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Nonlinear processes are considered, involving ion-sound waves which are described as a gas 
of quasiparticles. It is shown that within the limits of applicability of the method the results 
for three-plasmon processes and scattering of sound by particles are identical with the ex­
pressions obtained by the regular method. Expressions are obtained for turbulent shift of the 
sound frequency and equations describing scattering of sound are derived. 

VEDENOV and Rudakov[t] proposed the following 
method for describing a weakly-turbulent plasma: 
The plasma oscillations are described by a kinetic 
equation that is averaged over a time interval much 
longer than the characteristic period of the high­
frequency waves. In this equation, the adiabatic 
interaction of the particles with the waves is taken 
into account by introducing the plasmon-gas pres­
sure gradient. This method yielded, in particular, 
equations describing the time variation of the num­
ber of Langmuir plasmons produced by plasmon­
electron and plasmon-plasmon scattering. 

In this paper we derive by an analogous method 
equations describing the time variation of the num­
ber of ion-sound plasmons as a result of scattering 
by plasma particles and scattering of sound by 
sound. The same method is used to consider spon­
taneous emission of ion sound by Langmuir plas-
mons. 

1. "SOUND-PARTICLE" AND "SOUND-SOUND" 
INTERACTIONS 

Let us consider the system of equations[t] 

ajo: e<Z ()ja. -,-+ vVfa.-- Vcp-ot miX av 

_ iJFV ~ nh8 Wp<Z2 = O~ 
av ~ nma. (oe/ow") (w- kv)2 

(1) 

anh• aw anhs 
-+-Vn,.•-VwA--=0 
at ak ak ' 

(2) 

~ Wpa.2 ~ iJja. dv 
B= 1+ LJ -- k----

nk2 av (J)- kv 
a.=i,e 

The last term of Eq. ( 1) describes the change effec­
ted in the averaged particle distribution function by 
the "high-frequency force" 

(2) is the Liouville equation for the ion-sound plas­
mons, (3) is the dispersion equation for ion sound, 
and ( 4) is the Poisson equation; Wpa are the plasma 
frequencies. 

We first consider short-wave sound: 

(rD is the Debye radius). This condition can be 
realized when T e » T i• which is simultaneously the 
condition for the existence of weakly-damped ion 
sound. In this region of the spectrum we can neglect 
the perturbation of the thermal motion of the elec­
trons under the influence of the wave (ionic plasma 
oscillations). 

We shall solve (2) by successive approximations. 
We note that since 8w/8r = 0 when n~ = 0, we get in 
the zeroth approximation 

anh• aw 
Tt+Tk Vnh• = 0. 

The solution of this equation is 

Nkq is none other than the sum of all possible 
"beats" of the ion-sound oscillation with close 
values of the wave vector: 

(5) 

(3) k2 08 + 
N"q = -8 ~0-cphCJlh-q· :Jt Wh 

(4) Writing down similar expansions for cp and Of, we 
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substitute them together with (5) into the system 
(1)-(4). We recall that all the initial equations are 
valid only for q « k. 

Obtaining from (1)-(4) equations for the Fourier 
components and eliminating C"Pkw we get 

. w3N11.q" q ojijiJv { 1 
6/h.q' = - -----

2Mn Q - qv ( w - kv)2 

r ofi dv I r oji dv } 
- J q-iJv (w-kv) 2 (Q-qv) J qa;-Q-qv · (6) 

Using (3), we can express the frequency shift owk 
in terms of Ofkq: 

6wwq =- w~~.3 \ kol5f~•q/iJv dv. (7) 
2nk2 J w-kv 

Of importance to further calculations are the two 
parameters kci/w and Qjqci, where ci = v'2TifM. 
For weakly-damped ion sound (krm « 1 and T /T e 
« 1) we always have kci/w « 1. Further, when 
krne » 1, we have 

ow (kq) 1/ Te 
Q = q&k = -k- Y M (krDe)-3. 

We see therefore that when krne > (Te/Ti) 116 the 
parameter Q/qci is small. When krne < (Te/Ti) 116 

the parameter Q/qci is large everywhere except 
the region defined by the following conditions: 

I COS kcJ I< f T i/T e k3r~. 
1 coskq 1 < fT;JT. 

for 1 < krDe < (T.JT;)'1•, 

for 1 d: kr De' (8) 

In this region the indicated parameter always re­
mains small. 

