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It is shown that a one-dimensional vortex structure of current and magnetic field distribution 
arises in superconducting films (magnetic field parallel to the surface) in a certain range of 
thicknesses (exceeding the coherence radius ; (T) ~ :tiv0 /~(T), but less than the penetration 
depth o(T)). The possibility of observing such a structure by optical diffraction is discussed. 

IT is well known that superconductivity arises in 
bulk metallic samples upon decrease of the mag
netic field through the formation of a two-dimen
sional periodic structure of Abrikosov vortex fila
ments. [ 1J Such a structure is stable if the corre
sponding critical field, the so-called upper critical 
field Hc2 , exceeds the thermodynamic critical field 
Hem of the superconductor. Near the sample sur
face, superconductivity remains at fields exceeding 
He 2 , up to the value He 3 = 1.69 He 2 (for T 
- Tc)· [2, 31 For films, it is He 3 (which depends on 
the film thickness d) which begins to serve as the 
upper critical fieldY Further, as Abrikosov[ 31 

has remarked, the solution for the order parameter 
1/J(r), corresponding to He 3, is generally asymmet
ric relative to the center of the film. 2> As we shall 
show, this causes the periodic vortex structure of 
the "superconducting electron" density distribution, 
the superconducting current, and the magnetic field 
longitudinal to the film. In contrast to bulk samples, 
such a structure in films is one- rather than two
dimensional. It can also occur for values of the 
Ginzburg- Landau parameter K characterizing a 
superconductor of the first kind (for example, for 
1/1.7{2 < K < 1/.f2).3l 

Taking the direction of the magnetic field along 
the y axis and normal to the surface of the film 

1>For a second order phase transition (this certainly oc
curs for a sufficiently large value of the Ginzburg-Landau 
[ 4' 5 ] or for small thickness d.). 

2 >we assume, for simplicity, that the temperature is suffi
ciently close to T c so that the Ginzburg-Landau equations 
apply. The qualitative picture of the effect considered later is 
not connected with this assumption. 

3 ) As was shown in a previous p<J._per, [6] an analogous vor
tex structure arises also for "weak" superconductivity (for a 
Josephson junction [7] placed in an external magnetic field 
parallel to its surface). 

(which is along the z axis), we write the linearized 
Ginzburg-Landau equation[ 4• 51 as 

a"' -o! az - z=±d ' 

(1) 

where 2d is the film thickness, and e and m are 
the charge and mass of the Cooper pair. 

If this equation has a solution of the form 
tp(z)eikx with tp(z) =f. tp(-z), then tp(-z)e-ikx also 
satisfies the equation. Thus we must take a linear 
combination of these functions, C1tp(z)eikx 
+ C2tp(-z)e-ikx, Further, it is clear that the mini
mum free energy corresponds to the solution for 
which led= IC2 IY Therefore, without loss of gen
erality, one can take this solution to be (correct to 
a normalization factor) 

'ljl (x, z) = cp (z) eikx+ cp (- z) e-ikx, 

where tp (z) satisfies 

d2cp ( eH0 \ 2 2ma --+ k--z; cp=-cp, 
dz2 lie li2 

dcp = ol 
dz lz=±d 

(here we have put Hc3(d) = H0). 

(2) 

(3) 

The vector current density corresponding to (2) 
has the components 

elik e2 
ix = -[cp2(z)- cp2(- z)]- -HoZ[2cp(z)cp(- z)cos 2kx 

m me 

+cp2 (z)+cp2(-z)], (4) 

eli 
iz = -{cp (z)cp' (- z) + !p1 (z)cp(- z)] sin 2kx. (5) 

m 

Consequently, jz is not identically zero except at 
k = 0. Therefore, the line of flow is not parallel to 

4 >The calculation of the coefficients C 1 and C2 is carried 
out in the Appendix (see (A.l)). 
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the surface of the sample in this case. It has the 
pattern shown schematically in the figure. 

The existence of closed lines of flow is easy to 
deduce by expanding cp(z) in (4) and (5), for small z, 
in a power series about the point z = 0. Examining, 
for simplicity, the case of a "thick" film (d » ~ 

= nN2ma), one has lcp'(O) I» cp(O)/~, and the indi
cated expansion takes the form 

j2 = j. sin 2kx, jx = 2j.kz, 

. 2eli , 
/s=-ip(O)q> (0). 

m 
(6) 

Hence, we obtain as the equation for the flow lines 

k2z2 = sin2 kx + C, (7) 

where C is a constant (C > -1). For C > 0, open 
trajectories result, the directions of which are 
parallel to the surface of the film; closed trajec
tories occur for C < 0 (see the figure). The equa
tion of the trajectory which separates the open from 
the closed flow lines is kz = ±sin kx. s> 

