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A spin chain is considered in a model, which can be solved exactly, involving a Hamiltonian 
containing the antisymmetric part of the tensor of the interaction constant between the near
est neighbors. The system reduces to an ideal fermion gas with a dispersion law which is 
not symmetric with respect to change of sign of the quasimomentum. Correlators of the 
transverse spin components are calculated and it is shown that the system possesses a helical 
spin structure if the longitudinal magnetic field is smaller than the saturation field. 

IN the construction of a microscopic theory of 
spiral structures in ferro- and antiferromagnetics, 
one usually starts from a ground state which is 
determined classically (see, for example, the re
views [1•21 .) It remains unclear whether such an 
approach corresponds to the true state of a quan
tum system. Therefore, it seems useful to us to 
investigate the simplest model in which a spiral 
structure appears and which admits an exact 
quantum mechanical solution. 

As shown by Lieb, Schultz, and Mattis [31, and 
by Pikin and one of the authors[4J, a one-dimen
sional chain of spins ( s = Y2 ) with nearest
neighbor interaction not containing longitudinal 
( sz) spin components, admits of an exact solution. 
In the present paper it is shown that if the Hamil
tonian of the system contains a part antisymmetric 
in the x and y spin components, this leads to the 
appearance of a spin structure analogous to the 
spiral structures in antiferromagnets. In the 
previous work [3• 41, only an interaction symmetric 
in the spins has been considered. 

1. The Hamiltonian for our model is 

::JC = - ~ lihsnis~+i- J-tH ::3 snz_, 
n n 

where Jjk is a second rank interaction tensor 
( j, k = x, y), H is an external magnetic field 
directed along the z axis, and J.L is the spin 
magnetic moment at the site. 

( 1) 

If one writes the tensor J jk as the sum of its 
symmetric and antisymmetric parts, and orients 
the symmetric part along the principal axes, the 
Hamiltonian ( 1) takes the form 

n 

(2) 

n n 

Here Jx and JY are the principal values of the 
symmetric part of the tensor Jjk• and Ja 
= ( Jxy - J yx) I 2 is the antis ymmetric part. We 
shall take the constants Jx, JY, and Ja to be posi
tive. Going over to the cyclic spin components 
s~ = s~ ± s~ and using the transformation [5] 

Sn + = II amzan, 
m<n 

Sn- = rr fJmzan+, 2snz ==: fJnz = 1- 2an+an., (3) 
m<n 

where an and a; are Fermi operators, we obtain 

lx+ly-2ila"" + 
::JC = - LJ an an+i 

4 
n 

(4) 

n 

N is the number of sites in the chain, which later 
will be made infinite. 

To diagonalize the Hamiltonian (4) we transform 
to the Fourier components a,\= N-1/ 2 ~exp(-iAn)an, 
( -1r s ,\ s 1r ) • Then 

NuB "" 3e =--·-+ .LJ {A,_a,.+a,_ + B~o.a~o.a-1. + B~o.*a_~o.+a~.+}, 
2 I. 

(5) 

960 
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where 

AA = JlH- 1/2 (lx + !y) cos A.- la sin A., 

(5') 

Performing a u, v-transformation to new Fermi 
operators b ~ and bA.: 

a"= u"b" + v_"*b_A+, a"+= u""b,.+ + v_,.b_,., (6) 

we bring the Hamiltonian (5) to a diagonal form: 

3f = ~ (b,+bl..- _!_)E),. (7) 
" 2, 

The dispersion of EA. is given by 

E1.. = 1i2(A,.- A_,.) + 112[ (A,.+ A-AP + 4IB,.- B_,.,zp, 
(8) 

and one can select either sign in front of the radi
cal. As is clear from (8), the two values of EA. are 
obtained from each other by the replacement of A. 
by -A. and changing the sign of EA. (EA.-= -E_A.+)_D 
One should observe that the dispersion law (8) is 
not an even function of A.: E_A. ~ EA.. 2> This is con
nected with the presence of the antisymmetric 
term ( J a ~ 0) in the Hamiltonian. We also give 
the expressions for the parameters of the u, v
transformation ( 6): 

lu,_lz= ~--'B,-B_",z 
(e,_- A,.)z+ IB,. -B_,.,z' 

