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The production of an electron-positron pair by a high-energy photon in the field of an intense 
electromagnetic wave is considered, assuming that a large number of photons from the wave 
are absorbed in the process. It is observed that there is a significant difference between the 
differential probabilities for pair production in linearly and circularly polarized waves. This 
is a result of the much larger angular momentum and relative momentum of the pair in the 
case of circular polarization. In the limiting situation of a crossed constant field, simple ex­
pressions result for the differential probabilities of pair production by a photon and photon 
emission by an electron. Arguments are presented which allow the use of the ~1ame expressions 
for the case of an arbitrary constant field. 

1. INTRODUCTION 

THE simplest quantum processes in the field of a 
plane monochromatic wave were considered in [ 1 - 51 . 

General formulas were obtained there for such 
processes as the emission of a photon by electrons, 
pair production by a photon, single-photon annihila­
tion of an electron -positron pair, and the corre­
sponding probabilities were analyzed in limiting 
situations determined by the parameter[ 3 l 1> 

x = eajm =Em/Bow,_ (1a) 

characterizing the intensity of the wave (here a 
and B are the amplitudes of the potential and field 
strength of the wave, w is the frequency, and 
B0 = m 2/e is the characteristic field strength in 
quantum electrodynamics). For x « 1 the expres­
sions for the probabilities become identical with 
those obtained in perturbation theory, correspond­
ing to the absorption of 1, 2, ... photons from the 
wave, whereas for x » 1 the probabilities reduce 
to those obtained in a crossed constant field. 

In the present paper we pay special attention to 
pair production by a photon in the field of a wave: 
y + s Ywave- e- + e +. This reaction channel opens 
up when the number s of photons absorbed from 
the wave becomes larger than the threshold value 
s0, which depends on the external parameters: 

1)Units with~= c = 1, e 2/477 = 1/137 are used. Notation: 
qll = (q, iqo), (kq) = k · q - k0 q0 • 

2m.2 x { 

2x(1 + x2/2) 
linearly polarized wave 

so=- (ki}= 2x(1 ,;- x2) 
" circularly polarized wave. 

(1b) 

Here 
(kl)x ey(F"vlv) 2 

x=---= . 
m2 m3 ' 

lll, l).t are the 4-momenta of the incident photon 
and of the wave, respectively; m* is the effective 
mass of the electron. For waves with a frequency 
much smaller than the electron mass (w ~ 10 -s m 
for lasers), the parameter s0 turns out to be very 
large for a wide range of incident photon energies, 
i.e., the process occurs as a result of the absorp­
tion of a large number of photons from the wave. 
This makes it possible to find simple expressions 
for the differential and total probabilities of pair 
production for a wide range of the parameter x, 
including the value x ~ 1. 2> More precisely, in 
Sees. 2 and 3 it will be assumed that the parameters 
x, s0, or x, K satisfy the condition 

(2) 

2 )For photon emission by electrons one can also derive 
simple expressions for the probability of emission of suffici­
ently high-order harmonics, however for x - 1 their contribu­
tion to the total probability will be negligible. 
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The case x » 1 and arbitrary K reduces essen- by the usual method of steepest descent, making 
tially to the situation of a constant crossed field. In use of the second derivative of the function f(cp) 
Sec. 4 more detailed data on the differential distri- in the saddle point. In this case 
butions will be given in the case of pair production 
by a photon and photon emission by an electron in 
the case of a crossed field (F~v = F~v FJ.l.V = 0). 

2. PAIR PRODUCTION BY A PHOTON IN THE 
FIELD OF A LINEARLY POLARIZED WAVE 

The probability for pair production by a photon 
of momentum lJ.l. with a polarization parallel or 
perpendicular to the polarization of the wave is 
(cf. Eqs. (15), (35) in [31) 

e2m2n . 2r 8/{' du 
WII,..L(x,x)=-- ~ J dcp ~ 

16n2l0 u)'u(u-1) 
s>so 0 1 (3) 

