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Broadening of lines emitted from a superconducting tunnel structure is considered. The 
analysis is carried out under the assumption that the.electrons interact with the electro­
magnetic field in quantum fashion. It is shown that the amplitude and frequency of the 
Josephson alternating current cannot be specified simultaneously. The dependence of the 
amplitude on the spectrum width of the emitted frequencies is estimated. 

YANSON, Svistunov, and Dmitrenko were the 
first [i] to observe the radiation, predicted by 
Josephson, [2] from a superconducting tunnel struc­
ture. According to the theory, [2] a single spectral 
line should be observed with frequency w = 2eU/n 
(U is the voltage on the barrier). Account of elec­
trodynamic effects (see [3- 6]) leads to the appear­
ance of a spectrum with frequencies wn = nw. 
Experimentally, however, radiation is observed 
in a rather wide band of frequencies; [T] on the 
other hand, multiple frequencies, in correspond­
ence with the theory, are evidently very weak and 
are not recorded. The band of radiated frequen­
cies varies over rather wide limits, from 0.8 
x 107Hz[7J to 105Hz [BJ for the same central fre­
quency ~ 1010 Hz. 

We consider the broadening of the Josephson 
radiation, assuming the interaction of the elec­
trons with the electromagnetic field to be a quan­
tum one. For this purpose, the scheme with the 
tunnel Hamiltonian [SJ will be generalized to the 
case in which there are electric and magnetic 
fields that vary in time and space.n We then 
separate the field canonical variables which will 
be subJected to the usual commutation relations. 
Since the amplitude and frequency are connected 
with the mutually complementary canonically­
conjugate quantities, they cannot be specified 
simultaneously. For the homogeneous case (small 
voltages on the barrier), the dependence of the 
amplitude on the band of frequencies emitted will 
be estimated. 

1 )Recently Larkin, Ovchinnikov, and Fedorov [10] consid­
ered tunneling in superconductors, using the Gor'kov equa­
tions. We think that the method proposed in [10] can be con­
sidered to be the basis for a model scheme as applied to 
superconductors. 

1. In the absence of a field, the tunnel structure 
is described by the Hamiltonian 

( 1) 

Here H1 and H2 are the Hamiltonians of the left­
and right-side metals, respectively, and the inter­
action Hamiltonian T has the form 

T = ~ T pqa:abqa + herm. conj. (2) 
p, q,a 

where apu• ~u· bqu• and bqu are the particle 
creation and annihilation operators in states with 
quasimomentum and spin p and u in the right 
metal and q and u in the left metal; Tpq is the 
matrix element of the effective interaction. Turn­
ing the field on adds to the Hamiltonian (1) the 
term 

t 1 
H' = ~ d-r: ~ d3rjE + Sn ~ d3r(eE2 +HZ). (3) 

-oo 

where E and H are the vectors of the electric 
and magnetic fields, E is the dielectric constant 
of the material, and j the current-density opera­
tor, the specific form of which we shall determine 
by a self-consistent method. 

Using the fact that wavelengths ,\ customarily 
used in the experiment always satisfy the inequal­
ity f... » AL, where f...L is the London penetration 
depth, we rewrite the first term in (3) in the 
following way: 

2 

~ d3rjE = j d2rfx(O,r) ~ dxE.,(x,r)+ ~ d3rb_E..L. (4) 

Here x is the coordinate in the direction perpen­
dicular to the plane of the barrier ( x = 0 at the 
center of the barrier), r is the radius vector in 
the plane of the barrier, and h and E 1 are the 
components of the current and field parallel to the 
surface of the superconductors. The points 1 and 
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2 lie in the interior of the first and second super­
conductors, while the result of integration in (4) 
does not depend on the specific location of these 
points at the accuracy acceptable to us. See [S,Hl.) 

