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The number operator and the creation and annihilation operators for the quanta are written
down in the phase representation. A complete set of eigenfunctions of the Hamilton operator
for the harmonic oscillator is found in this representation. The uncertainty relation between
the phase and the number of quanta is derived. The relation has the form (16’).

].. RECENTLY, a number of papers!!*! have ap-
peared which are devoted to the description of the
quantum mechanical harmonic oscillator in the var-
iables n and ¢, where n is the number of quanta
and ¢ is the phase of the oscillator. This renewed
interest is connected with the fact that the tradi-
tional description of the quantum oscillator in the
variables n and ¢ (cf., for example, [5'3]) is not
completely correct. Usually, the transition to the
description in the variables n and ¢ is made by
writing the creation and annihilation operators in
the form

a=e®yYn, at=7ne 1)

From this and from the commutation relations for
a and a* ([a, a*] = 1) it follows that

fet?,n] = e®®. (2)
This relation is considered equivalent to

The criticism of this description of the har-
monic oscillator essentially concerns two points:
All operators under discussion are defined on basis
functions which are periodic in ¢. The multiplica-
tion operator ¢ itself transforms a function from
this class to a class of functions which are not pe-
riodic in ¢, and cannot therefore be Hermitian.
Therefore the relation (3) is incorrect. [This is
usually shown by taking matrix elements between
eigenstates |n) and |m) of both sides of (3):

{mip,nln) = (n— m){m|@|n) = —idmn.

The last relation is clearly meaningless.]
The other objection relates to the following cir-
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cumstance: even if one stays within the class of
functions periodic in ¢ and uses the relation (2),
one also arrives at a contradiction. Acting with
the relation (2) on the ground state function |0)

we obtain

nei?® l O> = —ei‘P[O)’

i.e., n has the negative eigenvalue —1, which is
obviously meaningless. Susskind and Glogowerl[?1
try to avoid this difficulty by introducing the opera-
tors é'? and € 'Y which are not multiplication
(by e*19) operators in the ¢ representation and do
not commute with one another.

In the present paper we propose another method
by defining a complete system of eigenfunctions of
the operator n in the ¢ representation so that in
this representation the operator e'? is the usual
operator of multiplication by e!?.

2. First of all we introduce the operator I (as
will be seen in the following, it has the meaning of
an operator of the sense of rotation, where ¢ is the
angular coordinate). An arbitrary periodic function
¥ (@) can be expanded in a series in e!™%, where m
is an integer or a half-integer. The bilinear com-
bination ¥ (¢)¥(¢) will then be periodic with the
period 2m. The effect of the operator I is to multi-
ply e™¥ by 1if m >0 and by —1 if m < 0. The
operator of the number of quanta is defined by

= — iI.a— —-1—. 4)
dp 2
As is easily seen, the normalized eigenfunctions of
this operator and of the operator I have the form

qfnl = ..'ELei(n'i-'/z)lP, qfn, 1 ="/2__1_.‘e—i(7l+‘/2)¢; n > O, (5)
7T T
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where ¥y ; are the eigenfunctions with I =1, and
¥y, -1 are ‘those with I = —1.
We further introduce the operators a and at

1 +1 =1 -
— —1Q 19
a (e 5 “+ e 5 )]/n,

o — gl UHT 141
2 2

&

el? 4

e—iw> . (6)

It is easy to show that these operators have the
properties of creation and annihilation operators:

11+1Fn; + = Vn -+ 11Fn+l; +1, alpn; +H = anpﬂ—i? +1.

It follows from this that the operators a and a*
satisfy the commutation relation [a, a’] = 1 when
acting on an arbitrary function expanded in the
complete set of functions (5) [i.e., on a function
periodic with period 47 and satisfying the cyclic
condition ¥(¢ + 27) = —¥(¢)]. From (4) we also
obtain the commutation relations

ﬂw

[ ()] = + ar@ 1= f@n(n+g) . @

where f(¢) is an arbltrary periodic function with
period 27. In particular,

[n, ei] = Iei® + (Iei® I — ei®) (n + 1/). 6))

By defining now the Hamiltonian of the system
in the form

=(iﬁ+——;—)ﬁm=m1<—iﬁ%>, (9)

we have completed the description of the quantum
mechanical harmonic oscillator in the ¢ represen-
tation. It is easy to verify that our description is
free of the difficulties mentioned above.

3. Let us now turn to the interpretation of the
relations just obtained. We first discuss how the
harmonic oscillator is described in terms of the
variables action—angular variable in the classical
case (cf., for example, [9]). The action variable is
defined as

1
J=— dg. 10
o ‘§7 pdg (10)
Let us write q in the form
j2¢
g= Ym cos Q. (11)

From the expression for the energy in terms of p
and q,

1/2p2 + 1/2m2q2 pr— {",’{
we find

= +V2# sino. (12)

FAIN
From this and from (10) and (11) we find

H=Faol. (13)

The variable J has the dimension of an angular
momentum and its sign is determined by the sign
of the velocity of the representative point in the
p,q plane, i.e., by the sign of d¢/dt. The minus
sign corresponds to a negative J, the plus sign to a
positive J. The remaining possible solutions do not
satisfy the condition that /# must be positive. It is
evident that (6) and (9) are the quantum generaliza-
tions of the relations (11), (12), and (13). The oper-
ator —ihd/9¢ in (9) represents the quantity J (it is
the operator of angular momentum of the represen-
tative point in the q,p plane), and the operator I is
determined by the sense of rotation with respect to
¢ and replaces the + signs in (13). In the quantum
as well as in the classical case there is a degen-
eracy with respect to the sense of rotation in the
variables J and ¢ (a state is determined by the
sense of rotation as well as by the energy). How-
ever, when we go over to a description in terms of
the variables q and p, this degeneracy does not
show up at all. A state with arbitrary (but definite)
value of 1 as well as a superposition of such states
are identical as far as the probability distribution
in q and p is concerned.

