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Equations are derived and analyzed which describe the behavior of the electron and ion dis
tribution functions and the energy spectral density of plasma noise. The derivation is based 
on the solution of the nonlinear problem of instability of a nonisothermal plasma situated in 
an external electric field. It is shown that in a quasistationary regime limitation of the growth 
of ion-acoustic oscillations is accompanied by a sharp increase of the plasma resistance and 
by heating of both the electronic and ionic plasma components. The most effective is heating 
of resonant ions for which the effective temperature grows appreciably faster than the elec
tron temperature and in a number of cases may considerably exceed the latter. Under certain 
conditions (sufficiently strong electric fields) the process is accompanied by the appearance 
of high energy runaway electrons and ions. 

IN our preceding paper[t] we considered, within 
the framework of a theory that takes both pair 
collisions and particle scattering by ion-sound 
noise into account, the nonlinear problem of cur
rent instability in a nonisothermal plasma in an 
external electric field, and we showed, in particu
lar, that limitation of the plasma-noise growth is 
accompanied by a rise in both the electron and ion 
temperatures. However, when the anisotropy of the 
ion distribution function is neglected, the results 
obtained in that paper are valid, strictly speaking, 
only when the ion-ion collision frequency is large 
enough so that the principal role is assumed by the 
collision wave absorption, and not by Cerenkov ab
sorption. In addition, we circumvented in that paper 
the entire question of heating of the resonant ions, 
since this question cannot be analyzed in detail 
without taking the ion-absorption anisotropy into 
account, and requires a simultaneous solution of the 
equations for both the electron and ion distribution 
functions. Such an analysis is, however, of interest 
from the point of view of the different mechanisms 
for plasma heating, which in turn is of great impor
tance to the controlled-fusion problem. 

The purpose of the present paper is to general
ize the results obtained in[t] to the case both colli
sions and Cerenkov absorption of the waves by the 
ions are significant, and also to derive and analyze 
equations that describe the heating of the ionic and 
electronic components of the plasma. 

1. FORMULATION OF PROBLEM AND FUNDA
MENTAL EQUATIONS 

Let us consider a spatially-homogeneous fully
ionized non-isothermal plasma with Te » Ti, 

situated in an external electric field E whose direc
tion is chosen in the negative z direction. 

We denote by W(k, t) and P = kW/w the spectral 
densities of the energy and momentum of the ion
sound noise in the plasma, and by fe(V, t) and fi(v, t) 
the electronic (e) and ionic (i) distribution functions 
normalized to unity. The system of equations des
cribing the behavior of the functions fe, fi, and Win 
the lowest order in the nonlinearity (the nonlinear 
approximation) is conveniently written in a coordin
ate frame in which the oscillation frequency w(k) is 
an isotropic function of the wave vector k, i.e., in a 
coordinate frame in which the average velocity vTi 
of the thermal ions responsible for the dispersion 
law is equal to zero. Accordingly, the quantities 
fe, fi, and W will henceforth be taken to mean the 
corresponding distribution functions in just this co
ordinate frame, which does not coincide with the 
laboratory frame, and which moves relative to the 
latter along the Oz axis with a certain velocity V0(t) 
which, in general, is a function of the time. Conse
quently we must include in the expressions for the 
forces Fe,i acting on the electrons and the ions, 
besides the force connected directly with the elec
tric field, also the inertia forces, i.e., we must put 

Fe,i = ± eE- me,,dVo/dt (e > 0). (1) 

where me and mi are respectively the electron and 
ion masses. 

All ions can be divided into two groups, depend
ing on the value of the velocity v. Ions with veloci
ties v < s 0, where s 0 is the phase velocity of the 
ion-sound waves excited in the plasma, will be 
called thermal, and those with v > s 0 resonant. The 
thermal ions determine the dispersion law and the 
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magnitude of the collision damping, while the reson
ant ones are wholly responsible for the Cerenkov 
absorption of sound by the ions. Accordingly, the 
quantities pertaining to thermal ions will be marked 
by a subscript T, and the resonant ones by r; for 
example, the densities of the thermal and resonant 
ions are 

( 2) 
v<so v>so 

We can similarly introduce the concepts of aver
age random-motion kinetic energies WTe• WTi• and 
wr (or the temperatures Te, Ti, and Tr) of the 
electrons and the thermal and resonant ions, and 
accordingly their mean-square velocities vTe• vTi• 
and vr: 

3 3 n 1 m;vz 
Wr = -m;vr2 = -Tr =- J --f;dv. 