A,.-~;,. 
V•- U• 
~ -B * B * ~· "- _, (9) 

In the simplest case, in which Jx = J y = J, the 
Hamiltonian is already diagonal in the operators 
aA., as is evident from formulas (5) and (5 1), with 

2A = A" = 11H - l cos A. - l a sin ').., 

or (10) 

where 

. la 
f() = arcsm . (11) 

iP+ la2 

If J.£H > [J2 +J2 ]11 2, then ~ > 0 for all A.; for 
J.£H < [ J 2 + J~ ]il2 we have EA. < 0 in the interval 
A.t < A. < A.2, where 

l)Selecting one of the values of E;o.. in (7), we obtain the 
time-dependent operator b;o.. (t) = b;o.. exp(-iE;o.. t/h). Then obvi
ously, the second value will correspond to the time dependence 
ence b_;o.. \t). Therefore it is clear that the other choice for E).. 
in (7) corresponds to the canonical transformation L;o..--> b_;o..+. 

2)An analogous dispersion law with the same symmetry 
properties, but for boson excitations, is developed in the paper 
of Bar'yakhtar and Maleev [6 ], who started from a classical 
ground state with a spiral structure. 

llH 
A-1,2 = q> + arc cos--;:::::== 

jJ2 + la2 
(12) 

and EA. > 0 outside this interval. Hence it follows 
that the energy of the "true" quasiparticle, which 
represents the excitation above the ground state, 
equals -EA. for A.t <A. < A.2, and EA. outside this 
interval. Within the interval A.1 < A. < A. 2, the 
transition to elementary excitations thus corre
sponds to a canonical transformation, for which 
the creation and annihilation operators change 
roles. The ground state energy is separated out, 
being equal to 

~o = - 1/z~ IE"- I· 
),. 

The magnetic moment in the ground state equals 

Mo(H)= ---=-- 1--arccos--- . a~o 11N ( 2 11H ) 
an 2 :n: iJ2+Ja2 

M 0 becomes zero at H = 0 and reaches saturation 
at J.£H = [J2 +J~/1 2 • 

2. The absence of symmetry relative to the 
replacement of A. by -A. in the dispersion law 
( 1 0) is connected with the noninvariance" of the 
single-particle excitation Hamiltonian, h, relative 
both to the time-reversal operation T and to 
space inversion I. 

In order to verify this, we shall examine the 
wave function of the state with a single excitation 
of quasi-momentum A.: lfiA. = a~I/J<o>, where 1/J(O) is 
the wave function of the state without excitation. a> 
Inverting relations (3), we obtain a~ = ITa m z sn-. 

m<n 
Hence 

"'" = l~ ~ ei1..nsn -'IJ(O) 

n 
(13) 

(we have used the fact that amzi/J<o> = 1/J<o> for all 
m). 

As is evident from ( 13), the function gn 
= N-11 2exp ( iA.n) plays the role of the wave func
tion of an elementary excitation in the coordinate 
(lattice-site) representation, and the Schrodinger 
equation for it, hgn = Egn, has the form 

- 1/2J(gn+t + gn-1} 

+ 1/2ila(gn+t- gn-t) + 11Hgn = Egn. (14) 

This is obtained directly from the equation f/ClfJA. 
= ElfiA., where 3C is the Hamiltonian (2) with Jx 
= Jy = J, and E = E - NJ.£H/2. From Eq. (14) it is 

3)Generally speaking, 1/J(o) is not the wave function of the 
ground state since E;...for /-(H < [J 2 + Ja 2 ]'h is not positive for 
all A. For /-(H > [J2 + J a 2]'1• we have E;o.. > 0, and 1/J(o) is the 
ground state. 
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seen that h* = ThT-1 ~ h, that is, the Hamiltonian 
h is not invariant to time-reversal. In exactly the 
same way it is seen that Ihr1 ~ h, where Ign 
= g_n, which also leads to an asymmetrical dis
persion law. We note that the Hamiltonian (2) of 
the entire system is not invariant to space in
version, 4> but is invariant under time-reversal T. 