X {(1 + 1 + 2a)Ao2 +x2 (2u-1 + 1) (A12 -A 0A2)}; 

where the upper sign corresponds to w11 and the 
lower one to W 1 . Here n denotes the (numerical) 
density of the incident photons; u = (kl) 2/4(kq)(kq'); 
k and l are the 4-momenta of the wave and of the 
incident photon, respectively; q and q' denote the 
4-quasimomenta of the electron and positron; cp is 
the angle between the planes determined by (k, q') 
and (k, q) in the coordinate frame in which the 3-
momenta k and l are opposites. For each value of 
s there is a conservation law sk + l = q + q'. The 
quantity a = 1 + T 2 , where 

eFJJ.v*q,.' qv r( x2\( s )]''' 't'=- = 1+-; --1 sincp. (4) 
m4x l 2 sou ' 

The variables a, and {3 in the functions An(s, a, {3) 
are connected with u and cp by means of the rela­
tions 

a= zcos cp, 
4:£21/ x21/ ( s ) z=-v 1+-v u ~-u ' 

X 2 So 

x3u 
~=-. 2x 

(5) 
The definition and properties of the functions An, 
as well as additional information about the variables 
used here, can be found in [ 31• 

We note that the probabilities W11 , 1 for pair 
production of scalar particles can be obtained from 
(3) by removing the term 2u of the second term in­
side the curly bracket, and by multiplying the right 
hand side of the resulting expression by - 1/ 2• Thus 
it can be seen that spin effects are quite important 
in pair production. 

In the case s0 » (1 + x2) 3/ 2 the functions 
An (s, 0!, {3) can be replaced by their asymptotic ex­
pressions, which are obtained from the integral 
representation 

1 " 1 " 
An ( s, a,~) = - ~ dcp cosn cpef('P) = Re- ~ dcp cosn cpef('P), 

2n -n n 0 

I ( cp) = - i (a sin cp- ~ sin 2cp - scp), (6) 

1 v 2n v 2 Ao ~ - Re ef --= ---eRe f sino 
n -!" nlf"l ' (7) 

o = lmf- 1/2 arg /", 

where f and f" are the values of the function f(cp) 
and of its second derivative at the saddle point 
cp0 = 1/J + iE. The position of the latter is deter­
mined from the equations 

a . {a 
cos cpo = 8~ - t ~ , a= X 2 [~- ~- ( ~ \121. (8) 

4~ 2 \rs~ J 

The parameters 1/J and E are related to a and 
{3, s via the equations 

and define f and f": 

r sh e ch e ( 1 + 2 cos2 'ljJ) ] 
Ref= -s e- , 

L 1 + 2 cos2 'ljJ + 2 sh2 e 

[ sin'ljlcos'ljl(1+2c.h2 e)J Im/= s 'ljl- , 
1+2cos2 '1jl+2sh2 E (10) 

4s sin 'ljl:sh e 
f" = - (sin 'ljJ ch e + i cos 'ljJ sh e) . 

1 + 2 cos2 1jJ + 2 sh2 e 

We thus obtain for the functions A3 and Ai - AoA2 
occuring in the expression (3) 

eZRef 

Ao2 = n: If' I ( 1 - cos 2o), (11) 

2ae2Ref 
A 12 - AoA2 - (12) 

- n:x21 !" I . 
Although the expressions of these functions have 

been considerably simplified, the complicated de­
pendence of f and f" on u and cp still makes it im­
possible to carry out the integration over these lat­
ter variables in (3). However, it will become clear 
in the sequel that the most important contribution 
to the total probability (3) is given by those terms 
of the sum over s, and those angles cp, for which 

(s-s0)/2so~1, 

(13) 

At the same time, it is clear from the expressions 
(5), (9), and (10) that if one disregards the common 
multiplier s, then the functions f and f" depend on 
u, s, and s0 only through the combination 62, 

1:( s ) s-so fJ2 =--:- ---1 :::::;;;.~ 
2 sou . 2so 

which is smaller than (s- s 0)/2s0 for all values of 
u in the interval 1 ~ u ~ s/s0, and therefore is ef-
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fectively a small quantity. Expanding f and f" in 
terms of the parameter o2, we obtain 

2 Ref=- 2s{Arth t ___ t __ 2rFt(-t-2-- sin2cp) 
1 + t 2 1 + t2 

+b•[ t3(9+2t2+t') -t(3+t4):sin2cp 
2(1+t2) 

(1-t2)2(1+t2). 4 J } + sm cp + ... , 
2t 

{ 
:rt cos cp 

2Imf=2s --4()-= 
2 -.'1 + t2 

(14) 

+2b3 y1+ti[ 3 -t2 + 2-t2 cos2cp]coscp+ ... }, 
1 + t2 3 

I II I 4st II ,, 2 f = 1 + t2 + ... , arg f = :rt + bt r 1 + t cos cp + ... , 

where t =tanh E Is = so = (1 + x2) - 1/ 2 , and the dots 

denote terms of the order o2 compared to the smal­
lest terms written out. 

