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Nonlinear spin waves in magnetically ordered crystals are investigated. Stationary-profile 
waves, propagated perpendicularly to the equilibrium direction of the magnetic moment in 
ferromagnetic crystals, are considered in the case of anisotropy of the easy-axis type and 
in the case of anisotropy of the easy-plane type; waves propagated perpendicularly to the 
anisotropy axis in antiferromagnetic crystals, with anisotropy of the easy-plane type, are 
also considered. It is shown that in such crystals, along with periodic waves, detached 
aperiodic waves are possible; in them, the magnetic moments of the atoms are in an equili
brium state both before the forward front of the wave (at -oo) and behind its rear front (at 
+00 ). In the case of anisotropy of the easy-axis type, the magnetic-moment density vectors 
at +00 and at -oo can be directed along the anisotropy axis in opposite directions (magnetic
moment flip waves). In the case of anisotropy of the easy-plane type, the magnetic-moment 
density vectors at + oo and at - oo lie in the plane of easy magnetization; the angle between 
the corresponding directions of the magnetic moment is in general not a multiple of 27r 
(magnetic-moment rotation wave). Together with the solitary waves considered earlier (in 
which the directions of the magnetic-moment density vectors at + oo and at -oo coincide), 
the magnetic-moment flip waves and the magnetic-moment rotation waves form all the three 
types of detached aperiodic spin waves that are in principle possible, It is shown that veloc
ities of all the types of aperiodic wave are bounded from above; in particular, in the case of 
an antiferromagnet the velocity of a magnetic-moment rotation wave of the sublattices can
not exceed the phase velocity of a small-amplitude spin wave. 

INTRODUCTION 

THIS paper investigates nonlinear spin waves in 
magnetically ordered crystals. It considers one of 
the classes of nonlinear spin waves: stationary
profile waves; that is, those motions in which the 
magnetic-moment density depends on the coordi
nates and the time only in the combination r - Vt, 
where V is the constant velocity of the wave. 

We show that along with periodic spin waves, 
aperiodic (detached) spin waves can be propagated 
in ferromagnets and antiferromagnets. Such a 
wave is a region of magnetic-moment excitation 
that moves along the crystal, and in which the 
magnetic moments of the atoms are in an equili
brium state both before the forward front of the 
wave (at - oo ) and behind its rear front (at + oo). 

If the crystal has anisotropy of the easy-plane 
type, then the vector magnetic-moment density 
after passage of the wave returns to the plane of 
easy magnetization; the angle between the direc
tions of the magnetic moment at + oo and at -oo 

is, in general, not a multiple of 27r. Such a wave 

may be called a magnetic-moment rotation wave. 
If the crystal has anisotropy of the easy-axis type, 
then the magnetic-moment density vectors at + oo 
and at -oo can be antiparallel; such a wave may 
be called a magnetic-moment flip wave. Together 
with the solitary waves considered earlier (1], in 
which the values of the magnetic-moment vector 
at + oo and at -oo coincide, magnetic-moment 
rotation waves and magnetic-moment flip waves 
form all the three types of detached, aperiodic 
spin waves that are in principle possible. 

We emphasize that in the case of magnetic
moment flip waves and of magnetic-moment rota
tion waves, the state of the crystal behind the rear 
front of the wave (at + oo) differs from the state of 
the crystal before its forward front (at -oo): the 
magnetic-moment density vector is oriented dif
ferently at + oo and at -oo. In this sense, waves 
of these types are reminiscent of shock waves. In 
contrast to shock waves, however, the structure of 
these waves (as also the structure of the solitary 
waves) is determined by nondissipative properties 
of the crystal. (Dissipative processes occur, of 
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course, also in the solitary waves and in magnetic
moment flip and rotation waves; these processes, 
however, do not play a determining role in them 
and lead only to a slow diminution of the amplitude 
of the wave during its propagation along the 
crystal.) 

1. EQUATIONS DESCRIBING A STATIONARY
PROFILE SPIN WAVE IN A FERROMAGNET 
WITH ANISOTROPY OF THE EASY -PLANE 
TYPE 

We first consider spin waves of finite amplitude 
in ferromagnets with anisotropy of the plane-of
easy-magnetization type. For this purpose we 
shall start from the equation of motion of the mag
netic moment of a ferromagnet (see, for exam
ple, [2]), 

aMj at = g [MH•] , (1)* 

where M is the magnetic-moment density, He is 
the effective field 

H•=H+,a~M+ pn(Mn), (2) 

H is the magnetic field, which satisfies the equa
tions of magnetostatics 

div(H + 4nM) = 0, rotH= 0, (3) 

g is the gyromagnetic ratio, n is a unit vector in 
the direction of the anisotropy axis (the z axis), 
a is an exchange-interaction constant, and fJ is 
an anisotropy constant (in the case being con
sidered, a crystal with anisotropy of the plane-of
easy-magnetization type, fJ < 0). 