3. We turn now to the investigation of the 
transverse spin structure. In equilibrium, the 
average value of the transverse spin components 
at any site is equal to zero, since their operators 
contain an odd number of Fermi operators. 
Therefore the spin structure in the xy plane can 
appear only in the correlation functions. We shall 
find the probability that if the projection of the 
spin on the x-axis equals +% at site l, then at 
site l +m the spin projection on the ~-axis, 
which makes the angle ,J with the x-axis in the 
xy plane, is also +Y2• To do this, we consider a 
two-particle density matrix fz ,l+ m for the spins 
at the sites l and l + m: 

/z, l+m = Sp' e-ll:tf, ~ = 1/kT, 

where the prime signifies that the trace is taken 
on the spin variables at all sites except l and 
l + m. The decomposition of the matrix fz ,l +m 
in a complete set of matrices has the form 

fz.z+m = 1/4 ( 1 + Bz<Jz + Cl+m <1l+m + Dl~+mrJzhJz!m), 
j, k = x, y,z, 

where 

D jk < . k > l,l+m = rJz3rJ,z+m , a= 2s. 

The brackets ( ) denote an average with an 
equilibrium Gibbs distribution. The conditional 
probability Wz ,l +m of interest is, evidently, 
represented by the diagonal matrix element of 
the operator fz z +m in the state with CJlx = 1 and 

~ ' 
CJ[ +m = 1. Recognizing that in our system (CJzx) 

= (CJZ +~) = 0, and using the equality CJl+ fn 
= CJZ +mx cos ,J + CJltm sin J, we obtain 

Wz, l+m = 1/4( 1 +(azx<J~m) cos 'fr +(crzxrJz~m) sin 'fr). ( 15) 

The maximum of this probability occurs at the 
angle given by 

t 'fr (•azxar...m> (szxs,~m) 
an m = (az'>;rJX > = (S{SX >' (16) 

l+m l+m 
so that cos Jm has the same sign as (CJz xCJl +fix). 

The angle Jm characterizes the transverse 
spin structure of our system. The investigation of 

4 lwe thank I. M. Lifshitz and E. P. Fel 'dman for directing 
our attention to this. 

the structure thus reduces to the calculation of the 
correlators (szxsz+mx> and (sz xsz+mY). 

4. It is convenient to calculate the correlator 
(szxsz+m+> = (szxsz+mx> +i (szxsz+mY). Us
ing Eq. (3), we obtain 

m-t 

2 (szxs;tn> = ( ( az+- az) IT ( 1 - 2aztaz+k) az+m). 
k=! 

In the following, we shall limit ourselves to the 
spectrum (10). Since correlation functions with 
unequal numbers of creation and annihilation 
operators vanish, all averages containing az in 
the first parentheses are zero, i.e., 

m-t 

2 <szxSf+m> = < az+ IT (1- 2azt,,al+n)az+m ). (17) 
k=1 

Using the identity 1- 2a+a =(a++ a)( a+- a), 
one can also write Eq. (17) as 

m-1 

2(s1xsz~m> =< az+ IT (atf,h + az+h) (at.,- az+k)al+m)· 
h=1 (18) 

The terms in parentheses in Eq. (18) anticommute 
with each other and with az and az +m. With the 
aid of Wick's theorem one can write (18) as a sum 
of products of all possible paired averages, treat
ing the parentheses as single operators. We 
shall consider the case H = 0. The correlation 
functions < ( az+m+ + az +k)( az +k+ - az +k)) then 
vanish, since 

((azth + al+n) (az~k- az+n)>= 1- 2(atf,hal+,)= 2(s!+k), 

and in the absence of a magnetic field the spin 
average at any site equals zero. Therefore, 
terms which contain a pairing of operators with 
identical indices must vanish in (18). Each of the 
remaining terms in the expansion can be written 
as a product of m factors, which appear as pair
averages of operators with different indices. On 
the other hand, from Eq. (17) one sees that after 
expansion of the brackets, only one term, corre
sponding to the multiplication of the second 
terms 2a+a from all parentheses, contains 2m 
factors, which, after application of Wick's 
theorem, become a sum of products of m paired
averages. Thus, 

m-1 

2(sr<sz~,)= (-2)m-!< az+ IT az~hal+hal+m) , (19) 
h=l 

where the prime means that only pairing of opera
tors with different indices is allowed. 