Inasmuch as we are interested only in how the in­
teraction Hamiltonian changes in the presence of 
external fields, we shall use the London equations 
below and express h in terms of E 1· 

Integrating the operator equation of continuity 
from 0 to oo, we obtain the following expression 
for the operator Jx ( 0, r): 

~ 8A (r) 
Jx{O,r)= e-a:;-, "" 

A(r)= ~ dxp(x,r). 
0 

(5) 

p is the electron density operator. In (5), we have 
00 

neglected the term J dx 'i71 • jl, which makes a 
0 

contribution to the average value of the order of 
A.L/A.. Using (1), (3), and (5) we get an integral 
equation that determines the operator jx ( 0, r): 

~ ie ie r r r 
ix(O, r, t) =-h[A (r)HrJ-- T J d-r: J dJ.r' J dxEx(x, r') 

X {A (r)fx(O r', -r:)]- • 

Solving ( 6), we get 

1 

~ ie 
ix(O, r, t) = - h e-iC [A (r)H1]_eiC, 

C = ~ cllrA (r) cp (r, t), 

where cp ( r, t) satisfies the relations (see [121) 

2 

(6) 

(7) 

8cp e 1 O!p 8:n:e • 
- =- J dxE:x(x, r. t);-=- ~.L2).L; IJl(r, -oo) = 0. 
at n 1 or ftc2 ( 8) 

To determine the canonical variables, we note 
that in the classical case of two interacting sys­
tems with generalized coordinates q (for the 
particles) and Q (for the field) the interaction 
potential V can be represented in the form 

r 1 cW{q, Q) . 
V(q,t)=Jd-r:Jd3r liQ Q, (9) 

-oo 

where Q and Q are assumed to be given functions 
of time and the coordinates r, inasmuch as we 
consider motion in an external field. Comparing 
(3) with (9), we find that 

fJV(q, Q) 

tJQ 
(10) 

It is seen from ( 9) and ( 1 0) that the term repre­
senting the interaction with the field can be 
written as follows: 

n ., ~ 
V(q,!p)=-~d2r~fJ!pjx(q,!p). (11) 

e o 

Here we mean by q the dependence on the electron 
operators. By direct computation by means of Eq. 

(7), it can also be established that the interaction 
term has the form ( 11). Making use of the rela­
tion 

00 

e-icatcreiC= ~ ~ dJ.re-i'P~ dx¢p(x,r)¢n*(x,r)aucr, (12) 
n 0 

we transform ( 11) to the form 

V(q, IJl)= ~ c.flrB(r)exp{-iqJ(r)]+herm. conj.- T, (13) 

where 

"" 
B(r) = ~ ~ dx\j)p(x, r)¢n* (x. r)a;;abqcrTp,,, 

n,p,q,a 0 

l/Jp ( x, r) are the single-particle states with in­
fmitely high barrier. Thus we obtain a Hamilton­
ian which takes into account not only the time 
(see [12 ]) but also the space lag of the current. 

We now express the second term in (3) and the 
contribution from the second term in (4) in terms 
of cp and the momentum e canonically conjugate 
to it. With the assumed degree of accuracy (we 
neglect terms having the order A.LIA. ), we obtain 
the field Hamiltonian Hn in the form 

[ ez AI l 
Hu = ~ d2r 2M +2C2(VIP) 2 ~· (14) 

where 

M = eft2j4nde2, e = Mcp, fil' = c2d/2'ALE. 

2. We shall now assume that not only the elec­
tron system, but also the field system is described 
in quantum fashion. The total Hamiltonian H will 
be 

H = H1 + H2 + ) cllr B (r) 

X exp[-iqJ(r)]+herm. conj. +H11, (15) 

and cp and e satisfy the usual commutation rela­
tions: 

[IP (r) e (r')1- = iM (r- r'), {IP (r) 1P (r')1- = 0, 
[6(r)8(r')]- = 0. (16) 

For the calculation, it is convenient to assume 
that we turn on not the field but the interaction 
with the electron system (transparency of the 
barrier), but then the state of the field before 
turning on the interaction will be described, in 
accord with (8), by the specified mean values 

(e)= MeU/n, (VIJl) = 2eA.L[nH]/hc2 = k, (17)* 

where U is the voltage on the barrier, H the con­
stant magnetic field, and n a unit vector perpen­
dicular to the surface of the barrier. 