On specializing to stationary waves propagated 
along the anisotropy axis, and on setting the ex
ternal magnetic field equal to zero, we reduce 
equations (1)-(3) to the form 

VM' + g[MH•] = 0, (4) 

Be=aM"+n(p-4n)(Mn), (5) 

where V is the velocity of propagation of the wave 
(a prime on a quantity denotes differentiation with 
respect to the variable z) . 

On multiplying equation (4) scalarly by M and 
by He, we get two integrals of the motion: M2 

"" M~ = const and 

a { (M') 2 - (Mo') 2} - (4n- ~) (Mn)-2 = 0, (6) 

where M~ is the value of the square of the mag
netic-moment density and where M0 is the value 
of the derivative M' at a point where the vector 

*[MWl = M x ue. 

M is parallel to the x axis (the x axis lies in the 
plane of easy magnetization; in other respects the 
direction of this axis is arbitrary). 

On multiplying equation (4) scalarly by n and 
on introducing the notation 

Mx+iMy=M1ei~ .• M1 =M0 sin9, M,=Mocose. (7) 

we get, after simple transformation, 

cp' = sin-29 {cpo'- cos 9V(agM0)-1}, (8) 

where cp 0 is the value of the derivative cp' at a 
point where M is parallel to the x axis. We note 
that the equation obtained from (4) by vector 
multiplication by n is a consequence of the rela
tions ( 6) and ( 8) . 

On taking into account that 

(M') 2 = Mo2 {9'2 + q>'2 sin2 9} 

and on using (8), we can reduce the relation (6) to 
the form 

(9' sin9)2 ='I' (cos 9 ), 

where 

'¥g)= 9o'2+ 2cpo' ~~ 
agMo 

+ [4n- ~ 4- V2)-9o'2-cpo'2J~2 
a l1 V02/ 

4n-~ 
----~', Vo= gMo l'a(4n- ~), 

a 

( 9) 

(10) 

and where e0 is the value of the derivative e' at 
a point where the vector M is parallel to the x 
axis. On integrating this equation, we get 

z-Vt= ~ {'l'(co:s9)}-''•dcose. (11) 

The relation ( 11), which determines the depend
ence of the angle e on the coordinates and the 
time, together with the relations (7) and (8), com
pletely describes the distribution of the magnetic
moment density of a ferromagnet in a nonlinear 
stationary-profile spin wave. 

2. MAGNETIC-MOMENT ROTATION WAVES AND 
PERIODIC WAVES IN FERROMAGNETS 

Equation (11), which determines cos e as a 
function of the variable z - Vt, has two types of 
solutions: aperiodic solutions (decreasing at in
finity) and periodic solutions, corresponding to 
two types of stationary-profile waves-magnetic
moment rotation waves and periodic waves. We 
consider first the magnetic-moment rotation 
wave. In such a wave, obviously, the derivative 
M' and the projection M · n of the magnetic
moment density on the anisotropy axis approach 
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zero as z approaches ± oo. On setting, therefore, 
e 0 = cp 0 = 0 in equation ( 11) and on performing the 
integration, we get 

( 
V2 \'" z- Vt 

cos8= 1--; ch-1---, 
Vo2 zo 

( a )'" ( V2 )-'/, zo= 1-- . 
4:rt- ~ 1 Vo2 

(12) 

According to this relation, the velocity of a 
magnetic-moment rotation wave cannot exceed a 
critical velocity V0• If the velocity V is close to 
V0, then the amplitude of the wave (that is, the 
largest angle of deviation of the vector M from 
the plane of easy magnetization) is small; the 
quantity z 0, which determines the breadth of the 
wave, is (for V close to V0) large and propor
tional to ( 1- V2/V5)-1/ 2• 

By use of the relations (12), (7), and (8) we can 
follow the changes of the vector magnetic-moment 
density in a magnetic-moment rotation wave. The 
component Mz of this vector along the anisotropy 
axis increases with increase of the variable 
z - Vt from zero (at z- -oo) to its largest 
value, equal to M0 ( 1 - V2/V5)1f 2, and then be
comes smaller again and vanishes at z - + oo. 