In concluding this section we emphasize that in
both the classical and the quantum cases the quan-
tity canonically conjugate to ¢ is the action varia-
ble, which coincides with % /w [or h(n + Y/,)] only
up to a sign or up to the factor I in the quantum
case. This is the origin of the contradiction in (2),
which must hold for a genuine canonical variable,
which n is not.

It should also be noted that already in 1926
Dirac!?) has shown that the action takes only half-
integer values for spinless systems [cf. the well-
known quantization rule for the harmonic oscillator
(2m™ fpdq = (n + Y/2)H]. Connected with this is the
circumstance that the wave functions of the har-
monic oscillator satisfy the condition

¥ (e +2n)=—Y¥ (o).

4. Let us now show by a physical example how I
can be fixed at a definite value.

Consider a system consisting of a magnetic mo-
ment located in a constant magnetic field Hy; the
magnetic moment is proportional to the angular
momentum. The Hamiltonian for this system is

= —hel,, o=vyHy>0,

where vy is the gyromagnetic ratio, and hL, is the
projection of the angular momentum on the direction
of the magnetic field. Let the absolute value of the
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angular momentum be L > 1; then the levels of the
system with

L—M<L, M>0,

where M is the eigenvalue of L,, are well approxi-
mated by the Hamiltonian

= —hoL + Avata;
at=L~/Y2L, o= L*/y2L,
[a,at] = L,/L =~ 1.

The second term in % describes the harmonic
oscillator

H1= hoata = hon, n=L— L,

the eigenfunctions have the form
Y = (2n) ~'2 e=in@+iLlo,

If we disregard the inessential phase factor (which
is the same for all states), then this is a state with
I = —1. The operators a and a’ have the form

a=e®Yn, a+=7ne

Changing the sign of the magnetic field H; (thus
changing the sense of rotation), we obtain the other
states (close to the ground state) with I = —1,

5. We now consider the uncertainty relation.
Clearly (as noted in the papers quoted at the begin-
ning) the traditional relation AnA¢ = Y/, has no
meaning, if for no other reason than that for An
— 0 we would have A¢ — », whereas the indeter-
minacy in ¢ must not be larger than 27. We note
further that an uncertainty relation between AL,
and Ag can easily be obtained, where the angular
momentum operator is L, = —i8/9¢.

Indeed, the commutation relation for L, and
f(¢) [where f(¢) is an arbitrary periodic function
with period 27] has the form

[L:f(9)] = —i0f (9)/99;

from this we find in the usual way

ALAf = 1/2|<0f/d¢2|. (14)
For Ap < 1 the mean square fluctuation A¢ is
naturally defined as
C(Af)D =|€0f/09) |2(Ag)?;
then we find
AL Ao =12, A< (15)

If we do not restrict ourselves to small values of
A¢ and define the quantity A¢ corresponding-
ly,[ 10,11, 41 w6 obtain

ALA¢ ="/>[1—3(A9)*/n%. (16)
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In order to find the uncertainty relation between
the number of quanta and the phase ¢ [or f(¢)], we
note that the following relation is satisfied identi-
cally:“

(AL)D =(An)®) +({n) +1/2)2 =LY% (17)
Replacing ((AL,)%) in (14), (15), and (16) by
((an)?) + ({n) + '), we only strengthen the in-
equalities and find
[<(An)2) + ({n2 + 12)2]"= Af = 12|<0f | 0D |,  (14')
[(AR)2) + () +1/2)2 A =1/, Ap<<1, (15)

K(An)® + (Kn) + 4/2)80%= Ap = 1/2[1 — 3(A¢)2/n2]. (167)

These inequalities solve completely the problem of
finding the uncertainty relation between the number
of quanta and the phase.

In the quasi-classical approximation the inequal-
ities (14') to (16") can be replaced by more stringent
ones:

An Af = 1/21€0f/d9)|.

Indeed, in this case Eq. (13) holds for n > 1, and
hence

(14")

n = iLz

From this and from (17) we find that in the quasi-
classical limit

An = AL,

and (14") follows from (14).

On the other hand, in the case where the quasi-
classical approximation is inapplicable, it is mean-
ingful to give an example illustrating the possibility
of reaching an equality of both sides of (14) for
An = 0 (when according to the traditional uncer-
tainty relation Af — o, if (8f/d¢) # 0). Let

f(e¢) = sin(2rn 4+ 1) ¥ ( )=Lcos<n+1—\)
@) = s1 Q, L] ‘VR 2 ,(pv

then
(AN = (P(9)) =1/, (0f/0¢) =n+1/,,
and we obtain (n + 1/2)Af = 1/2 af/9¢.

Dindeed, n = 1L, — 'fz; {(Ar)2> = <L:*>— (Knd> + f2)?
(since I? = 1); <{(AL;)® = <L?:> —<L:>*. Comparison of these
two equations yields (17).
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