Substituting these expansions in the expressions 
(11) and (12} for the functions A5 and Ai- A 0A2, we 
note that in the effective domain of s and cp we can 
retain only the zero order and quadratic terms with 
respect to o in the expansion of 2Ref, since the re­
maining terms are of the order so4t 3 ~ o2« 1. In 
the expansions of If" I and arg f" it is sufficient to 
retain the first terms. In 21m f the first two terms 
suffice only if so3 « 1, a condition which is not sat­
isfied if x3 ~ K - 1/ 2 » 1. Therefore we retain 21m f 
unexpanded. The oscillating term cos 2o, which 
contains 21m f, leads to rapid oscillations of the 
distribution with respect to cos cp, with oscillation 
frequency ~ 8so(1 + t 2)-112, and will be essential 
only in the case in which the solution with respect 
to cp is obtained to an accuracy 
Acp .:S (1 + t 2) 112 /Sso sin cp. Therefore its contribu­
tion to the total probability is negligibly small, with 
the exception of values of s lying very close to the 
threshold, when so.$ 1. As a result we obtain 

Wu = e2m2n 2 + x2 exp{- 2so(Arsh~- -.'1 + x2 )} 
8:n2Zo s0 l' 1 + x2 x 2 + x2 

XG(x,s-so), 

{ 2~ } 
G(x, ~) = exp - -.'1 + x2(2 + x2) (15) 

r '{ 11x2 sin2 e } ( sin2 e ) X J dcosSexp - Io 11=- , 
0 -.'1 + x2(2 + x2) y1 + x2 

W.L= 2W11 • 

Here I0(z) is the modified Bessel function, which 
appears as a result of the integration with respect 
to cp. 

We note that () and u are related as follows 

U = ( 1 - S S So cos2 6 ) -1 

and () is the angle between k and q' in the center­
of-mass system. Thus the integrand in (15) is the 
differential distribution with respect to e. For 
x « 1, when the particles are concentrated near the 
plane (k, q), another representation of G(x, A) is 
useful, namely a representation which is obtained 
from (15) by replacing (), cp by the variables e'. cp', 
where e' is the angle between q' and k x q, and cp' 
is the angle between the planes (k x q, q') and 
(k x q, k) in the center-of-mass system: 

~ 1 

G ( x, ~) = exp{- --------,--)...._____} ~ d cos 8' 
' y1+x2(2+x2) 0 

{ 11(3+2x2)cos28'} ( 11sin28' \ 
X exp - / 0 I. 

y1 + x2(2 + x2) \ -.'1+ x2(2 + x2) J 
(16) 

The function G(x, A) is slowly varying with re­
spect to s, as compared to the exponential function. 
Therefore the s-distribution is peaked at the 
threshold and decays with the increase of s accord­
ing to an exponential law, the width of the distribu­
tion being 

(s-so)eff ""_!_(ArshJ.- 1 )-1 
2 x 'f1+ x2 

\ 

..!_ln-12_( 1- ~x2ln-12_ + ... ) , 
2 ex 4 ex 

~ x3( 1 + 1~x2+ ... ), x~1 (17) 

In the case x « 1 only one or two terms, closest 
to s 0 (for very small s- s 0}, are essential in (15), 
since 

_ e2m2n 1 1/ ~( x )2s Wu.---- ---
4:rt2lo so so 2 

X exp{ 2s- so- s;x2} G (0, s- s0); ( 15') 

it is assumed that sx4 « 1, (s - s0)x2 « 1. The 
factor G(O, s - s0) ~ 1. 

For x » 1 

G (x, 11) ~ : V ~: e-Mx'fo( : 3 ) E2( V 2:) , (16') 

2 z 

E2 (z} = ,,- ~ e-x'dx, 
f :rt 0 

where E2 (z) is the error function. Then we obtain 

for the s-distribution and the total probability 
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Wlls =WII~exp{-5(s- so) }Io(_!_-. so \)Ell/ ~(s- so)), 
3x3 3x3 x3 } x 

W11 = 3~~:2n c: )"'exp{- 3~ ( 1- 1~x2) }, W j_s = 2Wil•· 

(15 11 ) 

It is assumed that x4K » 1. For x2K » 1 the ex­
pression (15") coincides with the formula obtained 
by Reiss, [ 2J cf. also [aJ. 