The projection Mt = M - n ( M · n) of the magnetic
moment density on the plane of easy magnetization 
decreases in absolute value from M 0 (at z- - oo) 

to M 0V/V0 and then increases again to M 0 

( at z - + oo ) • (The dependence of the quantities 
Mz and Mt on the variable z - Vt is shown 
schematically in Fig. 1.) 

According to ( 8), the vector Mt rotates about 
the anisotropy axis, making with the x axis an 
angle 

<p =- { arctg( ~0 sh z zoVt) +~ } (13) 

(the x axis is chosen in the direction of the vector 
M at z- -oo ). It is easy to see that if z- +oo, 

then cp - -rr; thus in a magnetic-moment rota-

M 

~------ -------

FIG. 1. Solid curve, Mt; dashed curve, Mz· 

tion wave, the vectors M at + oo and at -oo are 
antiparallel. 

We now consider those oscillations of the mag
netic moment of a ferromagnet for which the de
rivative of the magnetic moment and the com
ponent of the moment along the anisotropy axis do 
not vanish simultaneously; that is M0 "' 0. In this 
case, the relation (11) determines a periodic func
tion e ( z - Vt), which runs through all values be
tween e = arccos ?;+ and e = arccos ?;_, where 
?;+ ( ?;_) is the smallest, in absolute value, positive 
(negative) root of the equation if (?; ) = 0. Thus 
when M0 >" 0, there is propagated in the ferro
magnet a periodic wave of finite amplitude, in 
which the angle (} performs oscillations between 
e+ and e_, where e± = arccos ?; ±. 

We remark that a periodic wave of finite am
plitude is possible for arbitrary values of the 
characteristic quantities of the ferromagnet, if 
only M0 "' 0. In fact, for existence of such a wave 
it is sufficient that the equation >It ( t) = 0 shall 
have a root in the interval ( -1, 0) and a root in 
the interval ( 0, 1); it is easy to see that two such 
roots actually do exist, if we take into account that 

'¥(0) = Elo'2 > 0, '¥(+1) = -(<po' + VjagMo) 2 < 0. 

The length A of the periodic wave is obviously 
determined by the relation 

~+ 

J;=2 ~ {'1'(~)}-''·d~. (14) 

~--
It is easily seen that if M0- 0, then L - 0 and 
t+- ( 1 - V2/V~)1/ 2 ; at the same time A- 00 , and 
the periodic wave degenerates to the magnetic
moment rotation wave considered above. 

In the periodic wave, the proJection Mt of the 
magnetic-moment density on the plane of easy 
magnetization rotates about the axis of anisotropy. 
The angle cp between the vector Mt and the x axis 
(in contrast to the angle e between the vector M 
and the anisotropy axis) is not a periodic function 
of the coordinates and the time. In particular, the 
values of the angle cp at two points the distance 
between which is the wavelength A differ from 
each other by the amount 

~+ 

Ll<p=2 r (1-~2)-l(<po'-~~){'¥(~)}-'i·d~, (15) 
J agMo 
~-

which in general is not a multiple of rr. 
We consider by way of example a harmonic 

spin wave in the simplest case, when 8o = 0. On 
introducing the notation 

a ' q2 = ____ <po 2 

4:n-~ ' 

--... 
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and on supposing that to« 1 and t~ «Vq/V0, we 
get, according to ( 11), 

n n(z- Vt) 
·8 = 2 - ~ sinL /.. , 

( a \''• ( V2 )-'/, 
/., = 2n 4n- ~ J q2- 1 + Vo2 . 

(16) 

On substituting this relation into (8), we determine 
the dependence of the angle cp on the coordinates 
and the time: 

( y2 )-t 
q> = Qlo' q2- 1 + Vo2 

{ V2 /.. 2n(z- Vt)} 
x 1 (q2-1)(z-Vt)+ Vo22nsin /. . (17) 

From this we get for the quantity .t::J.cp, which de
scribes the angle of rotation of the vector Mt in 
a wavelength, 

We see that the angle .t::J. cp is a multiple of 21r only 
for definite values of the derivative cp 0; namely, 
for cp 0 = 0 and cp 0 = ± ( ( 47r - {3 )/a)l/2, and also if 
I cp o I » « 471" - f3 )/a )112• 

