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The transfer coefficients for polyatomic gases in varying electric and magnetic fields are 
obtained by solving the kinetic equation for a gas with rotational degrees of freedom. The time 
dependence of the transfer coefficients in varying fields is oscillatory and the oscillation spec
trum consists of frequencies that are multiples of the field frequency. The dependence of the 
time-averaged viscosity and thermal-conductivity coefficients on the field frequency is deter
mined. Comparison of the dependence with the experimental data yields the magnitude of the 
eigenvalue of the collision integral. 

A frequency dependence of the coefficient of 
thermal conductivity of the polar gas NF3 in an 
alternating electric field was recently observed ex
perimentally. [ 1J The relative change of the ther
mal-conductivity coefficient (E = -t::..K/K) decreases 
noticeably at field-frequencies close to the mole
cule precession frequency. The effect was con
nected with a decrease in the angle of rotation of 
the vector of the rotation moment of a nonspherical 
molecule precessing about the field direction when 
the field frequency is increased. It was shown that 
the change in the thermal conductivity coefficient 
E v /Eo (E 0-relative change of the thermal conduc
tivity coefficient at the frequency v = 0) is a func
tion of any two ratios made up of the following 
three quantities: the field intensity E, the pres
sure P, and the frequency v. In the region of small 
field values, i.e., at E/P « 1, the value of E v /Eo 
is determined only by the ratio v /P. 

In this paper we consider the influence of an al
ternating field on transport phenomena in gases 
theoretically. The kinetic equation for a gas with 
rotational degrees of freedom in an alternating 
field is solved by the method developed in [ 21 • We 
investigate in detail the thermal conductivity and 
the viscosity of a polar gas with symmetrical-top 
molecules having nearly equal moments of inertia 
(11 = 12 ~ 13) in an alternating electric field, and of 
a paramagnetic gas with linear molecules in an 
alternating magnetic field. 

The linearized kinetic equation for the polar 
gas with symmetrical-top molecules having nearly 
equal moments of inertia (11 = 12 ~ 13 ) and a dipole 
moment d in an alternating field E = E0 cos wt 
is[ 2J 

where 

f=fo(1+x), fo=nexp(-U2-M2); (2a) 
/'-. 

y=dEoa/M, a=cos(dM); (2b) 

l,m 

Azm = Yzm (U), A 00 = %U2- _!___ ( lj2 + M2); (2 C) 
Cv 

fx = ~ /o1 [ (x + Xt) W- (x' + x{) W'] dft df' df/, 

(2d) 

The quantities azm are given in [ 21 ; U and M are 
the dimensionless velocity and angular momentum, 
and cpM is the angle variable in momentum space. 
Equation (1) is written out in a spherical coordinate 
system in which the z axis is in the direction of the 
field E. 

The linearized kinetic equation for a paramag
netic gas with linear molecules in an alternating 
magnetic field H = H0 cos wt is similar in form to 
(1). The values of y and of the phase volume for 
such molecules are 

y = !loaHoM-t, a= 0, +1; 
df = 1/ 2 n-'f,U2dUdQuMdMdQM 

(p,0 = Bohr magneton). 
We seek a solution of (1) in the form 

X=-] azm.X!lm 
l,m 

(3) 

Then the functions X lm should satisfy the equation 

ax,~m/at- Azm +'\'cos wtaxzm/a~M =- Ixzm. (4) 

ax ax ~ 
-+N+ycoswt-= -Ix, at a~M 

Let us consider the time-averaged variation of 
(1) the transport coefficient in the alternating field. 

868 
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Following [ 2 1, we break up the collision operator 
(2d) into two parts: 

i = I<0> + ef<1>, (5) 

where i<o > describes collisions without allowance 
for the rotational degrees of freedom of the mole
cules, and EI(1) is a small operator which takes 
into account the dependence of the collision cross 
section on the molecule rotation ( E is a small 
parameter). 

We shall assume that f<o> corresponds to a 
Maxwellian molecule-interaction potential. The 
eigenfunctions of the operator f<O > constitute a com
plete set of orthogonal normalized functions and 
are determined, together with the eigenvalues, by 
the following equations: 

'l!ln = 'I!Jz. m, l, I,, r,, r,, s = :::8 c::.,z.m, Yz,m, (U) 
m1+m2=m 

(6) 

where in the case of an electric field we have 

(Ft, Fz)= ~ ~ foFtFzdf der. 

In the case of a paramagnetic gas in a magnetic 
field, the integration with respect to a is replaced 
by summation. 