For the production of a pair of scalar particles 
the probability wll is given by the expression (15), 
divided by two, whereas W 1 is given by the same 
expression (15), but with a function G(x, ~) differ­
ing from (16) by the additional factor 

( x2 ) s- s0 1 
1 +- -- cos2 8' = - 't2 

2 2so 2 

in the integrand. Therefore in the production of 
scalar pairs w1 is much smaller than w11 : 

W {so-1, x~1 
W_L ~ II X, x~{ 

Thus, the probability W 1 for the production of a 
positron-electron pair is of the same order as w11 

due to the spin of the electron or positron, which in 
this case forms a triplet state with zero projection 
of the total angular momentum along the direction 
of the electric field. 

3. PAIR PRODUCTION BY A PHOTON IN THE 
FIELD OF A CIRCULARLY POLARIZED 
WAVE 

In this case we consider the pair production 
probability averaged over the polarization of the 
incident photon (cf. Eq. (11) in [ SJ ): 

2 2 sis, d 
W(x, x) = _e _m_n ~ ~ --==u=={ fs2(z) 

8:rtlo ufu(u -1) 
s>so 1 

+x2(2u-1) [(;2 -1)J.2(z)+Js'2(z) ]}. 
(18) 

Here J s (z) is a Bessel function, s0 =- 2mV (kl) 
= 2x(1 + x2)/K, 

z = (4x2Y1 + x2 I x)fu(s I so-u), 

and the remaining notations are the same as in (3). 
In the same manner as in Sec. 2, we consider the 

case s0 » (1 + x 2) 3/ 2 , i.e., pair production due to the 
the absorption of a large number of photons from 
the wave. Using in place of the Bessel functions 
their asymptotic expressions3> 

3 )These expressions are valid if s tanh 3a » 1, which is 
equivalent to the condition (2). 

e-s(a-tha) 

ls(z) = (2nsth a)'h ' 

s [( 1 )/ 2sou ( 2sou )J'h chu=-= 1+- - 2-- , 
z . x2 s s 

(19) 

we obtain in this case 
sis, 

e2m2n r du 1+2x2 (2u-1)sh2a w = -- L; J - e-2s(a-tha). . 

16:rt2la 'ayu(u-1) stha 
,__,>so 1 

(20) 

The differential distribution in u is essentially 
determined by the function ef <u, s >, where 

( 2sou) 
f(u, s) == sg\ -- =- 2s(a- th a), 

\ s 

[ 1+x-2]'/, 
cha= ---

t(2-t) 

2sou 
t=--. 

s 

This function has a sharp maximum for u = u0 

= s/2s0, with a width 

(21) 

( 2 )'/, (1'1 + x2 )';, 
(u-uo)eff ~ l/u-''l ~, So ~1. (22) 

The maximum is situated in the physical region 
1 ~ u ~ s/s0 of the variable u if s/2s0 > 1, and 
is outside this region if s/2s0 < 1. In the latter 
case the u-distribution attains a maximum for 
u=l. 

It will be shown below that for x2 :S K-i the 
most important values of s are situated in the in­
terval 

1 s-2so (1'1+x2\'f, 
--<--~ I ~1 

2 2so , so I '~ 
(23) 

these are the values for which the maximum of the 
distribution with respect to u is either completely 
situated to the left of the physical region 1 ~ u 
~ s/s0, or is completely inside it (within the limits 
of its width). In this case f(u, s) can be approxi­
mated by the expansion around u = 1: 

f(u, s) = /{1, s) + fu' (1, s) (u- 1) + 1/2/ u" (1, s) (u- 1)2. 

