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Two-dimensional flow around a thin body in a weakly dispersive medium is considered. The 
main equations describing the flow can be reduced to the Korteveg-de Vries equation. A 
similarity law is established. The solution is investigated in the linear approximation. Solu­
tions of the Korteveg-de Vries equation are found which describe the flow for zero angles of 
attack and for values of the similarity parameter u smaller than some critical number a-0 

(a-0 ~ 3). For u « 1 the solutions go over to those of the linearized equations. It is shown that 
for u < a-0 the structure of the flow remains qualitatively similar to that which is derived in 
the linear approximation. Solitons (solitary stationary waves) arise in the flow when u > a-0• 

Their number increases with increase of u. 

1. INTRODUCTION 

THE flow around bodies placed in media in which 
the phase velocity of the waves does not coincide 
with the group velocity has a great number of dis­
tinguishing features. In spite of the fact that prob­
lems of this type are outwardly different for differ­
ent dispersive media (motion of a body in a plasma, 
on the surface of water, etc.), certain common laws 
exist in all these cases and are determined by a 
combination of nonlinear and dispersion effects. 

It is natural to begin an investigation of the 
qualitative features of such phenomena with prob­
lems in which the nonlinear and dispersive terms 
in the fundamental equations are sufficiently small. 
The present paper is devoted to two-dimensional 
stationary flow around bodies under such conditions. 
It is related with respect to its results and method 
to some earlier papers[1•2J. 

As in [t J, we shall assume that the dispersion 
equation can be represented in the form of a series 
in odd powers of k: 

w = c0k(1 + 62k2 + ... ), (1.1) 

( c0 is the phase velocity as k - 0 and o is the so­
called "dispersion length") in which it is sufficient 
to retain only the terms that have been written out. 
To this end it is necessary first that the charac­
teristic dimensions of the body A. be large compared 
with the dispersion length. Certain additional limi­
tations on the region of applicability of the obtained 
results are given in Sec. 5 of this paper. Another 

small parameter we shall use is the quantity v, 
which characterizes the relative deviation from the 
equilibrium state of the medium (for example, 
(n- n0)1n0, where n is the plasma density, or 
(h- h0)1h0, where h is the height of the liquid in the 
case of gravitational-capillary surface waves, etc.). 
Thus, we assume henceforth that 

e = (61~.)2~ 1, v ~ 1, (1. 2) 

and we shall henceforth retain in the equations the 
nonlinear and dispersion terms only in the lowest 
order in E and v (terms of order Ev2 will be neglec­
ted here). 

We now consider several concrete examples. 
A. Two-dimensional plasma motions transverse 

to a magnetic field. Let the magnetic field be par­
allel to the z axis, and let the velocities be parallel 
to the xy plane and let all the quantities be depen­
dent only on xy. It is assumed also that H2187r » p 
and that the characteristic lengths exceed the Debye 
radius. The latter assumption leads to the quasi­
neutrality condition ne ~ ni = n. Eliminating the 
electric field E from the equations* 

m;, edv;,el dt = ±eE + (e I c) [v;eH], oH I at= -c rotE 

and using the quasineutrality condition, we obtain 
the fundamental equations for two-dimensional mo­
tion of the plasma across a magnetic field H in the 
form 
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dV/dt=oV/ot+ (VV)V=-(8nmn)-1 V.H2, (1.3) 

oH m8 c dv8 m;c dV 
-at= -div(HV)+-e-rot----;,u--;rotdt, (1.4) 

oH 4nne oH 4nne 
-=--(Vx-Vex), -=---(Vy-Vey), (1.5) 

oy c OX c 

onjot + divnV =0,, (1.6) 

where we have introduced the plasma "mass" 
velocity 

V = (m;v; + meve)/m, m = m; +me 

and neglected terms of order me/mi compared with 
unity. 

The last two terms in (1.4) are "dispersive" 
(they lead to a dependence of the phase velocity of 
the linear waves on k). If these are neglected, then 
Eqs. (1.3)-(1.6) are transformed into the magneto­
hydrodynamics equations, and from (1.4) and (1.6) 
we get the condition for the "freezing-in" of the 
magnetic field: n/n0 = H/H0, where n0 and H0 are 
the unperturbed values of the density and of the 
field (at x = -oo). Inasmuch as Eqs. (1.3) and (1.6) 
are written for plasma motion transverse to the 
magnetic field, they coincide formally with the 
gasdynamics equations with adiabatic exponent 
'Y = 2 if the dispersion term is discarded. The 
linear perturbations propagate in this case at a 
speed cA = (47rn0m)-112H0• 

If we take into account the dispersive terms, 
then no freezing-in takes place, but if these terms 
are sufficiently small, then deviations from the 
freezing-in can also be regarded as small (they can 
be readily obtained by successive approximations). 
With this, it can be readily verified that the last 
term in ( 1. 4) is smaller than the principal term by 
a factor vE4(m/me) 112, and we assume that it can 
be neglected. Neglecting also terms of order v2E 

and going over to stationary flow in a reference 
frame in which the body placed in the stream is at 
rest, we obtain the fundamental equations in the 
form 

(VV)V(x,y) = -(cA2 /2Holl)Vlf2, (1.7) 

V (HV) = 262llod oH /ox, (1.8) 

V-+Vo, H-+Ho (x-+-oo), (1.9) 

(1.10) 

(the quantity o is defined such as to coincide with 
the dispersion length in the linear dispersion rela­
tion (1.1); with this, c0 = cA). 