The unperturbed function fi will be assumed to 
be Maxwellian. In this case, all the integrals con­
tained in ow reduce to the Kramp function and can 
be calculated in final form in the presence of small 
parameters. 

Let us consider first the region krne 
> (Te/Ti) 116 • In this case the calculation of owkk'q 
yields 

N~~.\ [ I -[kq][k'q] Q l 
6WH•q=--M (kk)+if'n -. (9)* 

n q2 qc; J 

From (2) we can get the rate of change of the 
plasmon number Nk by assuming that the phase dis­
tribution of the beats Nkq is random and carrying 
out statistical averaging over the phases[l]: 

*[kq): k X q. 

Substitution of (9) in (10) yields 

...!. a ( -y;: ~ q Q (kqJ2 • ) 
(N11.")p; =- - LJ·----N~~.•Nh.-q , 

ok \Mn q C; q2 
q 

(11) 

Formulas (11) and (12) correspond to plasmon-ion 
and plasmon-plasmon interaction, respectively. 

Let now 1 « krne < (T e/T i) 116 • The foregoing 
condition can be realized only in a strongly noniso­
thermal plasma. In this case the contribution of the 
electrons to ow is still a small correction. Calcu­
lating the integrals in (7) for kci/w « 1 and qci/Q 
« 1, we get 

6wh.h' = - N:,q (kq) (k'q) . (13) 
q Mn q2 

The imaginary addition to owkk'q is in this limiting 
case exponentially small everywhere except in the 
region Ukq defined by the first condition of (8), 
where the solution (9) remains in force. Taking 
this circumstance into account, we get 

X N·• N' oN'k k' k'-qqak. (15) 

We note that, strictly speaking, it is necessary 
to use in (14) and (15) the exact expressions for the 
imaginary part of the Kramp function when Q/qci 
~1. 

To take into account the contribution of the elec­
trons when krne ~ 1, it is convenient to use in lieu 
of the system (1) -( 4) another self-consistent sys­
tem of equations: 

i}()ji . e ofi a ji n~~.• w3 
fit+vVbj•- MVcpa;-a;-V~2Mn (w-kv) 2 =O, 

(16) 

n• = nexp [-1- (ecp- ~ nk• M ~)] 
T. h. 2n m k2 [v.2) 

(17) 

and the equations (3) and (4). Here [v~] = KTe/m, 
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where K is a numerical factor on the order of unity, 
the exact -calculation of which is quite difficult. The 
physical meaning of (17) is simple: this is the 
Boltzmann distribution in a field which is almost 
static for the electrons. 

We solve this system in the same manner as the 
system (1)-(4). Taking into account the smallness 
of the argument of the exponential in ( 17), we get 

. qfJfilfJvw3Nhq8 [ 1 {I fJji 
bfh'= - .)q-

q Q-qv 2Mn (w-kv) 2 fJv 

M2n }j{l fJji dv Mn }] 
xkzTj. .lqav Q-qv+T. ' 

dv x-------
(w- kv) 2(Q- qv) 

(18) 

{ 1 fJji dv Mn }-1 M J 
X .)q- +- +----

fJv (Q- qv) Te xk2Te ' 

6/h'q dv M e J 
(w- kv) 2 + 3Te {jnh'q · (19) 

The final expression for ow is quite unwieldy. We 
present it only for the limiting case krne « 1: 

(20) 

where 

2. INTERACTION OF LANGMUffi OSCILLATIONS 
WITH ION SOUND 

Vedenov and Rudakov[tJ derived expressions 
similar to (11) and (12) for (NkL) and (NkL) , 

pe PP 
describing the change in the number of Langmuir 
plasmons as a result of plasmon-electron and 
plasmon-plasmon scattering. The influence of the 
ions on these processes was assumed to be small . 
The region of applicability of such an approxima­
tion was shown to be krne » v'm/M. 

Let us consider the broader region krne ;:;:.v'miM. 
Solving the system (1)-(4) for the Langmuir oscil­
lations and investigating the result, we can show 
that in this region the ion influence can be neglec­
ted in the cone 

,.,... 1 • /m 
I coskq I> krve V M . 

Outside this cone, the scattering by ions is com­
parable in order of magnitude with the scattering 
by electrons. 