Making use of this expansion in (20), and taking 
it into account that (u- 1)eff « 1, we obtain the 
distribution in s: 

_ e2m2n [ 2 (s- so) ]'/, 
w.--~~ 

16:rt1':rtl0 · s3 

X (1+ 2x2 sh2 a) exp {f(s) + y2/4} 
____.:__ ___ ,.._:__....::........:~---'-"--~,...:.. D -'/, ( y) ' ( 24) 
{2s th3 a[ (2s0/ s-1)2 + th2 a]}'i• 

valid for all s situated within the interval (23). 
Here 

f(s) == /(1, s) =- 2s(a- th a), 

ch a = [ ( 1 + X! ) / 2: 0 
( 2 - ~So ) r , 
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(25) 

D-1/2 (y) is the parabolic cylinder function with the 
asymptotic behavior 

(26) 

and remains finite at the origin. 
The characteristic properties of the distribution 

(24) with respect to s are determined by the expo­
nential function ef<s>, since for the most important 
values of s the function exp (y2/4)D_1; 2(y) varies 
slowly compared with ef<s>. Therefore the distri­
bution (24) can be simplified in the essential region, 
by expanding f(s) and y(s) around the point s = sc 
where f(s) has a maximum 

f(s) ~ f(sc) + 1/J" (sc) (s- Sc) 2, (27) 

y(s) ~ l[(Sc) + y' (sc) (s- Sc), 

and all other quantities can be taken at the point 
s = sc (note that the second term in y(s) is im­
portant only for x2 ~ K-1 » 1). 

Thus the s-distribution has a sharp maximum 
at s = sc, where f' (sc) = 0, or 

th ac = 2 _ 2so , 
ac Sc 

[( 1 )/2so ( 2so )]''• ch ac = 1 + 7z --;: 2 - ~ , 

_ { so(1 + ln-1x-2 + ... ), lnx-2~ 1 
Sc-

2s0 ( 1 - 1/3x2 + ... ) , x ~ 1 

and falls off to both sides of the maximum as a 
gaussian of width (for the transitional situation 
when x2 "' K - 1, cf. infra) 

( ) [ . Sc th a,. ]''• 
S - Sc eff '"""' 

( ac/th ac - 1) 2 + ac2 

= { )'2so/ln x-2, ln x-2 ~ ~ 
l'2sox, x~i 

(28) 

(29) 

This width is small compared to s0, so that in units 
of s0 the distribution is a sharp peak situated be­
tween the threshold and twice the value of the 
threshold: s0 < sc < 2s0• 

On the other hand for all x (with the exception 
of exponentially small ones, when ln x-2 ~ (2s0) 1/2 

» 1) the width of the distribution is large com­
pared to one. Therefore the pair production is 
achieved via the absorption of a large number of 
photons exceeding the number necessary for over­
coming the threshold. 

In this case the summation of expressions (24) 
can be replaced by an integration, which is effected 
by the formula 

f dy exp { - (y- Yc)2 + y2 }D-v, (y) 
-00 2~ 4 

(30) 

with the notation J1. = y~2 1 f" 1-1. Taking into account 
further that y c (1 - J1. ) -1/2 » 1, we obtain, finally 

W = e2m2n (1 + 2x2 sh2 ac)exp {- 2sc(ac- thac)} 
16nlo Sc th ac . 

In the case x2 ~ K - 1 » 1 the main contribution 
is given by values of s situated near the point 2so 
in the interval 

( l'1 + x2 )''• s- 2s0 - ;G---;Gx. 
so 2so 

(32) 

For these s the maximum of the distribution in 
u is either completely inside the physical region 
1 :::: u:::: s/so, or is outside it at a distance not ex­
ceeding its width. In this case, and also for all 
s > 2so it is natural to approximate the function 
f(u, s) by an expansion about the point u = llo 
= s/s0: 

f(u, s) ~ f(uo, s) + ifJu" (uo, s) (u- uo)2. 

Then we obtain from (20) the distribution 

W _ e2m2n so tl'1 + x2 )'''( s- s0 ) 
s- 1 1+2---

4n l'nlo s \ 2s s0 

X exp { -2s(Arsh_!_ __ 1 )+ (s- 2so) 2 } 
x )'1 + x2 2q'1 + x2 

X D •A(- 2(s-2so) ) (33) 
-' (2sl'1 + x2)'/, '· 

valid for all s satisfying the left inequality (32), 
independently of x. For x2 ~ K-1 » 1, it follows: 

W = 3e2m2n ( x )''• { 4so ( 9 ) } 
Bn l'nlo \ 4so exp - 3x3 1 - 10x2 . 