It would appear that the transition to excitation 
annihilation and creation operators in orthonor-

*[nH] = n x H. 
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malized states, which are the solutions of the 
corresponding field equation for the Hamiltonian 
(14), leads to a simplification of the problem. 
However, it is not difficult to see that such an ap­
proach leads to the appearance of divergences. In 
fact, by using (15) and (16) it is easy to obtain the 
operator equation 

1 82cp -i 
V2cp- C2 fii2 = MC2 [B(r)exp [- icp(r)]-herm. conj. ]. 

(18) 
This equation is the quantum analog of the equa­
tions used in [a, 5•81. If we consider the calculation 
of the mean voltage on the barrier as an example, 
using second-quantization operators creation and 
annihilation in orthogonal states, then we dis­
cover that the divergence appears as the result of 
the vanishing of the term J d2r ( v2 cp ) • By using 
(18) we can easily see that J d2r(V2cp) ~ 0. Use 
of states with real boundary conditions would be 
natural in this case, (G] but such states are not 
orthogonal, inasmuch as the operator v2 is not 
Hermitian here. 

By using (18), it is possible to construct a per­
turbation theory in T which leads to the usual 
description of quasiparticle tunneling; however, 
the Josephson current proper is equal to zero. In 
order to understand the reason for this, we con­
sider the homogeneous case, in which the voltage 
at the barrier can be regarded as constant. Ac­
tually, this corresponds to the region of voltages 
eU « 2 b. (A is the gap in the elementary-excita­
tion spectrum in superconductors), i.e., those 
usually realized in experiments on Josephson 
tunneling. 

3. In the homogeneous case, the expression (14) 
is greatly simplified and takes the form 

A.LsH2 p2 ~ 1 S 
Hn=--+-, p=-= d2r9(r), 

4n 2M is 
(19) 

where s is the area of the junction. The coordi­
nate canonically conjugate to p is 

~ 1 \ - ~ 
Q =-= J d2rcp(r) = Qo +is kr + y. 

is 
From (16), we get 

[QpJ- = (yp]- = ili4 

(20) 

(21) 
Using (7), (15) and (19) in the first non-vanish­

ing order of perturbation theory, we get the follow­
ing expression for the current which flows through 
the barrier: 

2e t 
I= ""liRe~ d-r ~ d2r ~d2r' {([B(r',t)exp[- icp(r', 't')JIB(r, t) 

-oo 

X exp [- icp (r, t) Jl-)o + ({B+(r', -r) exp [icp (r', -r)JIB(r, t) 

X exp[- icp(r, t)]-)o}. (22) 

Here we denote ( ... ) 0 the averaging over the 
equilibrium ensemble of electron states, when 
Tpq = 0, and over the states of the Hamiltonian 
Hn, while 

cp(r, t) = Q(r, t}/is; 
A 

Q ( t) and B ( t) are operators in the interaction 
representation, 

.. [ iHnt] A [ Hut J Q(t) = exp -li- Q exp -iT. 

= Oo+kris+v+tp/M. (23) 

The second term in (22) leads to the usual 
quasiparticle current, and we shall not consider 
it below. The first term for U « 2 b. (see [!21) can 
be simplified and rewritten in the form 

I.(t} = Io ~ d2: Imexp [i 2;+ 2kr] ( 

'[ i2pt 2iy ]) X exp -=- + ----=. , 
isM is o 

(24) 

where 10 is the Josephson current. [21 
If it is assumed that, prior to turning on the 

interaction, we are given ( p )0, i.e., the voltage 
on the barrier is such that the variance ( ( Ap) 2 ) 0 