It follows from (1. 7) and the conditions (1.9) that 

the flow under consideration is potential, i.e., 

V=VqJ+Vo, !Jl(-oo)=O. (1.11) 

We then obtain for q;, at the assumed degree of ac­
curacy, the equation 

rp1111 - (M2 -i)(jlxx- (M/cA) (3!Jlx!Jlxx + 2!py!Jlxy + !J'x!J'yy) 

+262M2 A IJ'xx = 0, (1.12) 

where M = V0/cA is the "Mach number." We note 
that if we put o = 0 in (1.12), we obtain the well­
known expression for the velocity potential of sta­
tionary flow of a compressible gas with adiabatic 
exponent 'Y = 2, accurate to second-order terms 
inclusive (cf. Eq. (106.3) of[3], where they put 
q;- q; + V0x). 

B. Nonlinear ion-sound waves in a plasma with­
out a magnetic field (T e » T i). The dispersion 
equation again takes the form (1.1), where 

co= (T/m;)'h, 62 = D2/2 = T/8ne2n0, T = Te, (1.13) 

i.e., the dispersion length is determined by the 
Debye radius D. Assuming for simplicity that 
Ti = 0, we can write the equations of motion for the 
ions in the form 

ovjot +(vV)v = -(e/md V <I>, ( 1.14) 

onjot + v (nv) = 0, ( 1.15) 

d <I>= 4ne [n0 exp (e<l>/T)- n], ( 1.16) 

where vis the velocity, n the density of the ions, 
n0 = n(- 00). For sufficiently long waves, the left 
side of ( 1.16) will be smaller by a factor E = (D/A.) 2 

than any of the terms on the right side. We can 
therefore solve (1.16) with respect to II> by succes­
sive approximations. Confining ourselves to terms 
of order E, we get 

exp (e<l>/T) ~ n/no+ (T/4ne2n0)A ln (n/no) (1.17) 

Neglecting terms of order v2E, we get 

eV<l> = TV ~ exp ( e<l> \]exp (- e<l>) ~ _!_ Vn + !_D2V !!..n. 
L T T n n0 

(1.18) 

Substituting this in (1.14), we have 

ov/&t+ (vV)v= -(c02 /n)Vn-2c0262 V dn/no, (1.19) 

where c0 and o are defined in (1.13). Equations 
(1.19) and ( 1.15) constitute a complete system of 
equations in the approximation under consideration. 
The last term in ( 1.19) is dispersive. If we omit it, 
we obtain the hydrodynamics equations with adia-
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batic exponent 'Y = 1, which describe in the linear 
approximation ion sound without dispersion. 

From ( 1.19) with the condition n(- 00) = const = n0 

it follows that the flow is potential. Going over to a 
reference frame in which the body is at rest, and 
putting v = V0 + Vcp, we obtain for planar flow 
(M = V01c0): 

(jly11 - (M2 -1)<pxx -(Mico)[(3- M2 )<px(jlxx 
(1. 20) 

(where we have again confined ourselves only to the 
principal nonlinear and dispersive terms, of order 
v2 and EV respectively). 

C. Let us consider, finally, the last example­
gravitational waves on the surface of a liquid. The 
depth of the unperturbed liquid is here the length 
parameter defining the dispersion. When E = (h01A.) 2 

« 1 the dispersion equation again takes the form 
( 1.1), where 

(1.21) 

Expanding the exact equations for the surface waves 
(see, for example, [4]) in powers of v = (h- h0) lho 
and E = (hiA.) 2, and neglecting terms of order v3, E2, 

and v2E, we get 

ovlot+(vV)v+ V(PoiP +gh)= 0, (1. 22) 

fJhliJt + div hv + (ho3l3) ~ divv ::2 0, (1. 23) 

where Po is the pressure on the surface of the liq­
uid, p is the density (the liquid is incompressible), 
and v(x, y) is the horizontal component of the veloc­
ity (parallel to the xy plane). We shall henceforth 
assume that Po= const, so that Vp0lp = 0. The last 
term in (1.23) is the dispersive one and leads to the 
second term of ( 1.1) . If we neglect this term, we 
obtain the equations for shallow water, which, as is 
well known, are equivalent to two-dimensional 
hydrodynamics with co= 2[3•4]. If h(-oo) = h0, the 
flow is potential. Going over to a reference frame 
in which the body is at rest, and the liquid has at 
infinity a velocity V0, and putting V = V0 + Vcp, we 
obtain, at the same accuracy as in the preceding 
cases, 

(j)yy- (J112 -1)<pxx- (Mico) (3<px(jlxx + 2<py(j)xy 
+'(jlx(jlyy)+ 2t'12 ~2qJ = 0. (1.24) 

2. FUNDAMENTAL EQUATIONS 

Thus, by considering the problem of stationary 
two-dimensional flow around a body in three differ­
ent dispersive media, we obtain, in the lowest ap­
proximation in the nonlinearity and in the disper­
sion, the very similar equations (1.12), (1.20), and 

(1.24) for the velocity potential. It is easy to verify 
that they can be represented at the assumed degree 
of accuracy, in the unified form. 