"" { 2(s- 2so) (s- 2so)2 } X L.J exp - - __:_ _ ___:..:_ 
s>so 3x3 4soX 

X D-v,( _ s-2so ). 
l'sox 

(34) 

Taking into account the asymptotic properties 
(26) of the function D _1; 2 (y), it is easy to see that 
the s-distribution has a maximum near the point 
s = 2s0 and drops off to the left of the maximum as 
a gaussian, and to the right.as an ordinary exponen­
tial, with the respective widths 

( s - 2so ) { -l' x/2so ~ - x/2x -y;,, on the left 
2s-o- eff '"""' 3x3/4so ~ 3x/8, on the right (35) 

Thus, for x(K)1/ 2 ~ 1, the left tail of this distribu­
tion becomes narrower than the right tail, and for 
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x2 » K-1 the distribution starts effectively at the 
point s = 2s0 with a sharp jump, after which it de­
cays in a relatively slow manner, resembling the s­
distribution in a linearly polarized wave. In the 
latter case, however, the distribution starts at 
s = s0• 

We note that in the region 1 « x2 .$ K-1 the dis­
tributions (24) and (33) overlap and yield identical 
results. 

Since (s - 2s0)eff ~ x3 » 1, a replacement of the 
sum in (34) by an integral, with use of the formula 

r , ,;~ 
J dy ezy-y /4fl_y, (y) = V -;: ez'IZ, z>O, (36) 

-00 

yields 

(37) 

This formula is valid for K « 1, x2 K ~ 1, and for 
x2 K » 1 it goes over into the pair production prob­
ability in a weak constant crossed field, cf. [ 3J. 

The preceding discussion shows that the s-dis­
tributions are essentially different in linearly and 
circularly polarized waves. This difference is due 
to the fact that in absorbing a large number (s) of 
photons from a circularly polarized wave, the elec­
tron-positron pair acquires a large angular momen­
tum f':j s (both total and orbital angular momentum), 
and in order for its wave function to be significantly 
different from zero, a relatively large relative mo­
mentum becomes necessary, viz. qrel = 2q 
= 2m*((s- s0)/s0) 1/ 2 = 2(s(s- s0)) 1/ 2• Therefore it 
is clear that the number of photons absorbed above 
threshold must be large and turns out to be of the 
order of s0, whereas the momentum q is of the 
order of m*. For x » 1 the particles are emitted 
near the plane perpendicular to k, with an impact 

The trajectories of the motions of the 
electron and of the positron in the center­
of-mass system, for q/ea = 1, or x » 1, 
s = 2s 0 (cycloids). For arbitrary q/ea the 
electron and the positron move along tro­
choids with average momenta q and -q. 

parameter 2r (cf. the figure), where r = ea/m*w' 
f':j 1/ w' is the orbit radius ( cf. [ 7J, p. 145). Since 
the frequency w' in the system in which the elec­
tron is on the average at rest (i.e., q = 0) is con­
nected with the frequency w in the center-of-mass 
system by means of the relation w' = w(s/s0) 112, it 
follows that r = w -\s0/s)1/ 2, and the orbital mo­
mentum of the pair is l = 2rq = 2(s0(s- s0)) 1/ 2. On 
the other hand l should equal s, hence s = 2s0-the 
value of the position of the maximum in the pair 
production probability which was derived above. 

4. DIFFERENTIAL DISTRIBUTIONS IN PAIR 
PRODUCTION BY A PHOTON AND IN 
PHOTON EMISSION BY AN ELECTRON IN A 
CONSTANT FIELD 

In [ 3J the following expression was derived for 
the probability of pair production by a photon in a 
constant crossed field: 

e2m2n f du (2u )'is 
F 11,.L(x)=--J , _ 

4:rt2l0 1 u l'u(u- 1) x 
00 

X~ dt{(1+1+2T2)<D2 (y)+(1+-r2) 

X (2u- 1 + 1){<D2 + y-1<D'2]}, 

where <P(y) is the Airy function, 
y = (2u/K)213 (1 + il); the variables u, T are the 
same as in (3), i.e., 

u = x2/4xx', T =- eF,.v* p,.' pv/m4x, 

X= ey(F,.vPv)2/m3 , X= eyF,.vlv) 2/m3 , 

(38) 

p and p' are the momenta (more precisely, the 
quantum numbers, cf. [ 3]) of the electron and posi­
tron; n is the number density of incident photons, 
and lJ-L their momentum. The conservation laws im­
ply that X + x' = K. The integrand in this formula is 
the probability distribution in the variables u and 
T, and it can be denoted by dF /du dT. The integral 
of this function with respect to T obviously yields 
the distribution in u. This distribution can be 
brought to a relatively simple form if one makes 
use of the relation 