Let the plasma be strongly nonisothermal, Te 
» Ti. Then in the region 

1 vr;m ,.,... 1 vm - --'-} -<lcoskql <- -
krve T. M krve M 

allowance for the ion motion introduces into ow a 

"kk'q =_!__[ 1 + (2 + 1/x) cos2 k~ (_!___ _ 2 cosk;J ____ 1_) pole term corresponding to Cerenkov radiation of 
4 -""' ,2 2 3 ,.,... -""' ion sound. The resonance condition is 

1-cos2k'q+3k rve cosk'q cos2 k'q 
,.,... 

+__!_ -L. 2 + 2 coskq + 1 ] 
3x ' cos k~ cos2 f'q . 

We note that }n the region of Vkq defined by the 
condition Ieos kql ~v'T/Te the solution (9) remains 
in force. 

If we use formulas ( 1 0), we get for krDe « 1: 

_,_ a ( yn ~ q Q [kqp • \ 
(Nhs)p; =- - LJ ----N"•Nh-q) I, 

fJk Mn q c; q2 
qEVkq 

(21) 

N ' N' fJNZ ~ ,_2k, 2 2 .. ( fJw fJw ) 
X k' k'-qq ~ + _LJ qn. 'Vkk'qu q &i{ -q fJk' 

qEVk'q 

(22) 

We note that inasmuch as all the foregoing results 
were obtained for q « k, they take into account only 
the ~ontribution made to the general expressions 
for Nk by the small-angle scattering. 

( Q )2 -1 
'qc. - ' 

8w 
Q = q--. 

ak 

Condition (23) can be satisfied only if I Bw I akl 

(23) 

2:: v'T elM and determines the angle at which the ion 
sound is emitted. 

Solving the system (1)-(4) just as in Sec. 1, we 
can obtain an expression for owkk'q (see also[1]). 

In the vicinity of the poles defined by the condition 
(23) we can obtain 

I " _ 3N~·q 0f I Qjqc. I 
m uwkk'q - ---2 -""' , 

4mnrDe n (Qjqc.)2 + (1- 3Mm-1k' 2r'}y. cos2 k'q)2 

(24) 

(25) 

S~bstituting (24) and (25) in (9) and (10) we get 
(N~) (1) and (N~) (2), which describe in this case the 
change in the number of Langmuir plasmons as a 
result of three-plasmon processes cN- 0 >) and 
higher-order processes with emission of ion sound 
(:N< 2>). In the resonance region they are larger than 
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..:...L ..:...L 
(Nk)pe and (Nk)pp by (krDe)-4 and (krDe)-6, respec-

tively. It must be remembered, however, that the 
resonance region itself is a narrow space between 
two cones, so that the contribution of various proc­
esses to the total derivative (Nk) can be compared 
only when the specific function Nk and the degree 
of non-isothermicity Ti/Te are specified. 

Using the second-quantization formalism, we 
can readily obtain the general kinetic equation for 
the quasiparticles [2 J: 

Nq• = 2;wh,k-q[(Nq•+ 1)N"L(N"~q+ 1) 
h 

L L 
- N~tL(N~t-q + 1) (Nq• + 1)] +Wit, h+q{NHq(N~tL + 1) 

X (Nq• + 1)- N"LNq•(N~t~q + 1)]}. 

Going to the limit q « k, we obtain for NL » 1 

. "" 8 [ ( L 8NhL )] 
N~tL= LJq ak Wh,h-q N~tLN~t-q+Nq"q~ 1 • (26) 

q 

Here Wkk' is the corresponding transition proba­
bility with allowance for the conservation laws. 

Going over in (26) to the limit Ns « NL and 
comparing with (10) and (24), we get 

3l';- [( 3M )z] W,, h-q = 2 6 1--k2rDe2 cos2 kq ; (27) 
4mnrne . m 

the o-function in (27) automatically ensures satis-

faction of the conservation laws. We note that it is 
impossible to go in (26) to the limit NL ~ 1 (al­
though it is possible to go to the limit Ns :S 1), since 
the condition NL » 1 is essential for the applicabil­
ity of this method. 

Most of the results of this article were obtained 
by regular perturbation-theory methods (see, for 
example, the reviews[3•4J). They have been ob­
tained here by a very simple method. The new re­
sults are expressions (8), (13), and (20) for the 
correction to the real part of the frequency of long­
wave sound in a plasma containing a narrow packet 
of short-wave ion-sound oscillations, and also 
(formulas (12), (15), and (22), which describe non­
linear scattering of sound by sound. 

In conclusion, I am sincerely grateful to L. I. 
Rudakov for suggesting the topic and for guidance. 
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