2 2 nr v>s, 2 
( 3) 

The system equations for the distribution func
tions of the electrons and resonant ions, and for 
the spectral density of the noise energy, will take 
the form (see, for example, [2 ]) 

of · F · of · a , ·)of · 
~+~~=-D~~·' .......... ::'+St ·(/ ·) v~s0, (4) at lne,i OVz av; 'l OVj e,, e,, ' 

dW/dt=r(k)W, r(k)=v.+v;-ycol. (5) 

The first term in the right side of ( 4), which is 
proportional to 

(e,i) :It m; ~ D;i (v) = --- dks2 (k)k;kiW(k)c'l(ks- kv), 
nr m2 . e,, 

( 6) 

takes into account the scattering of the particles by 
the ion-sound noise, and the second term takes into 
account the pair collisions. The first two terms of 
(5), which are proportional to 

n m; a 1 ( kv) 
Ve,i = :!t---ks3 - J c'l s -- f ·dv 

nr lne,i as k "·' ' 

describe the Cerenkov excitation (absorption) of 
the ion sound by the electrons and ions of the 
plasma, and the last term 

1 n (r lne Te )'{, Sm2 
'\'col=-- ~: --- --Vr, 

2l'n nr m; T; s2 

(7) 

( 8) 

describes the attenuation connected with the ion
ion collisions. [3] In formulas (4)-(8) v is the par
ticle velocity, k the wave vector, s = s(k) = w(k)/k 
the phase velocity, sm = (nTTe/nmi) 1/ 2 the maxi
mum phase velocity of the ion-sound waves, and 
vT = v e(vTe), where v e(v) = 47re 4nTL/m~ v3 is the 

frequency of the electron-ion collisions (L is the 
Coulomb logarithm) . 

In order to make Eqs. ( 4)- ( 8) a closed system 
they must be supplemented with an equation for the 
thermal- ion distribution function. Recognizing, 
however, that the system (4)-(8) contains only the 
temperature of the thermal ions, this equation can 
be replaced by the simpler equation for the average 
energy wTi of the thermal ions. The latter, on the 
other hand, can be readily obtained by integrating 
the corresponding kinetic equation, and obviously 
is of the form 

d 1 m;v2 

-nrWr;=\'co! ~+ J --St;dv, 
dt v<so 2 

(9) 

where the first term, 'Ycoll (fj ( ff/ = f Wdk is the total 
energy density of the plasma noise) takes into ac
count the increase in the thermal-ion energy by 
wave absorption resulting from ion-ion collision, 
and the second term represents the energy ex
change that occurs in collisions of thermal ions 
with electrons and resonant ions. 

It should be noted here that inasmuch as Eqs. 
( 4) and ( 5) take into account only the so-called 
resonant interaction of the particles with the waves, 
and do not take the adiabatic interaction into ac
count, [ 4 J the quantities wTe and w r defined in ac
cord with (9) do not include the kinetic energy of 
the vibrational motion of the particles. Accordingly, 
we shall take to quantity wTi (or T i) to mean like
wise only the "true" temperature of the thermal 
ions, and not including the kinetic energy of the 
oscillations, which can be readily shown to equal 
f£/2. 

It remains for us to connect the forces F e,i with 
the value of the external electric field E. This can 
be readily done by recognizing that the total change 
in the momentum of the thermal ions should vanish 
identically in our chosen coordinate system: 

d d.ffo 
-nTm;!vr; J = nT[F; +Fer]+ 'Yeo! '!!fo +- =' 0. (10) 

dt dt 

Here 

fP = I ~ Pdk I= I ~ : Wdk I (11) 

denotes the total momentum density of the ion
sound waves in the plasma. The direction of the 
momentum, as is clear even from symmetry con
siderations, is opposite to the direction of the ex
ternal electric field vector E, i.e., it coincides 
with the direction of the Oz axis. 

The physical meaning of the different terms of 
(10) is obvious: The first describes the change in 
momentum under the influence of the external force 
Fi, the second under the influence of the friction 
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force resulting from the pair collisions of the 
thermal ions with the electrons and the resonant 
ions, the third the change in momentum due to wave 
absorption resulting from the presence of ion-ion 
collisions, and the last the change of momentum due 
to the presence of adiabatic interaction of the 
thermal ions with the ion-sound waves. The first 
two terms arise even in the linear approximation 
(in the noise amplitude), whereas the last two are 
connected just with the allowance for the nonlinear 
interaction of the particles with the waves, and do 
not arise in the linear theory. 

Eliminating now the velocity from (1) with the 
aid of (10) and taking (5) into account, we get 

Fi =-Fer _ _!_.~ (ve+·w]Pzdk, (12) 
nT 

where Pz denotes the projection of the vector P on 
the z axis. 0 

2. SOLUTION OF KINETIC EQUATIONS AND 
EQUATIONS FOR THE TEMPERATURES 

Thus, the problem consists of simultaneously 
solving the system of nonlinear equations (4) and 
(5), supplemented with Eq. (9) for the temperature 
of the thermal ions. We do not attempt here, how
ever, to find the complete solution of this system, 
and confine ourselves only to a more or less de
tailed analysis of the system and to the derivation 
of equations for the average kinetic energies (or 
temperatures) of the electrons and of the thermal 
and resonant ions, and of the equations for the elec
tron and ion currents. 

The system ( 4) and ( 5) is analogous in many 
respects to the initial system of our preceding pa
per[t] . The only difference lies in the presence of 
anisotropy of the ion absorption, an anisotropy con
nected with the distortion of the distribution func
tion of the resonant ion as a result of their scatter
ing by the plasma noise. The latter, in turn, re
quires the simultaneous solution of Eq. (5) for the 
spectral energy density of the ion-sound noise and 
of the kinetic equation, not only for the electron 
distribution function, but also for the ion distribu
tion function. This solution, however, can be ob
tained by a method which is perfectly similar to 
that used by us earlier[!] to find the quasistationary 

l)By virtue of the axial symmetry of the problem, the terms 
proportional to other components of the vector P vanish after 
integration in k-space. 

solutions for the electron distribution function and 
the spectrum of the plasma noise. 