(j)yy -(M2 -f)<pxx- (Mico) {[2 + M2 (y -1)]<p:x:(jlxx 
+ 2<py(j)xy}+ 2SM462(jlxxxx = 0, (2.1) 

where M = V01c0 is the Mach number, c0 the phase 
velocity of the waves in the linear approximation as 
k- 0, o the dispersion length, S = ±1 depending on 
the sign used in the dispersion equation ( 1.1), and 
'Y is the ''adiabatic exponent'' of the corresponding 
hydrodynamics. In deriving (2.1) from the afore­
mentioned Eqs. (1.12), (1.20), and (1.24) we made 
use of the fact that at the assumed accuracy it is 
possible to replace CfJyy in the nonlinear and dis­
persive terms by the expression that follows from 
the linearized equation with o = 0, namely cp 
~ (M2 - 1) CfJxx· Equation (2.1) with o = 0 coilcldes, 
accurate to nonlinear terms of second order inclu­
sive, with the equation for the velocity potential in 
two-dimensional flow around a body (see[3], Eq. 
(106. 3)). 

We shall consider in this paper only ''super­
sonic" flow, with M > 1. To be able to neglect the 
nonlinear terms of second and higher orders of 
smallness, it is necessary to stipulate that the body 
in the stream be sufficiently thin, namely 

l/b~M, (2.2) 

where b is the effective thickness and l is the length 
of the body. In addition, the dispersion length o 
must also be small compared with b. The angle of 
attack a must likewise be small. 

We shall henceforth consider Eq. (2.1) subject 
to a boundary condition wherein the normal velocity 
component vanishes on the surface of the body, i.e., 

[(<px + Vo) (b I l)f±' (xI l) - <py]y=bf±(x/l) = 0, (2.3) 

where y = bf± (xll) are the equations of the upper 
and lower lines of the profile of the body, respec­
tively (Fig. 1). 

If there were no dispersion, i.e., o = 0, then, for 
a sufficiently thin body the flows in the regions 
y > 0 and y < 0 would have the form of simple waves 
(accurate to terms of third order in cp[3]), i.e., we 
would have cpy = F ± (u), where 

;4(1:;) 

1«- s ?> • 
f_(i=,) :c 

Vo 
FIG. 1 
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U = <Jlx, (2.4) 

and F±(u) are certain functions which have different 
forms in the upper and lower half-planes. These 
functions satisfy the same system of equations 

[(M2-1) +au] iJu/iJx- [F' (u)- 2 (M/c0)F(u)] iJufiJy = 0, 

(2.5a) 

F' (u)iJufiJx- oufoy = 0, 
a= (M/co)[2 + M2(y -1)], (2. 5b) 

the first of which follows from the relation CfJyy 
= F'(u) au/ By and Eq. (2.1) in which we put o = 0, 
while the second is obtained from CfJxy = CfJyx and 
(2.4). In order for this system to have nontrivial 
solutions for Bu/ ox and Bu/ By, its determinant must 
vanish, from which we get the following equation 
for F(u): 

F'Z- 2(M/c0)F'F- (au+ M2 -1) = 0. 

A solution of this equation, accurate to terms of 
second order in u inclusive, is 

F±(u) = +l'M2- iu + u2M3 (y + 1) / 4l'M2 -1c0, (2.6) 

where the upper and lower signs are taken for the 
half-planes y > 0 andy < 0 respectively. Substitu­
tion of ( 2. 6) in ( 2. 5b) yields the equation 

Uu ±1M2 -1 Ux ± UUxM3 (y +f)/21M2- 1 Co= 0, (2. 7) 

the solution of which describes the aforementioned 
simple waves. 

Let us consider now Eq. (2.1) with o 7- 0. Owing 
to the dispersive term, the quantity CfJy will no lon­
ger be a function of u = cpx only. Instead of this, we 
must put 

<py = F(u) + e\jl(x, y), (2. 8) 

where E = (o/b) 2 « 1 and 1/J(x, y) is a certain func­
tion of order of unity; with this, F(u), as a zeroth­
order term relative to E, is determined as before 
by formula (2.6). To determine 1/J we substitute 
(2.8) in (2.1) and also in the relation CfJyx = CfJxy· 
We then obtain a system of equations for ux and uy, 

(M2 -1 +au) Ux- [F±' (u) - 2(M / co)F±(u) ]uy 
= 2SM462uxxx + e 1M2 - 1 'ilx, (2. 9) 

(2.10) 

which differs from (2. 5) only in that the right sides 
do not vanish. Since its determinant is equal to 
zero, it is not compatible for arbitrary right sides. 
Substitution of (2.6) in (2.9) and elementary mani­
pulations yield a compatibility condition in the form 

(2.11) 

(in the derivation of (2.11) it is necessary to con-

fine oneself to terms of lowest order in u and E). 

Substituting (2.11) in (2.10) we obtain for u the equa­
tion 

Uy ±1M2 -1 Ux + ((y + 1)M3/21M2 - fco] UUx 

(2.12) 

where the sign preceding the radical coincides with 
the sign of y. 

The boundary condition for this equation should 
be taken to be (2.3) in which cpy is replaced by (2.8), 
and F(u) and 1/J are determined respectively by ex­
pressions (2.6) and (2.11), i.e., 

[j±' (x/l) (u + V0) b/l +1M2- 1 u + u2M3 (y + 1) / 4co1M2-1 

+ 2SM462 / l' M2 - 1 U~x] y=bf±(x/l) = 0. (2.13) 

Since we shall henceforth be interested only in ef­
fects due to nonlinear terms in the equations, we 
replace (2.13) by the approximate boundary condi­
tion 

u = + Vob/1M2 -ilf±' (x/Z) (y = + 0), (2 .. 14) 

which is obtained if one omits from (2.13) the terms 
of second and higher order of smallness relative 
to the quantity f~ (x), which is small for a suffi­
ciently thin body. 1> 

We now change over to new (dimensionless) 
variables 

~ = (± l'M2 -1 y- x)/l, 't = y(y + 1)M4b/2(M2 -1)12, 

T] = +u1M2- 1Z / bMco. (2.15) 

Then the fundamental equation (2.12) and the boun­
dary conditions take the form 

'11• + 'll'lls + J.L'Ilm = 0, (2.16) 

'11 ('t, ~ = 00) = 0, (2.18) 

J.L = + 2S621Mz -1/bl(y + 1). ( 2.19) 

Equation (2.16) coincides with the Korteveg-de 
Vries equation, which has already been investigated 
in a number of papers[t,2,5-7]. 

