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The number operator and the creation and annihilation operators for the quanta are written 
down in the phase representation. A complete set of eigenfunctions of the Hamilton operator 
for the harmonic oscillator is found in this representation. The uncertainty relation between 
the phase and the number of quanta is derived. The relation has the form (16'). 

1. RECENTLY, a number of papers [ 1- 4l have ap
peared which are devoted to the description of the 
quantum mechanical harmonic oscillator in the var
iables n and cp, where n is the number of quanta 
and cp is the phase of the oscillator. This renewed 
interest is connected with the fact that the tradi
tional description of the quantum oscillator in the 
variables n and cp (cf., for example, [S-Bl) is not 
completely correct. Usually, the transition to the 
description in the variables n and cp is made by 
writing the creation and annihilation operators in 
the form 

(1) 

From this and from the commutation relations for 
a and a+ ([a, a+] = 1) it follows that 

This relation is considered equivalent to 

[cp, n] = -i. 

The criticism of this description of the har
monic oscillator essentially concerns two points: 

(2) 

(3) 

All operators under discussion are defined on basis 
functions which are periodic in cp. The multiplica
tion operator cp itself transforms a function from 
this class to a class of functions which are not pe
riodic in cp, and cannot therefore be Hermitian. 
Therefore the relation (3) is incorrect. [This is 
usually shown by taking matrix elements between 
eigenstates In) and I m) of both sides of (3): 

(m{cp, n] n) = (n- m)(m lcpln) = -il5mn· 

The last relation is clearly meaningless.] 
The other objection relates to the following cir-
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cumstance: even if one stays within the class of 
functions periodic in cp and uses the relation (2), 
one also arrives at a contradiction. Acting with 
the relation (2) on the ground state function I 0) 
we obtain 

ne1"'i0) = -e1"'i0), 

i.e., n has the negative eigenvalue -1, which is 
obviously meaningless. Susskind and Glogower[ 2 l 

try to avoid this difficulty by introducing the opera
tors eicp and e -icp which are not multiplication 
(by e± icp ) operators in the cp representation and do 
not commute with one another. 

In the present paper we propose another method 
by defining a complete system of eigenfunctions of 
the operator n in the cp representation so that in 
this representation the operator eicp is the usual 
operator of multiplication by eicp. 

2. First of all we introduce the operator I (as 
will be seen in the following, it has the meaning of 
an operator of the sense of rotation, where cp is the 
angular coordinate). An arbitrary periodic function 
w(cp) can be expanded in a series in eimcp, where m 
is an integer or a half-integer. The bilinear com
bination 'It+ (cp)w(cp) will then be periodic with the 
period 21r. The effect of the operator I is to multi
ply eimcp by 1 if m > 0 and by -1 if m < 0. The 
operator of the number of quanta is defined by 

f) 1 
n= -il---. 

·acp 2 
(4) 

As is easily seen, the normalized eigenfunctions of 
this operator and of the operator I have the form 

nr 1 . . '/) 
-rn, 1 = =e•\n+ '·"'~ 

l'2n 
'I'n -1 = - 1 e-i(n+'/,)<P· n ::::>-: 0 

J - ' :;:;;-' 

l'2n 
(5) 
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where w n 1 are the eigenfunctions with I = 1, and 
' Wn _1 are those with I = -1. 

'we further introduce the operators a and a+: 

( 1+I . 1-I)-a = e-iop - 2--+ e''i' --2- )'n, 

-1 (1 +I . 1 +I . \ 
a+ = ,,n, --- e''~' + --- e-''i' (6) 

' · 2 2 / · 

It is easy to show that these operators have the 
properties of creation and annihilation operators: 

a+IJ!'n;±l = f'n + 1'I'n+1;±!, 

It follows from this that the operators a and a+ 
satisfy the commutation relation [a, a+] = 1 when 
acting on an arbitrary function expanded in the 
complete set of functions (5) [i.e., on a function 
periodic with period 411' and satisfying the cyclic 
condition w(<p + 211') = -w(<p)]. From (4) we also 
obtain the commutation relations 

[n,f(<p)]=-ii 0~~<p) +(If(<p)I-f(cp))(n+~), (7) 

where f(<p) is an arbitrary periodic function with 
period 211'. In particular, 

[n, ei'i'] = Iei'i' + (Iei'i' I- ei'i') (n + 1/2). (8) 

By defining now the Hamiltonian of the system 
in the form 

Je = ( n +- nw = wi - in-) ' . 1) ( i) 

. 2 a<p· 
(9) 

we have completed the description of the quantum 
mechanical harmonic oscillator in the <P represen
tation. It is easy to verify that our description is 
free of the difficulties mentioned above. 

3. Let us now turn to the interpretation of the 
relations just obtained. We first discuss how the 
harmonic oscillator is described in terms of the 
variables action-angular variable in the classical 
case (cf., for example, [ 91 ). The action variable is 
defined as 

l = __!__ ~ pdq. 
2Jt 

Let us write q in the form 

l'2Je 
q= --cos<p .. 