3. MAGNETIC-MOMENT FLIP WAVES IN A 
FERROMAGNET WITH ANISOTROPY OF THE 
EASY-AXIS TYPE 

In the preceding section, we considered a 
ferromagnetic crystal with anisotropy of the easy
plane type, and we showed that in such a crystal 
two types of stationary spin waves are possible: 
aperiodic (in which the magnetic-moment excita
tion decreases at infinity) and periodic. We now 
consider stationary spin waves in a ferromagnetic 
crystal with anisotropy of the axis-of-easy-mag
netization type. In such a crystal also, periodic 
and aperiodic waves can be propagated; in prin
ciple two types of aperiodic waves are possible, 
waves in which the vector magnetic-moment 
density before the forward front of the wave 
(at -co) and behind its rear front (at+ co) are 
parallel and waves in which these vectors are 
antiparallel. Aperiodic waves of the first type, 
solitary waves, and also periodic waves were in
vestigated in our previous paper [t]; we shall now 
turn to the study of the second type of waves, 
magnetic-moment flip waves. 

We shall start from the equation of motion of 
the magnetic moment of a ferromagnet and the 
equations of magnetostatics, (1)-(3) (in the case 
being considered, a crystal with anisotropy of the 
axis-of-easy-magnetization type, {3 > 0). We re
strict ourselves to the consideration of waves 

propagated perpendicularly to the anisotropy axis, 
and we suppose that the external magnetic field is 
equal to zero; we then get Eq. (4), in which the 
role of effective field is played by the quantity 

W =aM"+ ~n(Mn) - 4nV-2 (MV)V (19) 

and a prime denotes differentiation with respect to 
the variable x (the x axis is chosen in the direc
tion of V; the z axis as before is directed along 
the anisotropy axis). 

On multiplying Eq. (4) scalarly by M and by 
He, we get two integrals of the motion: M2 = M~ 
= const and 

a(M')2+ f1 {(Mn)2-Mo2} -4nV-2(MV)2= 0 (20) 

(we have taken into account that in an aperiodic 
wave the quantities M' and Mt = M - n ( M · n) 
vanish simultaneously). On further multiplying 
equation (4) scalarly by n and on using (7), we 
get 

!_ (V cos8 + agM0q>' sin28)+ 2ngMo.sin2 8 sin2q> = 0.(21) ax 
We remark that the equation obtained from (4) by 
vector multiplication by n is a consequence of 
relations (20) and (21). 

We shall be interested in those motions of the 
magnetic moment for which the vector M always 
lies in a plane that makes a constant angle cp with 
the plane ( n, V); that is, in plane spin waves (see 
Fig. 2). By taking into account that in a plane wave 
(M') 2 =M~e'2 , relations (20) and (21) can be put 
into the form 

8'2 =·a-1 (4ncos2 cp+ fl) sin2 8, (20') 

8' = 2ngM0V-1 sin 2q> sin 8. (21') 

On solving equation (20'), we get 

X- Vt 
8 = 2 arctg exp---, xo = a''•(4ncos2q> + ~)-'"· (22) 

Xo 

On substituting this expression into (7), we find 
the dependence on coordinates and time of the 
components of the vector M parallel ( Mz) and 
perpendicular ( Mt) to the anisotropy axis: 

FIG. 2. 
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x- Vt x- Vt 
M,=-M0th-- M 1 =M0 ch-2--. (23) 

Xo Xo 

We see that the value of Mt rises from zero 
(at x- -oo) to its largest value M0 and then de
creases again to zero (at x- +oo). As for Mz, 
this quantity decreases monotonically from M0 

(at X- -oo) to -Mo (at X-+ oo) j therefore a 
wave of the type considered can be called a mag
netic-moment flip wave. (The dependence of the 
quantities Mz and Mt on the variable x - Vt is 
shown schematically in Fig. 3.) 

For the velocity of a magnetic-moment flip
wave-determined, obviously, from the condition 
for compatibility of equations (20') and (21') -we 
get 

V = 2ngM0a'l• sin 2<p ( 4:rt cos2 <p + ~) -'1•. (24) 

We see that the value of V depends on the angle 
cp between the vector Mt and the direction along 
which the quantities that describe the ferromagnet 
change (the x axis). On increase of the angle cp, 
the velocity V rises from zero (at cp = 0) to a 
maximum value 

Vc = gMo(2a) '!. {2:rt + ~- ~'/, ( 4:rt + ~) '/•}'/'. (25) 

and then decreases again to zero (at cp = 1f/2). We 
remark that the velocity of a magnetic-moment 
flip wave (like the velocity of a solitary wave or of 
a magnetic-moment rotation wave) is bounded 
from above: it cannot exceed the critical velocity 
Vc. 