Indeed, one of the major factors that enables us 
in[t] to simplify greatly the initial equations and, 
in final analysis, to find the solution for the elec
tron distribution function, was the fact that the 
main contribution to the Cerenkov radiation (or 
absorption) was made by particles with velocities 
v » s, by virtue of the fact that the thermal veloc
ity vTe of the electrons greatly exceeds the speed 
of sound s. On the other hand, if we use the results 
of[1] and estimate the rate of increase of the 
resonant-ion energy wr, then it is easy to verify 
that they are heated much more effectively than the 
electrons and the thermal ions.2> It is therefore 
natural to assume, just as in[t], that after the lapse 
of a certain time there is established a certain 
quasistationary state, in which the anisotropic part 
of both the electron and the ion distribution func
tions will vary quite slowly, and the average 
thermal velocity of the resonant ions in this state 
will greatly exceed the phase velocity s of the ion
sound waves excited in the plasma. In other words, 
the main contribution to the Cerenkov absorption 
will be made, just as for the electrons, by ions with 
velocities v » s, and the solution of the equation 
for the distribution function of the resonant ions can 
be obtained in exactly the same manner as used in [t] 
for the electron distribution function. 

However, before we proceed to solve Eqs. (4) 
and (5), we note that the waves that will grow fast
est in the unstable mode will obviously be those 
with phase velocities s (or wave numbers k) corre
sponding to the maximum value of the total incre
ment r. On the other hand, just as was done ear
lier in [t], we can show that the increment r (k) 
cannot assume a maximum value for a finite range 
of values of s (or k), and only for one value s = s 0 

(or k = k0). We can therefore assume that in the 
quasistationary mode considered by us, when rt 
» 1, the plasma will contain only waves with phase 
velocities s = s 0• Since we are interested only in 
non-trivial solutions, i.e., solutions corresponding 
to nonzero total noise energy [f;, we must put 

W(k) = W (~) ll(k- ko) (13) 
0 k k2 • 

where k0 and s 0 are the values of the wave number 
and of the phase velocity for which the total incre
ment r = 'Ye + 'Yi- 'Ycol is a maximum. 

2)Simple estimates show that the temperature T r of the res
onant ions reaches a value of the same order as the electron 
T e already after the time r~a) "' meso/eE needed to establish 
the electron distribution function. 
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Thus, going over in velocity and wave-vector 
space to spherical coordinates, 

v = {v, 9, !Jl}, k = {k~ 8', !Jl'}, 

putting f . = f<O>.(v) + fCO.(v, 0), where f<t>. « fCO>. e,1 e,1 e,1 e,1 e,I' 
neglecting small quantities of the order of s0/vTe 
« 1 and s 0/vr « 1, and omitting the intermediate 
steps, which are perfectly analogous to those given 
in[t], we obtain for the functions f~o.>i and f~1,>i the 
following equations: 

(0) 

iJfe,i = s+ (/.0) ) 
iJt ..,,i e,i 

2 
l~e,i(v)--B2 (6) ]} 

+ 1 +A(6) ' 
(14) 

iJf!~f Ue,i(v) + B (6) iJj~}i ar = - 1 + A <6> av 1 
(15) 

where, in accordance with the definition (6) andre
lation ( 13), we have for v > s 0 

B(6)= 
4nmtkoSo3 

nTme2VTe8VT 

Fe,i 
Ue,i(v) = -· ·---, 

me,iVe,i(v) 

11~ 

S W 0 (x)x2dx 

(1- 62- x2)''• 
-11.-;• 

Y1-li.2 

1 ~ W0 (x)xdx 
1 - 62 - ( 1 - sz - x2) ''• ' 

-1 1-;• 

4ne4nTL 
'Ve,;(v}= 2 3 ' m .v ••• 

and for v < s 0 we have A = B = C = 0. Here ~ 

(16) 

= COS 0, X = COS 01 , and 0 = 01 are respectively the 
angles between the Oz axis and the vectors v and k. 

In the derivation of (14) and (15) we used a colli
sion integral in the Landau form [s,sJ and took ac
count of the fact that in the velocity region vTi « v 
« VTe of interest to us this integral can be repre
sented with sufficient accuracy in the form 

(t) 
S (I ) _ S (0) {} 1 - 62 8/e,i 

1:.e,i Je,i - te,i(/e,i)+ 86 - 2-ve,i(v}----a[, (17) 

where ve,i(v) denotes the frequency of collision of 
the electrons ( v e) or of the resonant ions (vi) with 

the thermal ions3>. 
To determine s 0 we need expressions for the 

increments Ye and Yi in the vicinity of the point 
s = s 0• It must be borne in mind here that since the 
spectral energy density W(k, x) of the ion-sound 
noise has in the approximation considered here a 
6-like character, the diffusion coefficients n{~. i) 
are discontinuous functions of the velocity v. IJ 
Consequently, while the distribution functions 
themselves are continuous, their derivatives with 
respect to the velocity, and consequently the deriv
atives of the increments Ye and Yi with respect to s 
are discontinuous at the point s = s 0• We present 
accordingly the values of the increments at s - s 0 