By the same token we have obtained the following 
similarity law: All flows around similar contours 
(i.e., contours defined by identical dimensionless 

1 )The corrections to (2.14) can be obtained by solving 
(2.13) by successive approximations and regarding (2.14) as 
the first approximation. With this, it is sufficient to use the 
first-approximation calculation of the solution increment with 
the second approximation in the boundary condition. 
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functions f±(O) and having identical numbers J1. are 
similar. 

We note also that the similarity parameter J1. is 
connected with the quantity u introduced in[1] by 
the relation 

( 2. 20) 

The quantity u defines the "degree of nonlinearity" 
of the problem: the larger u, the larger the non­
linear effects are compared with the dispersive 
effects, and vice-versa. 

3. LINEAR APPROXIMATION 

We consider first the solution of (2.16) under 
conditions (2.17) and (2.18) in the linear approxi­
mation. Discarding the nonlinear term in (2.16), we 
obtain (see, for example,C2J): 

where 
00 

<D(z) = n-1 ~ cos(u3/3 + uz)du 
0 

is the Airy function, which attenuates exponentially 
as z -- 00 • 

When Jl.T-- 0 we get 7r-t/2(3JJ.T)-tl:l<I>[(3JJ.T)-ti3;J 

-- o(~) and (3.1) goes over into the well-known re­
lation for the linear approximation in ordinary gas 
dynamics (see[3J, Sec. 116). 

Of greatest interest to us is the limiting case of 
sufficiently large T and ~. To obtain the asymptotic 
relations it is convenient to proceed as follows: 
Using the fact that x(g') vanishes when ~' is suffi­
ciently large, we expand <l>(z- z') in (3.1) in powers 
of z'. Then 

11 = n-'/, ~ (-1)~ Pm (3~-t't)-<m+1J/3 <D<mJ(z), 
m. 

111=0 

where 
00 

(3.2) 

z = (3~-tT)-'h £, Pm = ~ 6mx(£)d£. (3.3) 

Using the asymptotic form of the Airy function, we 
obtain for its derivative when lzl » 1 

1 
{ z(2m-1)/4 exp (- ~ z'f,) (z > 0) 

>=::: 2 1 J (-1)mlz I<Zm-1)/t, cos[ 3 1zl'f, + ;( m- z) (z < 0). 

(3.4) 

Substitution of (3.4) in (3.2) leads to a certain 
asymptotic expansion for 17( T, ~), which, say for 

z < 0, takes the form (lzl » 1): 

00 

· ~ Pm 
1']::::::: n-'/, LJ-(3~-t't)-<m+1)/3z(2m-1)/4 

m' m=O 

x cos [ -~ I z I'/, + ~ ( m - -~)] . (3.5) 

This series can be summed by introducing the 
Fourier component x(k) of the function x(O and 
expanding it in powers of k: 

00 00 

X (k) = ~ X(£) exp ( -ik£) d£ = ~ ( -ik) m Pm/m!. (3. 6) 
-oo 

Comparing (3.5) and (3.6), we can easily verify that 
when z < 0 and lzl » 1 we get 

1'] ::::::: /3n2~-tt£!-'i. Re {x (- I_: 1'/') exp i r\.:_ z'/,- n )} . 
\ 3J.!'t . 3 4 

(3. 7) 

Similarly, for z > 0 we get 

1'J::::::: 1 /2(3n2~-tT6)-'il'Xfi(£/3~-tT)'f,] exp (-2/az'h). (3.8) 

(It is assumed here that the Fourier component 
x(k) can be analytically continued in the complex 
plane, which is certainly the case if xm differs 
from zero only in a finite interval of~). 

We see from (3.7) and (3.8) that the function 
71( T, 0 at fixed value of T is a wave packet which 
spreads with increasing T. The width of the packet 
is determined by the size of the interval D.k in 
which the function x(k) is essentially different from 
zero, and by virtue of (3.6) it is inverse to the width 
of the function xW. Thus, D.k ~ 1, and the effective 
width of the packet is of the order of IJJ.riY The 
wavelengths in the packet increase with increasing 
T like (3Jl. T) 113 . 

The criterion for the accuracy of the linear ap­
proximation is 

(3. 9) 

where k( T, 0 and a( T, 0 are the "local" wave 
number and the amplitude of the wave packet (3. 7). 
The quantity s 2, the meaning of which was discussed 
in detail in[t] (see formula (5.12) of[tJ and (3.9)), 
is equal in order of magnitude to the ratio of the 
nonlinear term in the Korteveg-de Vries equation 
to the dispersive term. It follows from (3. 7) that 

(3.10) 

Substitution of these expressions in (3.9) yields 

2 )It follows therefore that in order for expression (3. 7) to 
describe a sufficiently large part of the packet, it is neces­
sary that the values g"' 3w lie within the region of applicabil­
ity of (3.7). This yields (3w)2/3 » 1. 
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(3.11) 