The pattern described above corresponds to a 
field equal to the critical field: H = H0• However, 
it is clear that it will also result for H -1- H0, but 
H0 - H « H0• Further, as in the theory of Abriko
sov, [ 1 1 the magnetic field in the film becomes in
homogeneous (oscillating with the x coordinate). If 
one writes it as H + oH, where H is the external 
field, then oH equals 

6H(x~z)=h1 (z) +hz(z) cos2kx, (8) 

where 
4neli 

ht(z) = ---U(z)+ f(- z)], 
me 

2neli [ , , ] h2(z)= ---!p(Z)IJl (-z)+IP (z)IJl(-z), 
mrlr 

(9) 

and the function f(z) is 

j(z) = ·~ ( k- eHo z) ip2 (z) dz. 
\ lie . (10) 

-d 

At the surface of the sample, oH(x, y) becomes 
zero. For h2 (z) this is obvious since cp '(±d) = 0. 

5 >we call attention to the analogy between the relations 
(6) and the corresponding formulas from the theory of the 
Josephson effect.[7 ] The flow of superconducting current jz 
across a region of (normal) metal situated between regions 
near the surface of thickness - ~. in which tjf is appr~~iably 
different from zero, can also be interpreted as "weak" super
conductivity. In complete analogy with [6' 7], the potential dif
ference at the boundaries of the film induces a motion of the 
periodic structure, shown in the figure, in a direction parallel 
to the surface. 

z 

--- .......... ....__,...-----

X 

The function h.1 (z) also goes to zero for z = ±d 
because of the identity 

d 

~ (k- e:o z) IP2(z) dz = 0, (11) 
-d e 

which follows from (3) for the maximum possible 
H0 (H0 = max H0 (k)) .s> 

As is seen from (8), oH is a periodic function of 
x with period a = 1r /k. The value of k must be foun 
found from the solution of Eq. (3) for the greatest 
possible H0 = H03 (d). For d » ~. we have, according 
to [ 21 , k = ko = eH02 ~ /lie. The case d » ~ is of lit
tle interest, of course, since l/J is appreciably dif
ferent from zero only near the surface, and the os
cillating current, field, etc., which result because 
of the interference of the solutions from opposite 
surfaces of the film, are exponentially small. For 
smaller d, the amplitude of oscillation at first 
grows (although it becomes sizeable far from 
H03 (d)), but then necessarily decreases and goes to 
zero at a certain critical thickness de (for d ~ d0 

the symmetric solution cp (z) = cp (- z) corresponds 
to the maximum field). According to Abrikosov[ 31 , 

as T -T c• the value of de equals 

dc(T) = _!_ l/ ~ b(T) ~ s(T), 
2 y 2 X . 

(12) 

where o(T) is the penetration depth. 
We remark that for d « d0 the function cp (z) 

has the simple form 

IP(z) = const[ 1- 2z;2 ( 1- 2~2 )] , (13) 

substitution of (13) into (3) gives the well-known 
result of Ginzburg and Landau, [ 3• 41 

6 >The proof of this assertion is given in the Appendix 
(A.2). We note that the relation (11) guarantees that the total 

d 
current J = J jxdz flowing along the film is equal to zero. For 

-d 
surface superconductivity with d = oo, this feature was pointed 
out by Saint-James and de Gennes [2 ] and by Abrikosov. ['] 
This property holds even for finite thickness. 
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-6 
HcS = i6a;Hcm• (14) 

Experimental observation of the periodic structure 
of the magnetic field in a film (for d > dc(T)) can 
be accomplished, in principle, by the same meth
ods as used for the observation of the Abrikosov 
structure in bulk samples, for example, by nuclear 
magnetic resonance[S, SJ or neutron diffraction. [ 10 •11 ] 

However, a new possibility arises for a film. If the 
film is sufficiently thin, such that it is significantly 
transparent to visible light (2d ~ 300-500 A) then,7> 
inasmuch as the period a of the vortex structure is 
commensurate with the wavelength of the light, such 
a film will act as a diffraction grating if the coeffi
cient of absorption of the light depends on the mag
netic field. The latter can, for example, be due to 
the rotation of the plane of polarization (for this, 
the experiment must be conducted in polarized light 
with an inclined beam), or due to the Zeeman effect 
(for example, by dissolving in a metal rare-earth 
impurities having relatively narrow optical bands 
exhibiting Zeeman splitting). I thank V. V. Ere
menko for a discussion of this question. 