- 0 and s - s 0 + 0. Going over to spherical coor
dinates in (7) neglecting as before the small quan
tities of the order of s 0/vTe and s 0/vr, and taking 
into account the expressions (14) for arW.j a~, we e,1 
get for y e and Yi the following expressions: 

ks' s I Qe,i(x) _ 1 

y (s) = y<o>. --
8• i •· ' koso' Q . ( ) /(O) ( ) e, 1. X _ s,i S 

s jcol. (s ) e,' o 

where 

(o) n mi (O) 
'Ve,i = 2n2 ---koso'le,i (so), 

nT me,i 
1 

Qe,i(x) = 2x ~ dJ.l qe,i(Jtl'1- x2}, 
1(. ,'1- u,2 0 , • 

for S-+So +0 

for S-+So-0 
(18) 

(6)- zfe~t+B(s) <O> 3 Fe 1 1 
qe,i - 1+A(6) ' Ue = 4n.-mevT-:ftvT-J!0>(so) 

(O) 3 F; 1 nr mi 1 
Ui = ---·-------. (19) 

4nmeVTe&vT n me ~<0>(s0} 
' 

Consequently, the total increment r(s, x) can be 
represented in the form 

f(s,x) 

(o) (O) r Q* (x) J ks' 
[ye +Yi] ----1 ~k 6 -ycol(s)fors-+so+O 

s oso 

[ co> (O)] Q* (x) ks4 

Ye +Yi --s koso" (20) 

1.0) (0) 

[ 
(O) e (s) (OJfi (s) J ks' 0 

- Ye t<:>(so) +y; j<~>(so) kosq' -yicol(s)fors-+so- , 

3 >we have neglected here the insignificant difference be
tween the Coulomb logarithms L which enter in the expressions 
for the collision frequencies Ve and Vio and assumed for sim
plicity that the ions are singly-charged. 

' 
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where 

2x 1 d --Q*(x)=-~ 11 q*(l1l"1-x2), 

n )'1- 112 
0 

u*+B<S> 
q·(~)=--~ 

1 +A(~) ' 

(0) (0) + (0) (0) 
'Ve Ue 'Vi U; , u• = -'------

yo>+ y<o> 
e ' 

Using these expressions it is easy to obtain an 
equation for the time variation of the total momen
tum density fP of the plasma waves. 

Indeed, let us assume for concreteness that the 
total increment r(s0, x) is positive when x > x0 and 
negative when x < x0• We assume accordingly that 
the noise intensity W0(x) differs from zero only in
side a cone with a vertex angle e' = e0, i.e., only 
when x > x0 = cos e0 , and is equal to zero when 
x ~ x0, i.e., outside this cone. We assume also that 
the angle e0 is close to n/2, so that x~ « 1. Such a 
situation, as follows from [1], takes place if the 
electric field E is at least several times larger 
than the quantity 

E . = !._ 1/ '!-._ meVTe'VT 1/ me.!!__~ 
hm 3 V n e V m; Sm 

below which there is no instability at all4 • We now 
multiply (5) by k and integrate over k-space, taking 
(20) into account. Then, bearing in mind the iden
tity 

reversing the order of integration in the double 
integrals, and neglecting small quantities of the 
order of x~ « 1, we obtain for f? the following equa
tion: 

df!J ( 3 ) - = [nFe + nr F;] 1- ~fio2 - 'Vcolffo, 
dt . 2 

(22) 

where 

(23) 

Since we are considering here the case when the 
noise intensity is much higher than thermodynamic 

4 >we note that the assumption that x 0 is small is not of 
principal significance. In the opposite case, when x 0 - 1, all 
the calculations can also be carried through to conclusion, 
but the resultant formulas are more cumbersome. Furthermore, 
greatest interest attaches precisely to the case of large super
criticality, when E » Eum. 

equilibrium value, we have A » 1 and consequently 
X5 « 1 (in the limit as W- 00 we have x~ - ~ s 0/u* 
« 1). We can therefore neglect the noise intensity 
in the first approximation, and we get for .'P a 
linear differential equation, the solution of which 
can be obtained in a trivial manner. From this 
equation it follows, in particular, that if we neglect 
pair collisions (i.e., when Ycol = 0), the total 
momentum of the ion-sound waves increases 
linearly with time. From the physical point of view, 
incidentally, this result is perfectly natural and is 
a direct consequence of the law of conservation of 
the total momentum of the system. 

Taking (22) into account, we can now find the 
final expression for the forces F e,i· Using the 
collision integral in the Landau form (see also the 
paper of Sivukhin [S J) and taking into account ex
pression (15) for 8f~1.va~' we get after simple cal
culations 

n 1 3 [nF.+npFi} 
F fr = - J m1v~ St; dv = · x02• 

nT < 2 nT 
v So 

(24) 

Substituting further this expression (12) and recog
nizing that TIT + nr = n and that according to (22) 

I X dfP 
J [y~+ y;]-W dk =-+ 'Vcol fP 

so dt 

we get 

F1 =-F.= -eE. (25) 

Just as the equation for the total noise momen
tum f?, the equations for the average kinetic ener
gies (or temperatures) of the electrons (wTe), 
thermal ions (wTi), and resonant ions (wr) can be 
readily obtained even without first solving Eq. ( 5) 
for the spectral noise density W(s, x). However, 
the coefficients of these equations will depend, al
beit weakly, on the concrete form of the function 
W0(x). Therefore, in order to impart a concrete 
significance to these coefficients, we shall first 
solve (5) and find the explicit form of W0(x). 