If the magnetic moment rotates in a plane per
pendicular to the direction along which the quanti
ties that describe the ferromagnet change (that is, 
if cp = 1r/2), then the velocity of the wave vanishes, 
and formulas (22) and (23) become the well-known 
relations that describe the structure of a domain 
wall in a ferromagnet (see Landau and Lifshitz[ 3•4] ): 

X 
M,= -M0 th-, 

Xo 

X 
Mt = Moch-2-, 

Xo 
( a )''• Xo= fl . (26) 

In the general case V ~ 0, the magnetic-moment 

M 

_______ 3! --------
' ' ' ' 

-Mo 

FIG. 3. 

' ' ', 
' ................. Mt ,, 

.x-Vt 

flip wave can be interpreted as a uniformly mov
ing domain wall1 >. 

4. EQUATIONS DESCRIBING A STATIONARY
PROFILE SPIN WAVE IN AN ANTIFERRO
MAGNET WITH ANISOTROPY OF THE EASY
PLANE TYPE 

In Sec. 2, on investigating the magnetic-moment 
rotation wave in a ferromagnet with anisotropy of 
the easy-plane type, we saw that on passage of 
such a wave, whatever its amplitude, the vector 
magnetic-moment density rotates through an angle 
1r. It is of course obvious to begin with that the 
vectors M at + oo and at - oo lie in the plane of 
easy magnetization; the fact that these vectors 
are also antiparallel is in the case of anisotropy 
of the easy-plane type (in contrast to the case of 
anisotropy of the easy-axis type) in a certain 
sense accidental. In particular, there is no ground 
for expecting that a similar situation will persist 
in the case of other magnetically ordered crystals 
(for example, antiferromagnets) with anisotropy of 
the easy-plane type. In fact, we shall show that in 
anitferromagnetic crystals with anisotropy of the 
easy-plane type, the angle of rotation of the mag
netic moments in an aperiodic wave depends on the 
amplitude of the wave and is not in general a mul
tiple of 1r. 

In investigating nonlinear spin waves in anti
ferromagnets, we shall start from the equations 
of motion of the magnetic moments of the sub
lattices (see, for example, [2]) 

(i = 1, 2). (27) 

where Mi is magnetic-moment density of the i-th 
magnetic sublattice, Hf is the effective field 

H1e = H + a~M1 + ~n (Mtn) + a12~l\h- 6M2, 

H2e = H + a~M2 + ~n (M2n) + a12~M1- bMt. 
(28) 

H is the magnetic field, related by equations (3) 
to the total magnetic-moment density M = M1 

+ M2, g is the gyromagnetic ratio, n is a unit 
vector in the direction of the anisotropy axis (the 
z axis), a, a 12 , and 6 are exchange-interaction 
constants, and {3 is a magnetic-anisotropy con
stant (in the case being considered, a crystal with 

nwe emphasize that a magnetic-moment flip wave is prop
agated in a crystal in the absence of a magnetic field and is 
caused by an initial excitation of the magnetic-moment den
sity (and not by a constant field applied to the crystal). In 
this it differs significantly from the translation of a domain 
wall under the action of a magnetic field applied to the crys
tal, investigated by Landau and Lifshitz [3] 

----
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anisotropy of the plane-of-easy-magnetization 
type, {3 < 0). 

We shall be interested in those magnetic
moment excitations in which the vector M at the 
initial instant of time is parallel to the anisotropy 
axis, and the direction along which the quantities 
describing the crystal change is parallel to the 
plane of easy magnetization; we shall suppose that 
the external magnetic field is zero. It is easy to 
verify that the waves that occur in this case have 
a velocity parallel to the plane of easy magnetiza
tion and that the following relations are satisfied 
for all r and t: 

M=2n(M1n), M2=2n(M1n) -M1, H=O. (29) 

On eliminating M2 from formula (28) by means of 
these relations, and on using the fact that in a 
stationary-profile wave all quantities depend on 
the coordinates and the time only in the combina
tion r - Vt, where V is the constant speed of the 
wave, we can reduce the equation for Mt to the 
form 

VM{ + g [M1H1e] = 0, 
H ( M , M M , (30) 

1e= a-a12) 1 +6 1+2n(a12 1 n-6M1n), 

where the prime denotes differentiation with re
spect to the variable ~ = v-t r · V - Vt (we have 
taken into account that the magnetic anisotropy 
constant is much smaller than the constant of ex
change interaction between sublattices, I f31 « o). 