Let us consider now the "motion" of a point with 
a constant oscillation phase, for example, the crest 
of a wave in the packet. The equation of motion has, 
according to (3. 7), the form z = const or ~ 
= const (t-t T) 113• Substituting this in ( 3 .11) we get the 
dependence of s 2 on the "time" T for a point with 
fixed phase: 

( 3.12) 

k = const(!l-r)-'h. (3.13) 

Substituting (3.13) in (3.6), and the latter in (3.12), 
we obtain the following asymptotic expression for 
s(T) when ITI » 1 

(3.14) 

where Pr is the first nonzero moment of the func­
tion x(O (i.e., Pn = 0 (n < r), Pr >"0). In particular, 
if 

00 

Po= ~ 1'](0, ~)d£ 7'= 0, (3.15) 

then s - oo as T- 00 , i.e., the nonlinear effects be­
come significant at sufficiently large T, no matter 
how small the initial value of 11· 

Starting from the results of numerical integra­
tion of the Korteveg-de Vries equation [1 J , we can 
propose that these nonlinear effects should become 
manifest in the formation of solitons-solitary sta­
tionary waves-at sufficiently large values of T, 

even if the similarity parameter u (2.20) is smaller 
than its critical value u c introduced in [1] (in the 
latter case there should be produced, besides the 
solitons, also a significant part which does not 
break up into solitons). It must be borne in mind, 
however, that at very small values of u the non­
linear effects set in at such large values of T, that 
the wave packet constituting the solution has already 
spread out sufficiently, so that the most essential 
part of the process can be regarded in the linear 
approximation. 

As applied to flow around a thin body, relation 
(3.15) holds true in the case when the "angle of 
attack" differs from zero, as can be readily veri­
fied by substituting (2.17) in (3.15). In this case, 
apparently, among the waves produced behind the 
body, there will always be present waves with non­
decreasing amplitude in the form of solitary waves 
(solitons). However, at very small attack angles, 
the solitons should be produced quite far behind the 
body, and should have a very small amplitude. (The 
general picture of the flow in the presence and in 

the absence of solitons is considered in Sec. 5.) 
If Po = 0 and p1 >" 0 (this case corresponds to 

zero angle of attack), then it follows from (3.14) 
that when T » 1 we get s 2 ~ t-t-1p 1 = const. Thus, in 
this case the quantity s 2 and with it the nonlinear 
effects will be small for all T, if they were small 
when T :S 1. No solitons appear in this case, in 
agreement with the results of[1]. This is certainly 
the case when Po = p1 = 0. 

4. QUASILINEAR SOLUTIONS OF THE 
KORTEVEG-DE VRIES EQUATION AND FLOW 
WITH ZERO ANGLE OF ATTACK 

Let us consider the flow around a long body at 
zero attack angle. According to (2.17) and (3.3) we 
have in this case 

00 00 

Po= 0, P1 = ~ ~X±(~)d£ = ~ f±(~)d£, (4.1) 

where ~(0 is the equation of the upper or lower 
part of the contour of the body. From the results 
of[1] it follows that in this case the qualitative form 
of the solution of the Korteveg-de Vries equation 
at large values of T should be close to the similar 
solution, the form of which is 

The function if; 0(z) was investigated in detail 
in[2], and satisfies the equation 

'¢o"' ( z)- Z'\jlo' + '¢o¢o'- 21bo = 0. ( 4. 3) 

Starting from this, we shall seek the solution of 
the Korteveg-de Vries equation in the form 

00 

m=O 

(4.5) 

~~ n-m where z = (3t-tT) ~, and n and 1/Jm(z) = z fm(z) 
are unknown quantities. 

Substituting (4.5) in (2.16) and stipulating that 
all terms of this series satisfy the boundary condi­
tion (2.18) (i.e., that they vanish as z- 00), we get 
n = -2 and that the if;k(z) must satisfy the equations 

" '¢k"'- z'¢"'- (k + 2)'¢k + ::6 'ljlp '¢~-P = 0 (4.6) 
P=O 

and the following conditions and infinity 

'¢k ( 00) = 0, k = 0, 1, 2, ... (4. 7) 

This system of recurrence equations determines 
any of the functions if!k(z) in terms of the first k- 1 
functions. 



1108 V. I. KARPMAN 

When k = 0 we get from (4.6) just Eq. (4.3), i.e., 
the first term of the expansion ( 4. 5) is the self­
similar solution (inasmuch as n = -2). The remain­
ing terms of ( 4. 5) should supplement the self­
similar solution in such a way that the entire sum 
becomes the complete solution of the Korteveg-de 
Vries equation. When T - oo and the values of z 
are bounded, all the terms of the series ( 4. 5) with 
k > 0 decrease more rapidly than the first term, 
so that the entire sum approaches asymptotically 
the self-similar solution. 

It is interesting to note that the system ( 4. 6) has 
the following particular solution 

l;_h d"IJlo (z) 
IPn = k! dz" , k = 1, 2, ... , ( 4. 8) 

where A is an arbitrary constant, as can be readily 
verified by direct substitution. The solution ( 4. 8) 
has a very simple meaning. In order to clarify it, 
we substitute ( 4. 8) in ( 4. 5) (where n = - 2). Then 

"" t;_k 
TJ(s, T) = ~t(3~-tT)-% ~ (3~-tT)-kl3-ljl~)[(3~-tT)-'I, s) 

k=O k! 