= 0, then we get Is = 0. The latter is a conse­
quence of the fact that the variance ( (b. y )2 ) 0 -co, 
in correspondence with the uncertainty relation 
( ( Ap )2 ) 0 ( (b. y )2 ) 0 ~ li2/ 4. Actually, however, we 
always have a noise voltage on the barrier, due at 
finite temperatures both to the flow of quasiparti­
cle current and to noise introduced from the ex­
ternal source, which as a rule is at room tempera­
ture and possesses a finite internal resistance. At 
temperatures close to zero, the fundamental con­
tribution is made by the external noise. Taking it 
into account that the noise incident on the junction 
passes through a natural low frequency filter, we 
assume that the upper limiting frequency of the 
noise g is such that the inequality g l/c « 1 is 
satisfied (l is the characteristic transverse 
dimension of the junction). Satisfaction of this 
inequality is necessary since otherwise it would 
be necessary to take retardation into account and 
the homogeneous approximation would be invalid. 

The existence of noise can be described by in­
troducing in the Hamiltonian a potential that de­
pends on the time in random fashion. We cannot 
solve the problem with a random potential. How­
ever, it is easy to obtain an estimate of Eq. (24) 
by starting out from the fact that the noise leads 
to the appearance of a variance of p, ( ( b.p )2 ) 0 

= sM2U~ /li2 ( U n is the npise voltl!:ge), and con­
sequently, a variance of y is ( ( b.Y)2 ) 0 
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~ n2/ ( ( .6.p )2 ) 0, i.e., to the existence of a rather 
strong cutoff in y. Taking the foregoing into ac­
count, we get 

[ aznz J 
J.(t),..., Ioexp - 2sZMZ(~w)z 

1S '[~m J X -; d2rsin T + 2kr + q>o + x,(t) . (25) 

Here qJ 0 is the initial phase of the oscillation ( qJ 0 

= Q0/.fs), x ( t) is the random phase, the energy 
spectrum S ( .Q ) of which is connected with the 
noise spectrum W ( .Q ) by the relation S ( .Q) 
= W( .Q )/il, .6.w is the width of the band of emitted 
frequencies, and a is a dimensionless parameter 
(0! ~ 1). 

To get (25), we have assumed that the index of 
noise modulation can reach large values, [13] and 
therefore assumed that ( .6.w )2 ~ e2U~/n2 • The 
functional dependence of the current amplitude on 
( .6.w )2 will naturally depend strongly on the 
method of cutting off of the integrals in the calcu­
lation of the mean values. In the given case, we 
used a cutoff of the Gaussian type, i.e., 
~ exp[-y/2 < (.6.y) 2 ) 0 ]. Thus the result is purely 
an estimate. We note that, regardless of the 
manner of the cut, the factor f which suppresses 
the amplitude when the band width of the emitted 
frequencies decreases has the form 

aznz 
f ~ 1- 2sZMZ(~w)Z (26) 

for large .6.w. 
4. In conclusion, we estimate when a significant 

decrease in the amplitude of the Josephson current 
sets in. For the junctions employed in the experi­
ment of Dmitrenko and Yanson, [7] we have 
M ~ 10-29 g and s ~ 10-2 cm2• Using (25), it is 
easy to see that a decrease in the amplitude by a 
factor e will take place for a bandwidth .6.w 
~ 104 Hz. In the work of Dmitrenko and Yanson, [?] 

a bandwidth .6.w ~ 0.8 x 107 Hz was observed, i.e., 
the damping of the current amplitude was virtually 
nonexistent. In the experiments of Taylor et al., [8] 

the bandwidth reached .6.w ~ 105 Hz, which is 
rather close to the estimate obtained by us. We 
note that to obtain very high stability it is advan-

tageous to use high frequencies, since the band­
width of emitted frequencies in the approximation 
considered here ( w « 2.6./n) does not depend on 
the central frequency w. For high frequencies 
w ~ 2.6./n, however, an additional broadening will 
appear, connected with the excitation of a quasi­
particle current due to the effects of retardation [12] 

even at zero temperature. 
The author is indebted to K. B. Tolpygo for the 

interest he has shown and for useful discussions. 
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