Equations (30) are formally analogous to equa
tions (4) and (5); therefore to integrate them, we 
apply the same method that was used in Sec. 1 to 
integrate the equations of motion of the magnetic 
moment in a ferromagnet. Thus on multiplying 
the first of equations (30) scalarly by Mt and by 
H?, we get two integrals of the motion: M¥ = Mt 
= const and 

(ex- a12) { (Mt') 2 - (M0') 2} 

+ 2a12{(Mt'n) 2 - (M0'n)2}- 26(Mtn) 2 = 0, 
(31) 

where Mt is the value of the square of the mag
netic-moment density of each of the sublattices, 
and where M0 is the value of the derivative Mf at 
a point where the vector M1 parallel to the x axis 
(the x axis lies in the plane of easy magnetization; 
in other respects the direction of this axis is ar
bitrary). 

Further, on multiplying the first of Eqs. (30) 
scalarly by n and introducing the notation 

M1x + iMty = Muei'l', M11 = M0 sine, Mtz = Mo cos 9, (32) 

we get after simple transformations 

q>' = sin-2 e {IJlo'- cos 6V(gM0)-1(a- a12)-1}, (33) 

where cp 0 is the value of the derivative cp' at a 
point where the vector M1 is parallel to the x 
axis. We note that the equation obtained from (30) 
by vector multiplication by n is a consequence of 
the relations (31) and (33). 

On noting that, according to (32) and (33), 

(M{) 2 = M02{9'2 + sin-2 9[<p0'- cos 6V (gM0)-1(a-at2)-1)2}, 
(M'n)2 = M029'2 sin2 e, 

we can reduce the relation (31) to the form 

(9' sin 9) 2 ='¥(cos 9), (34) 

where 
( wm =(a+ a12- 2a12~2)-1 (a+ a1z)90' 2 + 2<p0'V(gM0)-t~ 

+ 26 r 1 - ~ - a + a12 9o'2 - a - ai2 cpe'2 1 ~2 - 26~4} 
L Vo2 26 26 

(35) 
V0 is the phase velocity of a small-amplitude spin 
wave 

Vo = gMo)'26(a- atz) (36) 

and 00 is the value of the derivative o' at a point 
where the vector M1 is parallel to the x axis. On 
integrating this equation, we get 

6 = ~ {'¥(cos9)}-''•dcos e. (37) 

The relation (37), which determines the depend
ence of the angle 0 on the coordinates and the 
time, together with the relations (32), (33), and 
(29), completely describes the distribution of the 
total magnetic-moment density and of the magnetic
moment density of each of the sublattices of the 
antiferromagnet in a nonlinear stationary-profile 
spin wave. 

In closing this section, we remark that if in the 
expression (35) for the function 'lt we set a 12 = 0 
and carry out the substitution 26 - 47T - {3, then 
Eqs. (34) and (35) become Eqs. (9) and (10), which 
describe nonlinear spin waves in a ferromagnet. 
For this reason, the formulas of Sec. 2 for the 
magnetic-moment density of a ferromagnet can 
be obtained from the corresponding formulas of 
Sec. 5 for the quantity M1o by setting a 12 = 0 in 
the latter and making the substitution ~ - z - Vt, 
26- 47T - {3. 

5. MAGNETIC-MOMENT ROTATION WAVES AND 
PERIODIC WAVES IN ANTIFERROMAGNETS 

Equation (37), which determines cos 0 as a 
function of the variable ~ = v-1 r · V - Vt, has, as 
does equation (11), two types of solutions, aperiodic 
(decreasing at infinity) and periodic solutions, 
corresponding to two types of stationary-profile 
waves, magnetic-moment rotation waves and 
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periodic waves. We consider first the magnetic
moment rotation wave. In such a wave, before the 
forward front of the wave and behind its rear 
front, the magnetic moments of the sublattices are 
antiparallel and lie in the plane of easy magneti
zation. If we choose the x axis along the direction 
of the vector M1 at ~ ...... -oo and note that at in
finity (} 1 = cp 1 = 0, we can reduce the relation (37) 
to the form 

1 1/ a12 { W + Wo W + 1 } (38) 
1~1=-2 V6 WolnW-Wo-lnW-1 • 

where 

w = (.!!:... + atz- cos2e)''• (1- V2 - cos2e)-'". 
2a12 Vo2 

Wo = (!!:_j- atz ) ''• ( 1 - V2 )-'/• 
2at2 Vo2 

We remark that according to this relation, the 
velocity of a magnetic-moment rotation wave can
not exceed the velocity V 0 of a small-amplitude 
spin wave. 