An analysis of (5) shows that during the first 
instants after the occurrence of the instability the 
fastest to increase are the waves propagating along 
the Oz axis, i.e., corresponding to x = 1. However, 
as the amplitudes of these oscillations increase, 
their growth increments begins to decrease, 
whereas the amplitudes of the waves propagating 
at an angle to the Oz axis continue to grow at almost 
the same rate as initially. Further increase of the 
oscillation energy is accompanied by a still greater 
decrease of the increment, and this decrease is 
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most intense when x is close to unity. In other 
words, the increments corresponding to different 
angles 8' (or to different x =cos 8') tend to become 
equalized. It is therefore natural to assume that 
after the lapse of a certain time (of the order of 
several reciprocal increments) there sets in a state 
in which the total increment r(s0, x) will not depend 
on the angle 8' at all values of x of the correspond
ing instability region, and the amplitudes of the 
waves propagating in different directions will in
crease at the same rate. It is precisely this state, 
which we shall call "quasistationary," which will 
be the subject of our further research. 

Thus, let us assume that at values x::: x0 the 
total increment r(s0, x) does not depend on x. It is 
easy to show that the necessary and sufficient con
dition for this is the equality5> 

q• (~} = vo/ (1- ~2) for ~2 < 1- ~2. (26) 

where v0 is a certain constant to be determined, 
and which in general can depend on the timet. 
Taking into account the definition (21) of the func
tion q*W, we can regard (26) as an integral equa
tion for the determination of the unknown function 
W0(x). The solution of a perfectly analogous equa
tion was obtained in [t], and we can simply use the 
formulas of that paper. As a result we get 

Wo(z} = Mo{ cp(z) for z ~ ~ (27) 
2n 0 for z~~· 

where 

eE8{jTI.T 
fSo = ~o) + (0), 

e Y, 
i.=~ • Vo 

cp(\1:}= ;. { (z2- Zo2)''•[(z2- ~2) + 3z2(1- i.z)] 
z(1- i.z) 2 

-! i.zo'ln z+l':-Zo2}. (28) 

Using these expressions, we can now find the total 
energy and momentum densities of the noise: 

f8 = fBal<f](i.), fJJ = f!Jolr (i.), 

nTeE [ 1 3 '] 
f/Jo = y~O) + 'YiO) - 2 Xo ' 

J 41 (i.) = ;.• (/- ).) { 1 + (1 - i.) In 1 1 ;. 

- ~ (1- i.) + 5 (1- i.)2 - ~ (1 - i..)8 } 

5>Recognizing that when x < x 0 the noise intensity is prac
tically zero, and consequently q* = u* when ~ 2 > 1- x02 , it is 
easy to verify that the total increment r(so, x) is negative for 
values x < x 0 • 

3 Xo1 [ 1 ] -2 ~ i.. + (1- i.} In 1 x; + O(z04), 

lr (A.) = 1 ~). + 0 (zo'). ( 29) 

Substituting, finally, the expression given above for 
fP into (22) and recognizing that xfi = x~v'l- x2 by 
virtue of (26), we obtain an expression for th~ time 
dependence of Jr(A) (and consequently of A.): 

d 1 r _ 1 'Y col (so} 
dt y(O>+y(O)- -y(O>+y<OJ]r• (30) 

e f e i 

In order for formulas (13) and (27)-(30) to de
termine completely the spectral energy density of 
the ion-sound noise, they must be supplemented by 
an equation for the oscillation frequency or for the 
oscillation phase velocity s 0• This equation can be 
obtained from the condition that the total increment 
be a maximum at s = s 0, and is of the form 

iJ r(so+O}+r(s0 -0) (31) 
<> = Os uSo 2 

where the functions r(s0 ± 0) are defined by (20). 
Without stopping to investigate the roots of this 
equation, a task entailing no fundamental difficul
ties, we proceed now to derive and analyze equa
tions for the average kinetics equations and expres
sions for the average translational velocities of the 
electrons and of the resonant ions. 