(j) 

(10) 

(11) 

From the expression for the energy in terms of p 
and q, 

we find 

p = ± f'23C sin <p. (12) 

From this and from (10) and (11) we find 

Je = +wl. (13) 

The variable J has the dimension of an angular 
momentum and its sign is determined by the sign 
of the velocity of the representative point in the 
p, q plane, i.e., by the sign of d<p /dt. The minus 
sign corresponds to a negative J, the plus sign to a 
positive J. The remaining possible solutions do not 
satisfy the condition that :Je must be positive. It is 
evident that (6) and (9) are the quantum generaliza
tions of the relations (11), (12), and (13). The oper
ator -iti8/8cp in (9) represents the quantity J (it is 
the operator of angular momentum of the represen
tative point in the q, p plane), and the operator I is 
determined by the sense of rotation with respect to 
<P and replaces the ± signs in (13). In the quantum 
as well as in the classical case there is a degen
eracy with respect to the sense of rotation in the 
variables J and <P (a state is determined by the 
sense of rotation as well as by the energy). How
ever, when we go over to a description in terms of 
the variables q and p, this degeneracy does not 
show up at all. A state with arbitrary (but definite) 
value of I as well as a superposition of such states 
are identical as far as the probability distribution 
in q and p is concerned. 

In concluding this section we emphasize that in 
both the classical and the quantum cases the quan
tity canonically conjugate to <P is the action varia
ble, which coincides with :Je/w [or ti(n + 1/ 2)] only 
up to a sign or up to the factor I in the quantum 
case. This is the origin of the contradiction in (2), 
which must hold for a genuine canonical variable, 
which n is not. 

It should also be noted that already in 1926 
Dirac[ 121 has shown that the action takes only half
integer values for spinless systems [cf. the well
known quantization rule for the harmonic oscillator 
(211') - 1 f pdq = (n + 1/2) ti]. Connected with this is the 
circumstance that the wave functions of the har
monic oscillator satisfy the condition 

4. Let us now show by a physical example how I 
can be fixed at a definite value. 

Consider a system consisting of a magnetic mo
ment located in a constant magnetic field H0; the 
magnetic moment is proportional to the angular 
momentum. The Hamiltonian for this system is 

Je = -nwL,, w = vHo > 0, 

where y is the gyromagnetic ratio, and ti Lz is the 
projection of the angular momentum on the direction 
of the magnetic field. Let the absolute value of the 
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angular momentum be L » 1; then the levels of the 
system with 

L-M<L, M>O, 

where M is the eigenvalue of Lz, are well approxi
mated by the Hamiltonian 

Je = -fiwL + fiwa+a; 

a+= L-jJ'2L, a= L+jJ'2L, 
[a, a+]= L,/L ~ 1. 

The second term in Je describes the harmonic 
oscillator 

Je 1 = fiwa+a = fiwn, n = L - L,; 

the eigenfunctions have the form 

qr M = (2:rt} -'/• e-in'P+iL'P. 

If we disregard the inessential phase factor (which 
is the same for all states), then this is a state with 
I = -1. The operators a and a+ have the form 

a = ei'P J'n, a+ = l'n e-icp. 

Changing the sign of the magnetic field H0 (thus 
changing the sense of rotation), we obtain the other 
states (close to the ground state) with I = -1. 

5. We now consider the uncertainty relation. 
Clearly (as noted in the papers quoted at the begin
ning) the traditional relation ~n~cp 2: 1/ 2 has no 
meaning, if for no other reason than that for ~n 
- 0 we would have ~cp- oo, whereas the indeter
minacy in cp must not be larger than 21r. We note 
further that an uncertainty relation between ~Lz 
and ~cp can easily be obtained, where the angular 
momentum operator is Lz = - io /ocp. 

Indeed, the commutation relation for Lz and 
f(cp) [where f(cp} is an arbitrary periodic function 
with period 21r] has the form 

[L,,J(<p)] = -iOj(<p)jiJ<p; 

from this we find in the usual way 

(14) 

In order to find the uncertainty relation between 
the number of quanta and the phase cp [or f(cp)], we 
note that the following relation is satisfied identi
cally:1> 

Replacing ((~Lz)2) in (14), (15), and (16) by 
((~}2 ) + ((n) + 1f:! )2, we only strengthen the in
equalities and find 

(17) 

[ ( (~ n )21 + ( (nl + 1/2)2]"' ll.f ~ 1/2! (of I o<p) I, 
[((~n)2/ +((n/ + 1/z)21''' ~<p ~ 1/z, ~<p<1, 

(141 ) 

( 151 ) 

These inequalities solve completely the problem of 
finding the uncertainty relation between the number 
of quanta and the phase. 

In the quasi-classical approximation the inequal
ities (14') to (16 ') can be replaced by more stringent 
ones: 

(14") 

Indeed, in this case Eq. (13) holds for n » 1, and 
hence 

n= +L,. 

From this and from (17) we find that in the quasi
classical limit 

~n = !J.L, 

and (14") follows from (14). 
On the other hand, in the case where the quasi

classical approximation is inapplicable, it is mean
ingful to give an example illustrating the possibility 
of reaching an equality of both sides of (14') for 
~ = 0 (when according to the traditional uncer
tainty relation ~f- oo, if (of/ocp) -f 0). Let 

f(<p) = sin(2n + 1)<p, 
1 ( 1 \ '¥ ( <p) = --=cos n +-) qJ, 

"V:rt 2 I 

then 

< ( ~!)2/ = (/2(<p) 1 = 1;4, (of/iJqJ/ = n + 1;2, 

For ~cp « 1 the mean square fluctuation ~cp is and we obtain (n + 1j2)M = % Of/ocp. 
naturally defined as 

((~!} 2/ = l(ojjoqJ/ l2 (fl(fl) 2; 1>1ndeed, n = IL.- 1/ 2 ; <(lln) 2) = (£.2)- ((n>+ 1/ 2) 2 

then we find (since 12 = 1); < (llL,) 2) = (L2z)- (Lz)2 • Comparison of these 
two equations yields (17). 

If we do not restrict ourselves to small values of 
~cp and define the quantity ~cp corresponding
ly,[10• 11• 4J we obtain 
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