By use of the relations (38), (32), (33), and (29), 
we can follow the changes of the quantities that 
describe the antiferromagnet in a magnetic
moment rotation wave. At ~ ...... -oo the magnetic 
moments of the sublattices are directed, as has 
already been pointed out, along the x axis (in 
opposite directions), and the total magnetic mo
ment is zero. With increase of ~, there appear 
components of the magnetic moments along the 
anisotropy axis. The vector M is always parallel 
(or antiparallel) to the vector n and increases in 
absolute value from zero (at ~ ...... -oo) to a largest 
value Mmax (at ~ = 0), 

Mmax = 2Mo(1- V2/Vo2)'1•, (39) 

and then again decreases and vanishes at ~ ...... + oo, 

with M ( ~) = M ( -~ ). The projections of the mag
netic moments of the sublattices on the anisotropy 
axis behave similarly and are connected with the 
quantity M by the relation Mt · n = M2 · n = % M. 
(The dependence of the total magnetic-moment 
density M on the quantity ~ is shown schemat
ically in Fig. 4.) 

FIG. 4 

The projections of the magnetic moments of 
the sublattices on the plane of easy magnetization, 
M1t = Mt- n(Mt · n) and M2t = M2- n(M2 · n), 
diminish in absolute value from M0 (at ~ ...... -oo) 

to M0V/V0 (at ~ - 0) and then increase again, 
reaching M0 at ~ - + oo. The vectors M1t and 
M2t meanwhile rotate about the anisotropy axis. 
At ~ - + oo these vectors are no longer directed 
along the x axis but make with this axis an angle 

( a+ atz )''• V ~· ( 2a12 )''• cpo=-2 - Jd~ 1- ~2 
\ a - a12 V o 0 a + a12 

which depends on the wave velocity V and is in 
general not a multiple of rr. 

According to formulas (38) and (39), the 
breadth of a magnetic-moment rotation wave is 
equal in order of magnitude to ~ 0 ~ (a/ 6) 112 

(40) 

x M0/Mmax· If Mmax ~ M0, then the value of ~ 0 
has the same order of magnitude as the lattice 
constant; in this case the relations (38) to (40) 
describe the nonlinear motions of the magnetic 
moments, of course, only qualitatively. (We em
phasize that in the case of a ferromagnet, the 
breadth z0 of a magnetic-moment rotation wave, 
according to formula (12), always exceeds the 
lattice constant significantly.) Therefore the 
greatest interest attaches to the case when the 
angle between the vectors M1 and M2 deviates 
slightly from its equilibrium value (equal to rr), 
and consequently the total magnetic moment that 
occurs is small, Mmax « M0• The velocity of 
such a wave is obviously close to the value of V0• 

The total magnetic moment and the projections of 
the vectors M1,2 on the anisotropy axis are de
termined, according to (38), by the formulas 

M = 2M0 (1 - ~) 'I• ch-L_i_, Mtn = Mzn = 2
1 M, 

Vo2 ~o 

( a+ a12 )''• ( V2 )-'I• ~o= 1-~ . 
' 26 Vo2 1 

(41) 

We emphasize that the value of ~ 0, which deter
mines the breadth of a magnetic-moment rotation 
wave, is in this case large (proportional to 
Mo/Mmax). 

On integrating the relation (33), we get expres
sions for the components of the vectors Mt,2 in 
the plane of easy magnetization: 

M1x = -Mh = Mocoscp(~), Mty = -M2y = Mosin cp(~), 

( a + a12 ) ''• 6 
cp(~)= -2 arctgexpt. 

a-a12 ..,o 
(42) 
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For the angle q; 0 through which the magnetic 
moments of the sublattices rotate on passage of 
the wave, we thus find 

( a+ a12 )'/, 
qJo = -n • 

a- a12 

(43) 

We see that even if the velocity V of the wave is 
close to the velocity V 0 of a small-amplitude spin 
wave (and consequently the total magnetic moment 
in the wave is small), the vectors M1 and M2 ro
tate about the anisotropy axis through an appreci
able angle (remaining almost exactly antiparallel 
to each other). 

