, b: 

. 2e (0)2 nT [ 1 ] - --2nmoT1 e-6(-w)_ 
•- h3 T<~ sin(nT/T<~>) 

exp(-~-tVT~0>) J 
- sin[nT(1-~-t)/T<~>f. ' 

if (T~o>- T)/Ti0> » -../a<0>/2 (1- f.L)t » T1°l and the 
corresponding formula of the Appendix for x(V) is 
valid when 

FIG. 9. Schematic diagrams of the function 
x(V) for variant 1 of the Appendix. The dashed 
lines show the plots for T = 0. 

variant 2: 

. __ 2e . m T(0)2 e-s(-w) nT [ 1 
lz - h' Zn ° 1 T<o> _ sin (nT /T<Ol) 

1 1 

_ exp(-~-tVTl~ J 
sin(nT/T,.) 

if (Tf.L- T)/Tf.L » -../a<0> /2, (Tf.L- T)/Tf.L » T/?; 

(Tf.L = T1°>/(1 + f.L)) and the corresponding formula 
of the Appendix for x(V) is valid when -w- V- llt 
< Ti0> (it is assumed that IJ.t < Ti0>; in the opposite 
case we return to expression (25) and to the corre
sponding validity conditions). 

The author is grateful to M. Ya. Azbel' and 
G. E. Zil'berman for a discussion of the present 
work. 

APPENDIX 9> 

Let us make the formula (21) more concrete for 
the case when the boundaries of Q(V) are circles 
with center at the origin. 

X(V} 

1.. 

-w 
r, 

FIG. 10. Schematic plots 
of the function x(V) for the 
variant 2 of the Appendix. 
The dashed lines show plots 
forT= 0. 

9 >Stratton [10 ] considered a complicated dispersion law, 
which, however, is not of the most general form, but is one in 
which the figure ~ (E) encloses the origin. In this case a de
viation from that obtained in the free-electron model occurs 
only for small groups. Stratton's concrete results pertain to the 
case considered in our Appendix (variants 1 and 2); some of 
the formulas contain inaccuracies. 
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~<o ~ ~lx.(v} ~ xf 
~~ v~v 

-w E2 -w E2 

JL<I j~-=1 

1. .L:(E)- circle P 2/(2m) ::;: E- Eg (electron 
group; Eg = E1). We introduce the notation 
1.1. = m/m0 and t = -w - Eg· We have 

a) 1.1. < 1: 

x(V) = 0 (V:::,;;;; Eg), 

x(V)= 2nmoT {In{i + exp {(-w- V)/T}] 

- In [ 1 + exp{ ( s - ~1- E:) j T} J} 
(V? Eg}; 

b) 1.1. = 1 (free-electron model): 

x(V) = 0 (V <E.,), 

x(V) = 2nm0T In[1 + exp{(- w- V)/T}]; 

graphs of the distribution function, plotted on the 
basis of this formula for a broader interval of tem
peratures and fields, are contained in the paper by 
Dolan and Dyke[9J (see also[2J, Sec. 8); 

c) 1.1. > 1: 

x(V} = 2nmoT 

X ln [ 1 + exp { ( s- E: = ~) / T } J ( V :::,;;;; E g), 

x(V) = 2nmoTln [1 + exp {(-w-l/) /T}] 

(V? Eg). 

Plots of the function x(V) are shown in Fig. 9. For 
positive t we get case 1 ofEtJ, and negative t corre
spond to higher groups. 

2 . .L:(E)- circle P 2/(2m) ::;: Eg- E (hole group; 
Eg = E2). We put Eg + w = ?;. With this 

x(V}= 2nmoT{ ln [1 + exp {(-w- V)/T}] 

-ln[1+exp{~-s+ E:~:)/r}]} (V::,:;;;Eg), 

x(V) = 0 (V? Eg). 

The plots are shown in Fig. 10. When t > 0 we get 
case 1, when t < 0 we get case 3d of[1]. 

3 . .L:(E) -region P 2/(2m) ~ E- E2 (region out-

FIG. 11. Schematic plots of the function 
x(V) for variant 3 of the Appendix. The dashed 
lines shown the plots for T = 0. 

side circle). We put -w- E2 = 7J. We get 
a) 1.1. < 1: 

x(V) = 2JT.moTln{1 + exp{ (- w- V)/T}] (V:::,;;;; E2), 

X ( V) = 2nm0T ln [ 1 + exp { ( T) - ~ = ~2 
) J T} J 

X (V?E!); 

b) J.l. = 1: 

x(V) = 2nmoT ln[1 + exp{ (- w --- V)/T}] (V < E2), 

x(V) =0 (V?E2); 

c) J.1. > 1: 

x(V) = 2nmoT {tn [1 + exp {(-w- V)/T}] 

- In [ 1 + exp { ( T) - E: = ~ ) J T} J} ( V :::,;;;; E 2), 

X ( V) = 0 ( V ? E2 ) • 

The plots are shown in Fig. 11. When 7J > 0, 1.1. < 0 
and when 7J < 0 we get case 1 of[tJ ; when 7J > 0 and 
1.1. = 1, the value max [E- D.( E)] is attained in the 

E ::;-w 

entire interval E2 ::;: E ::;: -w (this unlikely case is 
not considered separately in[t]; when 7J > 0 and 
1.1. > 1 we get case 3a of[1 J. 
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