Using the explicit form of the coefficients A lm• 
we rewrite (11) in the form 

'l.n/01 
(2) ~~ (j) r ~ ~ 

C!m, I'm = e2 2; (Azm. KJ<1>'\jln•> 2n J Kn'ndt('\jln, [(iJKAz•m>, 
n',n C (12) 

where 

~ ~ "" 1 (1) > (Alm, KJ<1>¢n) = LJ~ I non (Alm• 'l!lno • 
no no 

n0 = (l, m, lt, 0, r1, r2, 0). 
(13) 

The dependence of the coefficients c ~~. z'm on the 
field is determined by the matrix elements 

(14) 

<7) The action of the operator K on 1/Jn is represented 
by 

where C: :: are Clebsch-Gordan coefficients, 

L;~ (M2) are Laguerre polynomials of rank Z2 for 
linear molecules and of rank l 2 + 1/ 2 for symmet-

l 
rical-top molecules, and Tr! (U2) are Laguerre 

polynomials of rank l1 + 1/ 2 in the case of a Max
wellian molecule-interaction potential. The eigen
values (7) differ from those introduced in [ 21 by a 
factor n (n =density). 

When (5) is taken into account, Eq. (4) for Xzm 
takes the form 

K-Lxzm = Azm- J<1lX.zm, 

k.-1 = a;at + v cos U'Jta/acpM + /<0>. 

(8) 

(9) 

A formal solution of Eq. (8) in the form of an ex
pansion in the small parameter E is 

.o\. '\ A(l) .o\. 

Xzm = KA,m- eKI KA,n 

+ e2KJ(ll K J<ilkAlm- · · ·, (10) 

where K is an operator inverse to K:-1. 

The operator K:-1 differs from the corresponding 
operator in a constant field [ 21 in that it contains a 
time derivative and cos wt in the second term, and 
operates in a function space of the form 
1/J n exp (- ikwt) (k = integer). Therefore the field 
dependence of the time-averaged thermal-conduc
tivity and viscosity coefficients is determined by 
expressions 

(11) 

where the unknown function Zn (t) satisfies the 
equation 

dZn/ dt + AnZn + im2y COS U'JtZn = 1. 

The periodic solution of this equation takes the 
form 

( im2'\' \ Zn = exp ----sinU'Jt-Ant/ 
' (j) 

r (imzv ) X J exp --sin U'Jt' +Ant' dt'. 
\ (j) 

-oo 

(15) 

(16) 

(17) 

Performing the required time averaging in (12), we 
get 

21</0l 

Zn = ~ \ exp (- im2y :sin U'Jt- Ant) dt 
2n ~ , ffi 

t 

X ~ exp ( i":y sin U'Jt' + Ant') dt'. 
-oo 

(18) 

Replacing the variable t' by z = t' - t and using 
the expansion 

co 

exp (iz sin cp) = 2; !" (z) eik•P, 

k=-oo 

where Jk(z) are Bessel functions, we get 

_ ~ (m2Y\ 1 
Zn = LJ h 2 -- · • 

, U'J / iU'Jk + f.n 
k=-oo 

Let us substitute this expression in (15) and 
separate the field-dependent part t>Kn'n· Then, 

(19) 
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taking into account the explicit forms (6) of 1/Jn and 
of y, we get 

(20) 

To get (20), we used the identity 
00 

Expressions (12) and (20) determine the de
pendence of the time-averaged changes of the ther
mal-conductivity and viscosity coefficients on the 
amplitude and frequency of the alternating field. 
The imaginary part of (20) vanishes. Therefore 
the time-averaged effects that are "odd" in the 
field vanish in an alternating field, as expected. 
Since An ~ P, it follows, as is evident from (20), 
that the effect depends on the ratios E0/w (H0/w) 
and w/P. It is obvious that the parameters that 
determine the change of the transport coefficients 
can be any two ratios of E0 (H0), w, and P. This 
circumstance is confirmed by results of an exper
iment in which the thermal conductivity of the 
polar gas NF3 was measured in an alternating 
electric field. [ 11 

Using (18), we can readily show that at field 
frequencies w - 0 the quantity t:.Kn'n takes a 
form corresponding to the solution of the problem 
in a constant field. At field frequencies w - oo we 
get .C:.Kn'n - 0 and consequently the effect van
ishes, since Jk(1/w)- 0 (k -f. 0) as w-oo, This 
corresponds to complete vanishing of the molecule 
precession. 

Let us find the dependence of the time-averaged 
changes of the transport coefficients on the ampli
tude and frequency of the field in the case of weak 
fields (y /'An« 1). Using the expression for Bessel 
functions at small values of the argument 

1 ( z )k 
h(z) ~ kt 2 (k =I= 0) 

and retaining the first term in the sum over k in 
(20), we get 

(21) 

Inasmuch as the changes of the transport coeffi
cients in a constant field are proportional to 
(y/An)2,[ 2 l in the region y/An « 1/ 21 it follows 
from (21) that the change in the effect with changing 
frequency does not depend on the field amplitude 
and is determined by the last factor of (21). Com
parison of the theoretical frequency dependence of 
the change of the effect with the experimental data 
allows us to obtain the eigenvalue An of the colli
sion operator 1<o >. 