We now consider those oscillations of the mag
netic moments of the antiferromagnet in which the 
derivative of the magnetic moments and the com
ponents of the moments along the anisotropy axis 
do not vanish simultaneously; that is, M0 "' 0. In 
this case the relation (37) determines a periodic 
function cos e = ?; ( ~ ) , which runs through all 
values between ?;_ and ?;+, where ?;+ ( ?;_) is the 
smallest, in absolute value, positive (negative) 
root of the equation 

P(~) = a+ a12 (So')2 + ~ Vqlo' 
26 6gMo 

+~2 [i-~- a+a12 (S') 2 _a-a12 (mo') 2] 

Vo2 215 ° 215 "' 
(44) 

-~4= 0. 

Thus when M~ >" 0, there is propagated in the 
antiferromagnet a periodic wave of finite ampli
tude, in which the angle e performs oscillations 
between e+ and e_, where e± =arccos ?;±. 

As in the case of a ferromagnet, a periodic 
wave in an antiferromagnet is possible for arbi
trary values of the quantities characteristic of 
the crystal, if only M~ >" 0. In fact, for existence 
of such a wave it is sufficient that Eq. (44) have a 
root in the interval ( -1, 0) and a root in the in
terval ( 0, 1); that two such roots actually exist 
is easily verified if one takes into account that 

P(O) = a ~6at2 (9o')! > 0, 

a- a12 ( Vo )2 
P(±1) =- lpo' + . < 0. 

26 gMo( a- a12) 

The length A. of a periodic wave in the case of 
an antiferromagnet is determined as usual by 
formula (14), in which the expression (35) must be 
substituted for the function >¥. If M0- o, then, as 
in the case of a ferromagnet, 

and the periodic wave degenerates to a magnetic
moment rotation wave. 

The projections of the sublattice magnetic
moment densities on the plane of easy magnetiza
tion rotate, in a periodic wave, about the axis of 
anisotropy. The angle q; between the vector M1 t 
and the x axis (in contrast to the angle e between 
the vectors M1, 2 and the anisotropy axis) is not a 
periodic function of the coordinates and the time. 
In particular, the values of the angle q; at two 
points the distance between which is a wavelength 
A. differ from one another by the amount 

which is in general not equal to rr. 
By way of example, we consider a harmonic 

spin wave in the simplest case, when V = V0 and 
80 = 0. On introducing the notation ?; o 
= 2V 0 (a- a 12 )- 1 (gM 0 )-1 q; 0-1 and on supposing 
that ?; « 1, we get according to (37) 

n 0 n6 e = 2- ~osm2 -~-' 
, _ 2 ( a+ a12 )'[, I -1 ( 4 S) 
,, - Jt qJo 0 

\a- a12 

On substituting this expression into (33), it is easy 
to verify that the angle q; in this case is a linear 
function of the coordinates and the time, 
q; = t:.q;UA., where the quantity t:.q;, which de
scribes the angle of rotation of the vectors Mtt 
and M2t in a wavelength, has the form 

d.!p = 2n (a+ a 12 )'/, (47) 
a-a12 

We turn now to the problem of experimental 
observation of nonlinear spin waves. In the case 
of antiferromagnetic crystals it is possible, in 
principle, to detect these waves by using the phe
nomenon of magnetoacoustic resonance. If the 
phase velocity V 0 of a small-amplitude spin wave 
is greater than the velocity of sound s, then 
resonance between a small-amplitude sound wave 
and a spin wave is impossible. When V0 > s, how
ever, there should occur "nonlinear" magneto
acoustic resonance: a sound wave of finite ampli
tude should excite through resonance a nonlinear 
spin wave, propagated with velocity V = s, and the 
resonance should set in at a strictly determined 
value of the amplitude of the sound wave. Non
linear magnetoacoustic resonance should be ob
served most easily in crystals with anisotropy of 
the easy-plane type, placed in a strong, constant, 
homogeneous magnetic field directed perpendicu
lar to this plane. The advantage of such crystals 
consists in the facts that, first, the magneto
elastic coupling parameter is very large in them [ 5] 

and, second, by choice of the external magnetic 
field it is possible to produce a phase velocity V 0 
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sufficiently close to the velocity of sound s, thanks 
to the fact that observation of nonlinear magneto
acoustic resonance does not require too large a 
sound amplitude. 

In the case of ferromagnetic crystals, the 
velocity of a detached spin wave amounts, accord
ing to (10), to a few tens of m/sec. For detection 
of such a wave, therefore, it is possible to use 
"magnetomechanical" resonance, by moving a 
crystal through a narrow region of constant mag
netic field; resonance should occur when there is 
a definite relation between the velocity of motion 
of the crystal and the size of the magnetic field. 

In closing, the authors express their thanks to 
A. I. Akhiezer and V. G. Bar'yakhtar for useful 
discussions. 
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