We first rewrite (14) and (15) in a somewhat 
more convenient form. Taking (27) into account and 
making simple transformations, we get 

iJfe·(~) = . . 1 iJ f 2 iJfe,(' l./,0 So 
iJt Ste,l(le,t)+~Tu\v ~'Ve,i(v)-3- (32) 

x[~+: (a+:~)( Tf]}. 
e,' 

iJl(i) 
1e,l --·=- ±(vfv;,.,p+'!sn-1lt(Y)/y'l.l -· So afe~>" 

Azo2 + '/31ri.J2(Y)/y2 11=1H' i}v ' 

(33) 

where 

1 4n to> .fe> + y~0> n 
(v".)a=3/e,i(so} y._o>. nTs 

~· ~· 
(34) 

and the constants a(x0) and {3(x0) and the functions 
In(Y) (n = 0, 1, 2) are determined as follows:s> 

6 )The coefficients a and f3 are obviously not independent. 
For example, in the case when qJ(X) is given by (28) we have 

).~ + (1- ).)! ().) = 3!2[j1- zo1 - ).a]. 
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(35) 

The exact values of these coefficients depend on the 
parameters A and xij and can be obtained by numer
ical integration. However, in the case when xij « 1, 
cp(x) is defined by (28), and A Rl 1 they can be easily 
estimated, and we get 

~ ~ 0.4'-, aA ~ 1-0.9Az. 

Using (32), we can easily obtain now equations for 
WTe and wr. Multiplying the right and left sides 
of (32) by me,iv2/2 and integrating with respect to 
the velocities, we get 

where 

Vi= jvs-F<0>dv e J.e , 
-3 n r 3f(O)d 
V·r =- J V i V 
. nr v>so 

(37) 

are suitably normalized third moments, equal to 
sv'2/1rv~e and sh/1rv~ respectively in the case of a 
Maxwellian distribution. 

Equations (36) and (37) must be supplemented by 
an equation for the average energy wTi of the 
thermal ions, which assumes the following form 
after calculating the term that takes into account 
the energy exchange in pair collisions of the 
thermal ions with electrons and with resonant ions: 

It follows from (30) that the ratio 'Ycol(So)J [C(:A)/(y~O) 
+ y~0 >) is always smaller than unity. 

~aking (33) into account, it is easy to obtain ex
pressions for the mean translational velocities of 
the electrons 

and of the resonant ions 

v.r = ~ ) v6/i dv. 
nr v>•o 

and also for the total density j = -envze + enrvzr of 
the current flowing through the plasma. It takes 
the formn 

_ [3 (Y~ ) ( Xo2 ) v!,r] 
Vze,r=So 2 A -a ±3 a+~ T • 

e, • 

{ 3 (yr=z;;i ) f = -enTSo 2 A - a 

(39) 

It follows immediately from these expressions, 
in particular, that for sufficiently strong fields E, 
when x0 « 1, the current density does not depend 
explicitly on the value of E. In other words, the 
conductivity of the unstable plasma is inversely 
proportional to the applied field. Comparison of 
(39) with the corresponding expression obtained for 
the current density neglecting the interaction of the 
waves with the particles shows that allowance for 
the particle scattering by the plasma noise pro
duced in the unstable plasma leads to a decrease 
of the effective conductivity by approximately 

-2 E/ . x0 Rl e mevTso hmes. 

3. DISCUSSION OF RESULTS AND BRIEF CON
CLUSIONS 

For lack of space, we shall not present here a 
detailed analysis or solution of Eq. (22) (or (30)) 
for the function Jr(A) (or A(t)), which determines 
the dependence of the noise energy on the time. We 
shall merely indicate that the total energy density 
and momentum density of the noise increases 

7>we note that equations that are almost analogous to (32) 
- (39) can be obtained even without specifying the concrete 
explicit form of the function cp(x) (see (28)). Moreover, this can 
be done even when s 0 depends on x, as is the case, for exam
ple, when the first order of smallness in s 0/vTe and s 0/Vr is 
taken into account, or when the nonlinear interaction between 
the waves is taken into account (see below). Of course, the 
numerical coefficients a and {3 still remain unknown here. 
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monotonically, as follows from these equations, 
and that 

if 
!Jl = eEnT It 

-1 
"''Vcol(so), if 

'Vcol(So)t~ 1 

'Vcodso)t>1 

(40) 

It should also be noted that in solving the prob
lem we have neglected completely the nonlinear 
interaction of the waves with one another, and in 
particular the s-s scattering[2Js>. At first glance 
this seems perfectly valid, for inasmuch as the 
probability of the s-s scattering is proportional to 
the difference between the frequencies of the inter
acting waves, it follows that the corresponding non
linear increment 'Yn(s0) vanishes when (13) is sub
stituted in it. Such a situation occurs, however, 
only if k0 (or s 0) does not depend on the angle ()' 
(or x). Further, since the derivative of the non
linear increment with respect to s differs from 
zero at the point s = s 0, even if s 0 does not depend 
on x, it follows that allowance for the nonlinear 
interaction in (5) leads to a dependence of the quan
tity s0 on x, and consequently, to a change in the 
angular dependence of the noise spectrum. 9> Esti
mates show that this change becomes significant 
only when 'Yn(s0) » 'Ycol and becomes manifest pri
marily at small angles, i.e., when x ~ 1. As are
sult, when y col « 'Yn• the expression obtained here 
for the noise spectrum is valid, strictly speaking, 
only for sufficiently short times, when Yn(s0)t ~ 1, 
where, as shown by estimates, 'Yn(s0) 

~ 0.1k0s0 c%'/nmis8. However, Eqs. (32)-(39) have a 
much wider range of applicability since, as already 
mentioned, they depend quite weakly on the concrete 
form of the noise spectrum. 