<D2(y) + _!_ <D'Z(y) = _!_~ <D2(y) (39) 
y 2y dy2 

and changes the variable T into t = (2u/K) 213T 2: 

dFu,.L e2m2n 1 { "f dt ( 2 t )mz( + t) --=--- J-=1+1±- 'V a 
du 4:rt2lo uyu(u-1) 0 it a 

2u-1+1 d2 r dt } + J --=<D2 (a + t) ; 
2a da2 

0 1/t 

here a = (2u/K)213• Making use of the reduction 
formula 

(40) 
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00 

~ dtt"<l>2(a+t)= a (~-4a) 
0 2(2a+ 1) da2 

00 

X ~ dt t«-1<1>2 (a + t) ( 41) 
0 

and of the integral transform[ 81 

r dt -v"it -r 
J -=.<1>2(a+t)=- J dy<l>(y). (42) 
0 l't 2 "' 2 a 

we obtain from (40) the distribution in u in the 
simple form 

dF11,_L(x,u) = e2m2n 1 {1 <l>(y)dy 
du Sn l':n: lo uiu(u -1) 

z 

-(4u)'la .z-- . 
X 

(43) 

Integrating this distribution with respect to u, 
making use of two integrations by parts in the first 
term, we obtain the total probability 

e2m2n r 8u + 1 + 3 
Fu, .L (X) = - X J dz <1>' ( z), 

64:n:l':n: lo ,1 l'z uiu(u -1) 
(41><) 3 

1 'I u=-xz •. 
4 

(44) 

In distinction from (38), the integrand of this ex­
pression is no longer a distribution in u, and does 
not coincide with (43). It is easy to derive from the 
integral (44) the limiting cases K « 1 and K » 1, 
given in [ 31 • 

In order to obtain the pair production probabili­
ties for scalar particles it is necessary to delete 
the terms 2u and 4u, respectively in the second 
terms in the curly brackets of (38) and (43) and in 
(44) it is necessary to subtract 12u from the numer­
ator, after which the resulting expressions should 
be multiplied by - 1/ 2• 

It was shown in [ 31 that the probability of emis­
sion of a photon by an electron in a constant crossed 
field is 

(45) 

Here 

y = (u/2x)'l•(1 + ,;2), u = x(x- x)-t, 

X= el'(F"vPv} 2 / m3, X= el'(F"vkv') 2 / m3, 

k' is the momentum of the emitted photon, p and p' 
are the momenta of the electron before and after 
the emission process, c is the ratio of the numer-

ical density of incident electrons to their energy. 
The integrand in (45) gives the probability distri­
bution of the variables u, T. 

With the aid of Eqs. (39) and (42) the integral 
over T in ( 45), i.e., the distribution of u, can be 
represented in the form 

dF(x, u) = _ e2m2c 1 { r <l>(y)dy 
du 4:n:l'n (1 + u) 2 z 

+~( 1 + u2 )<t>'(z)}, (46) 
z 2(1+u) 

The integral of this distribution yields the total 
emission probability 

e2m2c r 5 + 1u + 5u2 
F(x}=----='x J dz--=----<l>'(z), u=xz'l•.(47) 

8nl':n: 0 l'z(1+u)3 

Such a representation of F (X) was obtained earlier 
by Gol 'dman. [ 91 We note that the integrand in ( 4 7) 
is not a probability distribution of u (in disti'nction 
from (45)) and does not coincide with (46). 

The radiation intensity produced by one particle 
differs from (45) by the substitution c - 1 and by 
the presence of the additional factor u(1 + u) - 1 in 
the integrand (cf. [ 31 , Eq. (30}). Therefore the u­
distribution has the form 

dl(x, u) = _ e2m2 u { ~ <l>(y)dy 
du 4:n:l'n(1+u) 3 z 

+ ~( 1 + uz ) <1>' ( z) } ' 
·z 2(1+u) 

-(u )'1, 
Z-- • 

X 

(48) 

This expression is a quantum generalization of the 
well-known classical formula for the spectral dis­
tribution of radiation of an ultrarelativistic charged 
particle in a magnetic field (cf. [ 11 , Eq. (7 4, 11)). 
The expression is rigorously valid for radiation by 
an electron in a constant crossed field, but when 
conditions (50) (below) are satisfied, it is also valid 
for the emission of radiation by an electron in an 
arbitrary constant field, in particular, in a magnetic 
field, if F f.J.V in the invariant variables, u, X is un­
derstood to be the intensity of the corresponding 
field. 