= ~t(3~-t•)-'1s¢o[(3~-t•)-'h(s + !;.)). 
We have obtained again the self-similar solution, 
but shifted by an amount A along the ~ axis. The 
existence of such a solution is perfectly natural, 
since the Korteveg-de Vries equation (2.16) is in­
variant to the translations ~ - ~ + A. The foregoing 
example shows that ( 4. 5) has the character of a 
"multipole expansion." We now proceed to inves­
tigate the asymptotic behavior of the solutions of 
the system ( 4. 6). For large positive z, owing to the 
conditions ( 4. 7), we can neglect the nonlinear terms 
and the system ( 4. 6) can be replaced by 

¢~<"'-z¢"'-(k+2)¢"=0 (k=0,1,2, ... ). (4.9) 

The general solutions of ( 4. 9) are obtained in 
the Appendix. We shall consider here only those 
solutions which satisfy the conditions ( 4. 7) and van­
ish exponentially as z - oo. As shown in the Appen­
dix, they take the form 

(4.10) 

where <l>(z) is the Airy function and Ak are arbitrary 
constants. Thus, the asymptotic form of the func­
tions 1/Jk(z) at large positive z is 

Ah 
¢k (z) ~ 2 ( -1)" zk/2+'!. exp(-2/sz'h). (4.11) 

In the region of large negative z, the functions 
( 4.1 0) oscillate rapidly, and their amplitude increa­
ses like zk/2 + 1/4, so that in general it is neces­
sary also to take the nonlinear terms into account 

in ( 4. 6). However, we can reason here in the same 
manner as in[2J (Sec. 3), where Eq. (4.3), defining 
the self-similar solution, was investigated for the 
function ljJ0(z). Namely, if the constants Ak are suf­
ficiently small, then the nonlinear terms in ( 4. 6) 
come into play when the functions 1/Jk(z) already 
assume their oscillating asymptotic values. Then, 
using the method of induction and the results of[2] 

(Sec. 3), we can easily verify that for sufficiently 
small Ak and as z - - oo the principal term in the 
asymptotic form of 1/Jk(z) becomes 

(--'z~ 1), 
( 4.12) 

where ak and f3k are constants determined by the 
initial conditions (the constant terms in the phases 
have been added for convenience). 

Let us compare now the considered solutions 
with the solution of the linearized equation (3.1). 
It must be noted here first that the nonlinear solu­
tion (4.5) goes over in the limit into (3.1) only for 
those initial conditions which satisfy relation ( 4.1), 
as can be verified by comparing (3.2) with (4.5) 
(where, as shown above, we must put n = - 2). This 
circumstance is closely related with the result ob­
tained in Sec. 3, namely that if Po ""0, then the non­
linear corrections are small when u « 1. 

If we now assume that Po= 0 and compare (3.2), 
in which we have substituted the asymptotic expres­
sions (3.4), with the expansions (4.5) and (4.11) and 
( 4.12), then we find that, for sufficiently small val­
ues of the nonlinearity parameter u defined in 
(2.20), or accordingly for large J..L, the coefficients 
Ak, ak, and f3k take the form 

(-1)" 
Ak = P~o+t + O(~t-9 (k = 0,1, 2 .... ) , 

"}':rq.t(k + 1)! 

<l2m = ( - 1)m l'2m+t_ + Q (lt-1), •U2m+f = 0 (!l-1), 
1n ~t(2m + 1)! (4.13) 

(-i)m P2m+2 

~~m+1 = }':rqt(2m + 2}!+ O(!l-1), ~2m= O(!l-1), 

m = 0, 1, 2, ... (4.14) 

Expression (4.12) determines the principal term 
in the asymptotic form of 1/Jk(z) at large negative z. 
The next terms can be obtained by iteration. Con­
fining ourselves to one iteration, we get 

"{0' ,p,. (z) ~ ~" (z) + z(h-1)!2 [a,. sin 4/a 1 z 1'1, 

+ b,. cos 'la[z 1'1; +en], ( 4.15) 
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where 1fJ~0 >(z) is defined in (4.12) and 

1 li 

ali=- 16 ~ (uh-p up- ~li-p ~p}, 
p=O 

1 li 

Cit=- Tz ~ (Uii-p Up+ ~h-p ~p). 
p={) 

( 4.16) 

When k = 0 the expressions ( 4.15) and ( 4.16) coin­
cide with the formulas obtained in [2 J for the asymp­
totic form of the self-similar solution (formula 
(3.10) of that paper contains a misprint, namely, a 
nonoscillating term proportional to z-i/2 is missing). 

If we now substitute ( 4.15) and ( 4.16) into form­
ula ( 4. 5) (with n =- 2), then we obtain after simple 
manipulations the following asymptotic expression 
for a solution of the form ( 4. 5) in the region of 
large negative z: 

,1 = ( 3:.J''• {'I't (k) cos (2/31 z 1 •;, + :n:/ 4) + 'l'2(k) 

X sin(2/slzJ'h + :n:/4)} -1211~tk{t/d'l't2 ('k) 

- '¥22(k)]sin ~/alzl''•- 1/2'1't(k) 1IJ2(k)cos~/3!zl''' 

(4.17) 

where 

( 4.18) 
00 00 

n=O n=O 

In the limiting case u « 1 or J.l » 1, the coeffi­
cients ak and J)k are determined by formulas ( 4.14), 
and the functions "IJ!i and '11 2 become, in accord with 
(3.6)' 

1 - 1 -
'Vt-+-=- Imx(k}. '¥2-+=- Re x(k), 

1nk r':rtk 
( 4. 20) 

where x(k) is the Fourier transform of the initial 
perturbation x(O. 