Ordering the operators in (19) such that an+1 

follows an+• and noting that the factor ( -1 )m-1 

then appears, we obtain 



SPIRAL STRUCTURE IN A ONE-DIMENSIONAL CHAIN OF SPINS 963 

It is easy to see that this average may be written 
as the determinant5> 

4 (sz"'s/+m) 

(a1+az+l) <ataz+2) <ataz+m) 

=2m 0 (a/+lal+2) (aT+tal+m) (20) . . . 
( a/+m-1 a 1+1) 0 (af+m-lal+m> 

Zeroes occur at the positions of the elements 
( an+an). The elements of the determinant depend 
only upon the differences of the indices (these in
dicate the number of rows and columns), and are 
determined by the equation 

1 lt eil..r 
(an+an+r)= 2n ~~ exp{e~../kT} + 1 d'A. (21) 

-n 

At zero temperature, as is seen from (21) and 
(10) [for H = 0 1. one obtains 

g pq ( 1p) = (ai;_p-lal+q)T=O 

= ~ exp{i(q- p + 1)cp} sin(q ·- p + 1) ~' (21') 
J't q-p+1 2 

where qJ is given by Eq. (11). 
The general term of the determinant (20) has 

the form, except for sign, gta ( qJ) g213 ( qJ) · · · 
gmw (qJ); a, fJ, • • ·, w denote a certain permuta
tion of the numbers 1, 2, · · · , m. The dependence 
of this term on qJ is given, according to (21), by 
the exponential 

exp {icp{a + (~- 1) + ... + ( w- m + 1)]} = eim<P, 

since a + {3 + · · · + w = 1 + 2 + · · · + m = m(m + 1)/2. 
Thus the common factor exp ( imqJ) can be taken 

out of the determinant. We find 

4(s1xs1~m)= (2/n)meim<PDm, Dm = ldpql, (22) 

so that, by (21), 

d -j 0 pq - ( -1) ((p-q)/2)+1 

p-(q+1) 

for p-q- odd 

for p - q - even (23) 

To calculate the determinant Dm we proceed 
as follows. Let q have the same parity as m. We 
subtract the m-th column, multiplied by 
( -1) (m- q)7 2, from the q-th column. The non-
zero pq-element is then equal to 

q-m 
( -1)(p-q)/2 . 

(p- q -1) (p- m -1) 

Doing this for all q, we take the common factor 
(p- m- lf1 out of the p-th row, and q- m out 

S) An analogous determinant is encountered in expressions 
for the correlators in the two-dimensional Ising model (see, 
e.g., [7]). 

of the q-th column, except for the m-th ( p and q 
have the same parity as m). Using an analogous 
procedure for the m-th row, we can factor the 
common term m - p from each row except the 
m-th, and ( m - q - 1 r 1 from each column ex
cept the m-th. The remaining determinant equals 
-Dm-t· Thus we obtain the recurrence relation 

' (m-n) 2 

Dm = IJ (m _ n) 2 _ 1 Dm-t. m ~ 3, 
"<.m 

where the prime means that n runs through 
values having the same parity as m. Hence, con
sidering that D1 = 1 and D2 = 1, we obtain 

_ I 4n2 )m-2n 

Dm - IJ \..-4n2- 1 . 
!o;;;;n<m/2 

(24) 

For large m it then follows the asymptotically 
Dm ~ ( 3../ 3/4 )m, as is easily seen by taking the 
logarithm of (24) and changing the sum to an inte
gral. For the correlator (szxsl+m+> we then 
obtain asymptotically 

(sz"'~i+m>""' exp{- am+ imcp}, 
2n 

a=ln-=. 
31"3 (25) 