Integrating ( 48) with respect to u (again making 
use of two integrations by parts in the first term), 
we obtain 

e2m2x2 r 4 + 5u + 4u2 
J(x)= ---- J dzz. <l>'(z), u = xz'" .. (49) 

8:n:-y:n: o (1 + u)4 

From (47), (49) it is easy to derive expansions 
of the quantities F(X) and I( X) with respect to the 
parameter X , which were obtained in [ 31 • 
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We note that the term u2/2(1 + u) in the second 
term of the expressions (45), (46), and (48) is a 
consequence of the electron spin, so that the ex­
pressions for the probability and intensity of radia­
tion by a scalar particle differ from the corre­
sponding expressions (45), (46), and (48) by the ab­
sence of this factor. In order to obtain the expres­
sions for the probability and intensity of radiation 
by a scalar particle, one must subtract 3u2 from 
the numerators of Eqs. (47), (49). 

We note furthe~ that the parameters x. x'' K 

have a quantum character, X' x' ~ ti, K ~ ti 2 , so that 
u = K/X' = K(X - K) - 1 involves the Planck constant. 
At the same time, T does not contain ti. Therefore 
the transition to the classical expressions in Eqs. 
(45)-(49) can be effected by neglecting K compared 
to x, i.e., by replacing u/x by K/X and neglecting 
u compared to 1. 

In conclusion we discuss the relation of the dif­
ferential probability of a process in a crossed field 
to the corresponding probability in an arbitrary 
constant field. In [ 31 (cf. also [ 101 ) arguments were 
presented according to which the total probability 
W( X, f, g) of a process produced by a particle of 
4-momentum p/J. in an arbitrary constant field 
F ll v• a probability that depends on the invariants 

&F11v"F11v 
g= 

m~ 

can be approximated by the probability W( x, 0, 0) 
of the same process in a crossed field, with F ll v 
in X to be interpreted as the corresponding field 
strength, provided the following conditions 

(50) 

are satisfied. For similar reasons, if the condi­
tions (50) hold, the invariant expressions for the 
differential probabilities in a crossed field are also 
good approximations to the corresponding differen­
tial probabilities in an arbitrary constant field, in 
the effective range of the variables u, T which 
gives the main contribution to the total probability, 
provided F!J.v is interpreted as the corresponding 
field strength tensor. An essential feature here is 
the fact that the differential probabilities are in­
variants. 

The differential intensity of radiation is not an 
invariant (cf. [ 71 , p. 215). However the differential 
intensity emitted by an electron in a constant 
crossed field 

dl e2m2 u(u/2rJ''•{ ( u2 ) 
dud't= 2n2 (1+u)3-CI>2(y)+(i+'t2) i+2(1+u) 

X (C1>2 + y-tci>'2J } (51) 

is an invariant, since an integration has been car­
ried out over one of the three variables (viz. 1/J, 
cf. [ 3• 111 ) determining the differential intensity. 
Therefore, if conditions (50) hold, the differential 
intensity of the radiation emitted by a particle in an 
arbitrary constant field, and taken with respect to 
the variables u and T only, will also be an invari­
ant quantity, and will be given by Eqs. (51), (48) 
in the effective region of those variables. Thus, it 
is easy to see that the differential intensity of radi­
ation emitted by a particle in a magnetic field, inte­
grated with respect to the azimuthal angle in the 
reference system in which the particle is on the 
average at rest (for a classical particle this in­
tensity is determined by the well-known Schott for­
mula, cf. [ 71 , Eq. (74, 8)) becomes an invariant in 
the ultrarelativistic limit, i.e., for x2 » f. There­
fore, if one interprets F ll v in the quantum formula 
( 48) as the magnetic field, this formula will become 
in the classical ultrarelativistic limit identical to 
Eq. (74.11) in [7 1 , a formula which determines the 
spectral distribution of radiation of a particle in a 
magnetic field. 
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