In order to carry out such a comparison, let us 
consider a collision model in which the matrix ele
ments ~~~ln differ from zero only for n = (l, m, 2, 
1, 0, 0, 0). With (7), (11), and (21) taken into ac
count, the relative change of the thermal-conductiv
ity coefficient with changing frequency is given by 

1 ~x(w) 
------

~x(w = 0) 1 + (w/n~1o')2' ~10 = n~to'· (22) 

(It can be shown that formula (22) remains un
changed when account is taken of the difference of 
the moments of inertia of the molecules of the polar 
gas.) The figure shows a plot of (22) together with 
the data taken from [ 11 • We see that a dependence 
of the type (22) describes the observed regularity 
with the same accuracy that has been attained in 
the experiment. In this case {3~0 is equal to 
1.3 X 104 kT. 

Let us examine the time dependence of the 
transport coefficientsY We assume that the values 
of the momentum M in the quantity y have been 
replaced by their mean values. This enables us to 
obtain qualitatively correct results and simplify the 
solution of (8). We represent Xzm• as we have done 
in fact earlier in the derivation of (10), in the form 
of an expansion in the small parameter E: 

(0) (1) (2) 
X!m = Xlm + exzm + E2X,zm +... (23) 

Substituting (23) in (8) and solving successively the 
equations for X <o> X <1> and X <2> we obtain the lm lm• lm 
following expression for the function x/~ and the 
coefficients cYin_ l'm• which give the dependence 
of the transport coefficients on the field: 

(2)_ ~ 
X.Jn,- ~ 

n, n 0, no' 

(~) "Q lm, l'm 
Czm,l'm = LJ Bnnono'Znnono' (t), 

(24) 

n. no, no' (25) 
B lm,l'rn ( ) -!( A )(A ) (1) (1) 

nnono' = /,n,Ano' tPno'• I'm lm, tPno lnonlnno'· 

l)We are grateful to Yu. M. Kagan who called our attention 
to this aspect of the problem. 
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Dependence of 11Kn! I1K 0 on v/P. Solid curve - calculation 
by means of formula (22), points - experimental: +,x) E/P 
= 102 (V /cm)/mm Hg, +) P = 0.6 mm Hg, x) P = 0.87 mm Hg, 
o,.6,o) E/P = 187 (V /cm)/mm Hg, o) P = 0.6 mm Hg, .6) P 
= 0.33 mm Hg, D) P = 0.2 mm Hg. 

The sets of numbers no and n~ are given in (13). 
The time-dependent functions Znnono are of the 
form 

00 

Z _ ~ A·eihwt, 
nnono' - .LJ 11o (26) 

1<=---= 

, 1 ~co 1 ( ln2V ) I m2y ) A~t= An ---- ]z -- h-'-kl -- . 
0 ikw + Ano'l=-ooiw(k + l) +An (J) · ' \ uJ 

(27) 

In accordance with (25)-(27), the variation of the 
transport coefficients of polyatomic gases in an al
ternating field has an oscillating character, owing 
to the periodic oscillations of the effective mole
cule-collision cross sections in the oscillating 
field. The spectrum of the transport-coefficient 
oscillations consists of a set of frequencies that 
are multiples of the field frequency. 

When k = 0, expression (26) goes over into (19). 
In the case of low frequencies (w « y , An) ex

pressions (25)-(27) of the transport coefficients 
should obviously go over into the formulas of [ 21 

for c1~ z'm in a constant field, with the substitu
tion H...:. H0 cos wt is made. 

In the case of high field frequencies (w« y, An) 
the series (26) converges rapidly (Ak ,..., ( y I w)k) and 
it suffices to retain the first few terms. Since in 
this approximation A_k = ( -l)kA.k, it is obvious 

(2) 
that Re Znno~ , and consequently also Re c lm, l'm 
will contain only even harmonics, and Im Znn n' 
and Im c~2:n z'm will contain only odd ones. 0 0 

Therefore the expression 

(2) 1 y2 ' 
11 Re Czm, l'm = - T6 w~ Alm, 1m cos 2wt, (28) 

where 

Alm, l'm- ~ vlm, l'm 
- .L.J m2Unnono', 

nnono' 

describes small deviations from the mean values of 
effects that are even in the field, and 

~' 1 v 
11 Im c~,.,;, l'm = - T w3 Nm, I'm sin wt (29) 

is the first non-vanishing term describing effects 
that are "odd" in the field and oscillate with the 
field. 

The quantities (28) and (29) are quite small, but 
it may turn out that their measurement can serve to 
obtain additional information on molecule collisions 
in polyatomic gases. 

The authors are grateful to Yu. M. Kagan, N. A. 
Kolokol'tsov, L. L. Gorelik, Yu. A. Mikhallova, and 
V. V. Sinitsyn for interest in the work and useful 
advice. 
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