Thus we see that the correlation vanishes at in
finity, G> i.e., 

lim (sz"'st.m>= 0. 
m-+'00 

From Eq. (22) follow the expressions for the 
transverse correlators of interest to us: 

(sz"'Sz~m)= 1/&(2/n)mDmcos m<p, 

(sz"'s1t,.) = tj ~ (2/ n) m Dm sin mq>. (22') 

Thus, from (16), one sees that the angle Jm of 
spin "rotation" on going through m sites is mqJ. 
Thus the angle qJ is the "rotation" angle corre
sponding to a displacement equal to a lattice con
stant. We note that this same angle occurs in the 
dispersion law (10), resulting in E_A. ~ Ell.· 

The dependence of the correlator (szxsz+m+> 
on qJ in the form exp ( imqJ) actually is not con
nected with the condition H = 0 and the represen
tation of the correlator as the determinant (20). 
When H < [ J 2 + Ji 1112 such a dependence can be 
discerned directly from the original formula ( 17), 
if one notes that each term of the expansion con
tains the factor exp ( imqJ), since the pair corre
lators have the same the dependence upon qJ as 
in the absence of a magnetic field (see (21)). When 
saturation is reached, at H = [ J 2 + Ji 11/ 2, both 

6 )The absence of correlation at infinity in our case also 
follows from a limiting formula for the Toeplitz determi
nants. [8] This result is connected with the one-dimensional 
system. 
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transverse correlators become zero. For exam
ple, for nearest neighbors 

+ 1 [ (11H) 2 J'i2 . 
\si"Sr+t)= 2:rt 1- ]2 + la2 e''~'. 

For nonzero temperature, the dependence of 
the correlators on cp is retained also in the case 
of the dispersion law (10). To verify this, it is 
sufficient to replace A. by A. + cp in Eq. (21). 

The longitudinal correlator (sz zsz +mz) is 
expressed by Fermi operators with the help of the 
simple formula 

\stsZ+m)-(slz)(sf+m>= -I (al+al+m) 12• 

In the absence of a magnetic field at zero temper
ature, 

< z ) sin2 (m:rt/2) 
StzSt+m =- . 

(:rtm)2 

It is interesting to notice that the longitudinal 
correlator, unlike the transverse ones, does not 
decrease exponentially, but is inversely propor
tional to the square of the separation. We remark 
that the three-dimensional Fourier component of 
the transverse correlator has a characteristic 
maximum at wave vector k = cp, related to the 
existence of the spiral structure. The finite width 
of the peak is connected with the absence of long
range order, and equals a (see Eq. (25)). 

5. These results can be interpreted classically. 
Let us take the spins in the Hamiltonian (2) to be 
classical vectors with components 

Sn"' = S sin 'frn COS <jln, 

SnY = S sin 'frn SiD <jln, 

Snz = S COS 'frn. 

Then the Hamiltonian can be expressed in terms 
of angles: 

;;e = - s2 y ]2 + J a2 ~sin 'frt sin 'fi't+t cos ~~ - 11H s ~ r.os {}!, 

where {3z = cpz+t - cpz - cp, sin cp = Ja/[J2 + J~]1/ 2 , 
and it is assumed that Jx = Jy = J. By minimizing 

;;e relative to f3z and J.z, it is easily seen that two 
homogeneous solutions exist: 

1) sin J. = 0, {3 arbitrary; 

2) sin~ = 0, cos -fr = JlH I 2syJ2 + lo:2 

for 11H < 2s'fJ2 + la2• 

For J.LH < 2s [ J 2 + J~ ]11 2, the minimum corre
sponds to the second solution with f3 = 0, i.e., 
cpz+t = cpz +cp. This means that the transverse 
component of a classical spin turns through an 
angle cp upon translation to a neighboring site; 
that is, a spiral spin structure exists. For 
J.LH =2s[J2 +J~]11 2 , saturation occurs, the trans
verse components become zero, and the structure 
vanishes. The spiral structure, which in the 
quantum system appears only in the correlation 
functions, appears in the corresponding classical 
system as a rotation of the spin in passing from 
site to site. 
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