When u ;<:, 1 relations ( 4. 20) no longer hold and it 
is impossible to obtain an explicit expression for 
the functions "IJ!i and '11 2 in terms of the initial per­
turbations. Nonetheless, formula ( 4.17) is useful in 
this case, too, since it contains important informa­
tion with respect to the general qualitative charac­
teristics of the solution. It follows from it that the 
solution for~ < 0, lzl » 1 has the form of sinusoidal 
waves, the phases of which depend on~ and T like 
lzl 312 , and the amplitude factors of the fundamental 

harmonic "IJ!i and '11 2 depend on ~ and T only in terms 
of the "local" wave number k, which is defined by 
formula ( 4.18). 3> Although the functions "IJ!i and '11 2 

differ when u ;<:, 1 from those obtained in the linear 
approximation, the general dependence of the pha­
ses and of the amplitudes on ~ and T is the same as 
in the linearized solution. We shall therefore call 
solutions of the type ( 4.5) quasilinear solutions of 
the Korteveg-de Vries equation. 4> The nonlinear 
effects of these solutions consist in the appearance 
of multiple harmonics and of a certain average per­
turbation, which are small when I z I » 1 and are ex­
pressed in terms of the amplitudes "IJ!i and '11 2• 

It turns out that the quasilinear solutions exist 
only when u < u0, where u0 is a certain critical value 
of the number u. This follows from the fact that all 
the functions 1/Jk(z) are determined by Eqs. ( 4. 6) in 
terms of the function 1/Jo(z), which enters in the self­
similar solution. The latter, as follows from the 
results ofE2J, is not regular for all values of u. 
Namely, as shown in[2J, the function 1/Jo(z), which 
takes the form ( 4.11) (with k = 0) for large positive 
z, has no singularities on the real axis only when 
A0 < 3.6. If we now use (4.13) for a rough estimate, 
then we find that Pi/J.l < 7, where Pi• in accord with 
( 4.1), is equal to the area of the contour of the body 
in the stream in dimensionless units. If the charac­
teristic length l and the thickness b of the contour 
are chosen in (2.15) in such a way that Pi = 1, then 
we get for the critical u, in accordance with (2.20), 

ao ~ 3. ( 4. 21) 

When u » 3, quasilinear solutions of the 
Korteveg-de Vries equation no longer exist. This 
result agrees with the numerical solutions of the 
Korteveg-de Vries equation, which show that for 
sufficiently large u (exceeding the critical value) a 
solution is produced in the frontal part of the pro­
file of the solution; for very large u several solitons 
are produced, and these are not described by the 
quasilinear solution. No solitons were observed for 
(J' < 3. 

By way of an illustration we present Figs. 2-3, 
which show the numerical solutions of the 

3)The phase is expressed in terms of the "local" wave 
number in the same way as in a plane wave satisfying the 
linearized Korteveg-de Vries equation: 

2{8z'l• = k~- ffiT 

4)As in the linear approximation, the asymptotic expres­
sions (4.17) - (4.19) describe a sufficiently large part of the 
wave packet when flT >> 1 (see footnote 3l). 
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FIG. 2 

FIG. 3 

Korteveg-de Vries equation (obtained by Yu. A. 
Berezin) under the initial condition 

f) xm =- -exp(-~2) (4.22) 
a~ 

(this condition is qualitatively close to (2.17) at 
zero angle of attack) and for fixed sufficiently large 
T. Figure 2 shows the form of the solution 17(~, T) 

as a function of~ for u = 2, while Fig. 3 is for 
u = 6. With increasing T, these curves are altered 
in such a way that all the crests of the waves, ex­
cept the frontal wave, move to the left, while the 
maxima of the frontal waves move to the right 
(much slower when u = 2 than when u = 6). The 
difference between the solutions at u = 2 and u = 6 
lies primarily in the fact that the frontal wave at 
u = 6 has a tendency to become detached from the 
remaining part of the profile (as T- oo), and during 
the course of this process its amplitude 17o ceases 
to vary. The "experimentally" determined velocity 
of the motion of the maximum in the frontal wave 
approaches the velocity V of a soliton having the 
same amplitude (as is well known, V = 17o/3), and 
the profile of the wave coincides quite accurately 
with the profile of the soliton. For clarity, the 
dashed line of Fig. 3 shows the profile of the soliton 
17 = 17oCh-2 [17o/12J.t) 112(~- ~ 0)] with the same ampli­
tude 17o as the frontal wave, superimposed on the 
latter. The small discrepancy between them occurs 
in practice only in the rear part of the profile of 
the frontal wave; it disappears with increasing T. 

All this gives grounds for assuming that when u = 6 
a soliton is separated from the wave packet repre­
senting the solution. 

As to the solution for u = 2, no tendency was ob­
served here for a stationary form to become estab­
lished at_ the frontal wave. The amplitudes of all 
waves decrease here slowly and the entire packet 
spreads out. 

At sufficiently large u, the number of solitons 
exceeds unity. For example, as shown by a numer­
ical solution, not less than two solitons are pro­
duced when u = 40 (for details see[8 J). 