APPENDIX 

1. To determine the coefficients C1 and C2, we 
write the solution of the Ginzburg-Landau equation 
for H f. H0 but (H0 - H)/H0 = € « 1, as l/J = l/Jo + l/J1t 
where l/;1 « l/Jo, in which 

\()o(x, z) = C1<p(z)eilto: + C~(-z)e-t~<x, (A.l) 

and l/;1 (x, z) satisfies the equation 

__! (~ !_ - _eH 0 z \ \pt - .!!.._ 0~1 - a¢1. = - ~ I 'i'o 12 \jlo 
2m l OX e J 2m oz2 

_ eH0 ez (~!_- eHo z)¢o 
me z ox e 

+_:_M(x,z) (..!;!__ eHo z \'i'o 
me z ox e / 

e h o + 2m~¢o(x,z)i ox M(x,z). (A.2) 

Here oA(x, z) is the addition to the vector potential, 
given by 

0 
-az-M(x,z) = 6H(x,z), 

where the equation for oH(x, z) in this instance is 

7)In the ultraviolet region, for frequencies satisfying the 
condition w > w0 (w 0 is the plasma frequency), the thickness 
of a film which is transparent to light increases substantially. 

(compare with (8)) 

4neh 
6H(x, z) =- --[ICtl 2 f(z) + IC2I 2 /(- z)] 

me · 

2neh • . 
- --{<p' (z) <p (- z) + <p' (- z) <p (z)] Re C1 C2 e2thx. 

mek 
(A.3) 

Using the orthogonality of the right side of (A.2) 
to the solutions of the homogeneous equation for 
cp(z)eikx and cp(-z)e-ikx, we obtain the equations 
which determine C1 and C2: 

Ct(AICti 2+BIC2j 2) = B'fl2Ci, 

C2(A ICzl 2 + BICtl 2) = BT)2C2, (A.4) 

where A, B, and 11 are defined by 
d d 

A=~~ <p4(z)dz- 4n~-t2 ~ f(z)dz, 
eh 

~-t=-; (A.5) 
me 

-d -d 
d d 

B = 2~ ~ <p2(z)<p2(- z)dz- 4n~-t2 ~ j(z)/(- z)dz 
-d -d 

d 

+ (n~-ty ~[<p'(z)<p(-z)+<p(z)ql'(-z)]2 dz; 
2k -d 

d ft2 ( ( eHo )2 
'YJ2=-) k--z <p2 (z)dz. 

m_d he 

(A.6) 

(A. 7) 

The equations (A. 4) allow three solutions (besides 
the trivial one c1 = c2 = 0): 

1) Ct = 0, IC2l = rJ(e/A)''•; 
2) c2 = 0, ICd = T)(e/A)''•; 
3) ICd = IC2I = T)(e/(A +B))'''· (A.8) 

Without loss of generality, we can assume that 
the lf;-functions corresponding to these solutions 
have the forms, for €- 0, 

¢J1> = T) (e/ A) 'f•<p (z) ei""', ¢~> = T) ( e/ A) ''•<p (- z) e-iho:, 

¢~3) = T) ( e/ (A +B)) 'f, {<p (z) eiho: + <p (- z) e-ihx]. (A. 9) 

Further, it is necessary to select from these 
solutions, the one which corresponds (for a given 
external field H) to the minimum free energy, 
F s<H), of the superconductor. Even without per
forming a calculation, it is obvious that the mini
mum free energy will correspond to the solution 
l/;~3 >, for which lc1 1 = I C2 1. For example, for large 
thicknesses (d » ~), cp(z) is the solution corre
sponding to surface superconductivity. Then l/J~ll 
and l/JJ2> describe the formation of superconduc
tivity near only one of the surfaces of the film, and 
l/JJ3> near both surfaces. Since the formation of su
perconducting correlations leads to a decrease in 
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the free energy, it is clear that in the second case 
this decrease will be approximately twice as gTeat 
(for d » ~). 

We note that the condition A + B;::: 0 determines 
the range of values of K and d for which a phase 
transition of the second kind occurs. The value of 
A + B is necessarily positive for sufficiently large 
K or small d. Actually, in Eqs. (A.5) and (A.6), 
[3 "" K 2, and the negative terms do not contain [3 , 
i.e., are independent of K. 

2. For the proof of relation (11) (which was also 
used in the deduction of Eq. (A.4)), we designate by 
ko that value of k for which H0(k) takes its maxi
mum value H0(ko), and by cp 0(z) that function cp(z) 
which is the solution of Eq. (3) with k = ko and 
H0 = H0(ko). If k is increased by an infinitesimal 
amount ok the corresponding increment in cp (z) 
satisfies 

d2 ( eHo(ko) ) 2 2ma 
- dz2 6cp + ko - lie z 6cp - t/,2 6cp 

( eHo(ko) ) 
=- 2 ko- lie z Mcpo(z). (A.10) 

Here we have used the fact that ko is the point at 
which Ho (k) is a maximum, so that a change in 
H0(k) is of second order in <'>k and can be disre
garded. The solvability condition for Eq. (A.10), 
which consists in the orthogonality of the right side 
of (A.10) to the solution of the homogeneous equa
tion for cp0(z), gives 

d 
1 ( eHo(ko) ) 
J, ko- lie z cpo2 (z) dz = 0, 

-d 

(A.ll) 

which agrees with Eq. (11). 
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