We turn now to a discussion of Eqs. (32)-(39) for 
particles. We consider first Eqs. (32) and (36) for 
the electronic plasma component. We note first that 
since we have assumed in the derivation of these 
equations that a) f~1> « f~0 > and b) the characteris
tic frequency of the variation of the function f~0 is 
much smaller than the effective collision frequency, 
i.e., that 

(1) _.(0) • 
fJlnfe OlnJe (e) A U 
---~---~Yerr= 'Ve(v) ~-'Ve, 

fJt fJt so 

it follows that Eqs. (32) and (33) for the electrons 
are valid only at velocities satisfying the condition 

8 >we emphasize that the theory developed here is applica
ble, of course, only in the case of weak turbulence, when 
8/nTe « 1. 

9>This was pointed out to us by L. Rudakov. 

(41) 

In addition, it is easy to verify that if the electric 
field is not very strong, so that10> 

E ~Vmism. 
Ecr me So 

then at velocities 

.... ~3 2 SmymfEcr 
tr~ VTe- -

So me E 

(42) 

the electronic distribution function is close to 
Maxwellian with a temperature that can be deter
mined from (36) and increases monotonically with 
time. (Since the ratio v~/v:3 does not depend on 
the time, we have here wTe ~ T e ~ tE, where 1 < E 
< 2.) Outside this region, the distribution function 
can differ quite strongly from Maxwellian, and may 
in particular decrease with increasing velocity 
much more slowly than exp(-v2/2v~e). 

The foregoing circumstance is formally connec
ted with the presence in (32) of a term proportional 
to (v/v*) 6 and leading to the occurrence of a "tail" e 
of high-energy electrons in the distribution func-
tion. The number of these electrons increases with 
time. This must be borne in mind in estimating 
the flux of runaway electrons, otherwise the value 
obtained will be too low. However, when condition 
( 42) is satisfied, the number of particles in this 
"tail" is exponentially small, so that in first ap
proximation it can be disregarded. On the other 
hand, if the field is sufficiently large and condition 
( 42) is violated, then the distribution function will 
be far from Maxwellian in the entire velocity reg
ion and the rise of the electron temperature will be 
accompanied by the appearance of a large number 
of runaway electrons, produced within a time 11 > 

t (e) ~ 2 I E o mevTe e so. 
Going over to Eq. (38) for the thermal-ion tem-

perature, it must be pointed out that since the 
decrement y col of the collision damping was taken 
by us from the linear theory, in which it is as
sumed that the ion distribution function is nearly 
Maxwellian, it follows that Eq. (38) is valid, strictly 
speaking, only when E/Ecr « (sm/s0) VTe/Ti. How
ever, it is clear even from simple physical con-

10)Ecr is the so-called critical field, starting with which 
all the electrons would, according to the theory of stable 
plasmas, go over into the continuous acceleration mode [7 ' 8]. 

11 >This was first indicated by Korablev and Rudakov [9], 

who considered a similar problem but neglected both pair col
lisions (corresponding formally to the condition E/Ecr-> oo) 

and Landau damping by the ions. 
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siderations that even when this condition is violated 
the energy absorbed per unit time by the ions as a 
result of the presence of ion-ion collisions will re
main, as before, of the order of Ycol (g, and Eq. (38) 
will thus remain practically unchanged. At the 
same time, since J rg ~ J r and consequently, accord
ing to (22) and (30) 

if 'Ycol(so) t<;1 
if 'Ycol (s0} t> 1 ' 

it follows from (38) that when E 
» (sm/so) v'me/miEcr the temperature of the 
thermal ions first increases quite slowly, and then 
(if y col(s0)t » 1) it increases at almost the same 
rate as the electron temperature. 

It is easy to verify in this case that 
(0) (0) (0) 

dnwTe = 'Ve { + 16 a['V" +'Vi n ] 2 }. ( 43) 
dnT WTi y{_O) + ~~) p 2t y(_O) nT 

e • " 

It follows from this equation, in particular, that the 
temperature ratio z(t) = Te/Ti tends to a certain 
finite limit as t - oo. Indeed, let the particle veloc
ity distribution be nearly Maxwellian, and let the 
ratio 

at the initial instant of time not exceed, say, unity. 
Then, since we have {3 + 16a'f"rr ~ 2 when A. ~ 1 and 
z(O) » 2, it follows that z(t) is a decreasing func
tion of the time (or of T i) . Further, it is easy to 
check by using (31) that at sufficiently small z and 
large Ti we have s 0 - sm = v'Te/mi and conse
quently the right side of ( 43) becomes a function of 
z only. Then, putting nT ~ n, we can rewrite (43) in 
the form 

dz ----
dinT; = 'ljl(z)-z, 'ljl(z) ~ "fm;fm,z'l•e-z\ (43') 

from which it is seen that when Ti - oo (t - oo) 

z tends to a limiting value z0, defined by 

Zo = 'ljl(zo), 

For a hydrogen plasma with mifme ~ 2 x 103 this 
yields z0 ~ 10. 