5. CONCLUSION 

In conclusion, we consider the general form of 
different characteristics of the flow around a body 
at zero angle of attack. From the results of Sec. 4 
it follows that the structure of the stream will be 
different for small and large z = (3J.t7)- 1 /3~. Let us 
consider these regions in greater detail. We shall 
assume here that J.t > 0 (the transition to negative J.t 
is effected by the substitutions 17 --17, ~ - -L 
T- T). 

a) z < 0, lzl » 1 (according to formulas (2.15) 
this is the region within the Mach angle and not too 
close to the Mach lines). If u < u0 (see (4.21)), then 
the flow is described by the quasilinear solution of 
the Korteveg-de Vries equation. In the region 
under consideration, this solution is given by form­
ulas ( 4.17)-( 4.19). If we neglect multiple harm­
onics, then the equal-phase lines are determined by 
the equation z = const or, in x, y coordinates 

.-- ( 31)2}11'4 )'h 
X = + l' }11'2 - 1 y ± C y'", 

!31M2 - 1 , 
(5.1) 

where C =- z (the± signs are taken for the upper 
and lower half-planes). In Fig. 4, the curves of this 
family are tagged II and the Mach lines I. The tan­
gents to the lines (5.1) have a slope that approaches 
(M2 - 1)-112 asymptotically as y- oo; the value of 
the parameter C increases in the direction from 
the Mach line (z = 0) to the x axis (z =- oo). 

The equation of the lines of constant wave num­
ber k = const have in the coordinates x, y the form 
y = const · x, with k increasing from the Mach line 
towards the X axis (where k = 00). Thus, the short­
wave region is situated far from the Mach lines, 
whereas the waves that start from the body in the 
stream are long near the Mach lines. 

y 

FIG. 4 
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b) We now proceed to the region of long waves. 
A qualitative idea of this region can be obtained by 
considering the points with fixed z ;S 1 and suffi­
ciently large T: (3tJ-T) 113 » 1. We can then confine 
ourselves in (4.5) to the first nonvanishing term, 
which constitutes the self-similar solution ( 4. 2). 
The behavior of the function lf! 0(z) is qualitatively 
analogous to <I>' (z), where <I> (z) is the Airy function 
(see Fig. 3 of[2], but we must bear in mind that this 
figure represents the function 1/! 0(-3113z)). 

We denote by z0 the value of z at which 1/! 0(z) has 
the extreme-right maximum (we shall henceforth 
call this the first maximum). From the aforemen­
tioned Fig. 3 of[2 ] we see that z0 > 0. With decreas­
ing similarity parameter a (2.20), the function 1/! 0(z) 
tends to the corresponding solution of the linearized 
equation, i.e., to -.P'(z), while the latter has the 
first extremum at z = 0. Thus, with decreasing a we 
get z0 - +0. As shown by numerical calculations 
(see Fig. 3 ofl2J), z0 is nevertheless very small 
even if a- a0 ~ 3, when the quasilinear flows cease 
to exist. The equation of the line of the first maxi­
mum (3tJ-7)- 113~ = z 0 in x, y coordinates has the form 
(5.1), where Cis a negative quantity of small abso­
lute value, C =- z0• This curve is designated III in 
Fig. 4; it goes outside the limits of the Mach angle, 
and when y ....... oo its slope decreases and approaches 
the slope of the Mach line. 

c) For sufficiently large a, exceeding a0, solitons 
appear in the profiles of the solution T)(~, T). The 
peaks of the latter "move" along the lines ~ = TJoT/3 
+ const, where TJo is the soliton amplitude. In x,y 
coordinates the equations of these lines are 

x = +y"Vlll2 - 1[ 1 - 1']o('\' + 1)M4b /6 (M2- 1)'hZJ+const, 

i.e., they constitute straight lines lying outside the 
Mach angle (Fig. 4, IV). Their slope increases 
with the amplitude rJo; these amplitudes should not 
change after the soliton has been formed. 

Finally, let us determine more precisely the 
region of applicability of all our asymptotic ex­
pressions. 

The corresponding condition is easiest to obtain 
from Eq. (5.1) by stipulating that the second term 
in the right side be much smaller than the first. 
Then, recognizing that C = - z, we get5> 

I X -1M2 - 1 y I ~ l' M2 - 1 I y I. ( 5. 2) 

In addition, the condition Jl-T » 1 (see footnote 4>) 

denotes that 
y/l';:? (l/6)zM•(Mz -1)-'i•. (5.3) 

5 lThe condition (5.2) is a reflection of the limited region 
of applicability of the fundamental equations (2.16). 

In conclusion, the author is grateful to Yu. A. 
Berezin for the numerical calculations and to A. V. 
Gurevich, L. P. Pitaevski'i', and R. Z. Sagdeev for 
useful discussions. 

APPENDIX 

SOLUTIONS OF EQUATIONS (4.9) 

Differentiating (4.9), we get 1/Jk(z) = 1/Jk+ 1(z); it 

follows therefore that 1/Jk(z) = f(k + 1) ( z), where f( z) 
satisfies the equation 

f'- zf =a, (A.1) 

and a is an arbitrary constant. The general solution 
of (A.1) is the sum of the general solution of the 
homogeneous equation, i.e., the Airy equation, and 
the particular solution of the inhomogeneous equa­
tion. The particular solution of the inhomogeneous 
equation, as can be readily checked, is 

z 00 

f(z) = -a<!>(z) ~ ds<D-2 (s) ~ <l>(1J)d1J. (A.2) 
zo ~ 

When z » 1 it follows from (A.2) that f(z) ~-ajz; 
as z-----oo, the function f(z) oscillates rapidly, as 
does <I>(z). It is easy to verify that if a>" 0, then the 
solution ( 4. 5) will have at z ....... oo an asymptotic be­
havior which differs greatly from the linear one 
(which is given by ( 4.1)) even in the case of small 
values of the similarity parameter a, when a limit­
ing transition to the linear approximation should 
take place. It is therefore natural to put a = 0. 
Then the only solution of Eq. (A.1) which attenuates 
as z ....... oo is the Airy function <I> (z), and the corre­
sponding solutions of (4.9) take the form (4.10). 
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