Thus, if E » (sm/s0) v'me/miEcr and tyc0 l(s0) 

» 1, the heating of the thermal ions is due primar
ily to collision absorption of the waves, and the 
rate of this heating can exceed the rate of heating 
by electron-ion collisions by a factor 
(E/Ecr) v'm/mes0/sm. However, the ratio Ti/Te 
always remains smaller than z01 ~ 10-1• 

We proceed, finally, to the equations for the 
resonant ions. It is easy to verify that, just as in 

the case of electrons (see Eq. (41)), Eqs. (32) and 
(33) for resonant ions are valid only when 

(44) 

In spite of the formal analogy between the equations 
for the electrons and the ions, there is an essential 
difference between them, consisting in the fact that 
v~ ~ (m./m )116s does not depend on the tempera-

1 1 e m 
ture of the resonant ions, whereas v~ ~ vTe· As a 
result, by virtue of the condition ( 44), the equations 
for the ions are valid only so long as 

Tr ~BT,-v mt ~. 
me so 

(44') 

An analysis of (32) and (33) shows that the form 
of the ionic distribution function f~ 0 > and the charac-

1 
ter of the temporal variation of the temperature 
T r (or of Wr) depend essentially on the magnitude 
of the electric field. For example, if the field E is 
sufficiently weak, so that 

E ( me ).'I• Bm 
---~ -· -·::::: 1 .. 
Ecr m; So 

(45) 

then the term proportional to (v/v;t'l 6 in (32) (and 
- 1 

accordingly proportional to v~ in (37)) can be 
neglected, and the distribution function will fall off 
exponentially with increasing velocity12 > v. For 
sufficiently small times 

( E so )''• ( mi )''•-
t~tE=VT-i -- - •· 

Ecr Sm me 

i.e., so long as 

the distribution function in the velocity region 
Vr ~v ~vt is 

t ( v5 ) if<O>,.., --exp --- , t 

"''' 25:t 

v;(v)v3 s' . d ( m, )2 3 eEt = U So t ~ - VTe SO --1 
3 mi me 

(46) 

and the effective ion temperature is T r ~ miT 215 

~ t2 15, i.e., it increases quite rapidly. After a time 
tE, it reaches a "stationary" value 

12 )It must be borne in mind that, in analogy with the elec
trons, the presence of a term- v• in (32) leads to the appear
ance of a "tail" of high-energy ions in the velocity region 
v >vi*· However, if condition (45) is satisfied the number of 
particles in this tail is exponentially small. 
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( 47) 

increasing subsequently only to the extent that the 
electron temperature Te increases. The rise in the 
temperature T r is accompanied by an increase in 
the number of resonant ions, the density of which 
can be obtained for E « Ecrsk/ st from the rela
tion13> 

ndt) = [ Tr(t) ]''•ex ( 
n- nr (t) Ti(t) P 

The distribution function in this state (i.e., when 
t > tE) is nearly Maxwellian with a temperature de
fined by (47). 

On the other hand, if the external field is strong, 
so that condition ( 45) is violated, then the tempera
ture of the resonant ions increases at all times 
more rapidly than T , and when t « t~i) 
= t~0>(mi/me) 113 the Jistribution function in the 
region v < vt is determined as before by the rela
tion (46). After a time of the order of t~t) the ion 
temperature reaches a value T F::J (m ·/m ) 1/sT r 1 e e 
and an important role is assumed by the term pro-
portional to (v /vt) 6• This, in turn, causes the tem
perat_ure Tr to start increasing even rapidly when 
t > t~ 1), and the distribution function acquires in the 
region v > vr, where fl0> F::J 1/v4, a "tail" of fast 
ions, the number of which increases rapidly. 

Although the subsequent evolution (starting with 
T r ;::. 3T e<mi/me) 113sm/ s 0) of the ion distribution 
function and of the temperature T r can not be 
traced, strictly speaking, qualitatively on the basis 
of Eqs. (32) and (33), it is clear that further in
crease in the temperature of the resonant ions will 
be accompanied by the appearance of a large num
ber of runaway ions, the number of which, when 
condition ( 42) is satisfied, can greatly exceed the 
number of runaway electrons. 

We see thus that the instabilities occurring in 
a nonisothermal plasma are accompanied, on the 
one hand, by a sharp increase in the resistance of 
the plasma to electric current, and on the other by 

13 >When E > EcrSm 4/S 0
4 the number nr of resonant ions in

creases much more slowly. 

an increase in both the ion and the electron tem
peratures, and the rate of the former may greatly 
exceed the corresponding value obtained in the 
theory of a stable plasma. The most rapid increase 
takes place in the temperature of the resonant ions, 
which can reach, within a relatively short time, 
values exceeding the electron temperature by many 
times. 

In conclusion we note that the foregoing results 
can be generalized without difficulty to include also 
the case of a partly ionized plasma, provided the 
number of neutral atoms is not very large, so that 
their contribution to the collision frequencies v · is 

l t . 1 e,1 
re a 1ve y small. To this end it is simply neces-
sary to add in Eqs. (36)-(38) terms that take into 
account the change in energy upon collision with the 
neutral atoms (including inelastic collisions), and 
to supplement them with an equation for the neutral
gas temperature. We point out also that the results 
remain apparently valid also in the presence of an 
external electric field H parallel to E, if H2 

« 47rnmic2• 

The author is grateful to V. P. Silin for calling 
his attention to the group of questions discussed 
here. 
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