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The spectrum of the Boltzmann equation is discussed for the case of soft interaction poten
tials. The continuous spectrum of single-particle motions is important in this case. Quasi
collective excitations (modes and resonances) are studied. Relaxation towards an equilibrium 
state is considered for large time values on basis of the spectrum pattern so derived. It is 
demonstrated that the decays of the initial perturbation are qualitatively different for hard 
and soft potentials. 

1. INTRODUCTION 

MUCH progress has been made recently in 
kinetics based on the linear Boltzmann equation. 
At the same time, many questions calling for fur
ther investigation have been raised. Two of them, 
namely the determination of the spectrum of the 
Boltzmann equation in the case of soft interaction 
potentials and the analysis of relaxation of a 
specified initial distribution to the equilibrium 
value, are the subject of the present paper, which 
is a continuation of an article in which the first 
problem was investigated for hard potentials. [1] 

The first to investigate the spectrum of the 
linearized collision operator were Wang-Chang 
and Uhlenbeck [2) (see [3)). They developed a 
proper collision-integral theory for the case of a 
gas of Maxwellian molecules (the spectrum 
turned out to be discrete). This theory was used 
in an analysis of sound propagation [2) as the basis 
for a discussion of one of the spectral branches 
of the Boltzmann equation, the sound trajectory. 

The study of sound at ultrahigh frequencies[4•5] 

and of the thermalization of neutrons (see the 
reviews by Beckurts [S] and Nelkin [v]) called for 
a detailed investigation of the spectrum, concern
ing which little was generally known in the early 
60's (see, in particular, the remarks of Wang
Chang and Uhlenbeck [31, p. 112). Recently, the 
eigenvalues (and trajectories) have been calcu
lated for definite interaction models (see, for 
example, [B, 9]) and the structure of the spectrum 
has been made clear for a wide class of potentials. 
Studies of neutron thermalization by the method of 
Van Kampen [1ol and Case [11], reported in a num
ber of papers (of which [121 is among the latest), 
have revealed the presence of a continuous spec
trum. Grad [131, in an investigation of the asymp-

totic theory of the Boltzmann equation for small 
perturbations in a gas, established its existence 
rigorously in the absence of density gradients. 
The continuum picture has enabled him to separate 
the soft interactions. The present author [1], using 
the generalized Weyl theorem, determined the 
continuous spectrum in the inhomogeneous case 
and related it with the problem of high-frequency 
sound. 

In Sec. 2, which proceeds along the lines of the 
earlier paper [tJ, we investigate the spectrum in 
the case of soft interaction potentials. It turns out 
here that an important role is played by the con
tinuous spectrum (the continuum of single-particle 
motions). The observed collective excitations 
(modes and resonances) lie in the continuum. The 
question of sonic excitation in "soft" systems be
comes complicated, for it no longer corresponds 
to a spectral branch. We note that the situation 
here (for arbitrary frequencies) is closer to that 
arising when an attempt is made to discuss high
frequency sound in a gas of particles with a hard 
potential [1]. 

A natural development of Boltzmann's general 
result concerning the establishment of the equili
brium state is a detailed study of the concluding 
stage of the evolution. From among the latest 
papers devoted to this question, we call attention 
to those of Sirovich [14] and by Kuscer and Corn
gold [151. A known fact is the exponential relaxa
tion in the homogeneous case. In the presence of 
density gradients, the relaxation depends on the 
choice of the initial distribution in space. The 
typical initial conditions with which Sirovich has 
dealt [14 1 lead to a t- 3/ 2 diffusion law. His analy
sis, however, is not fully satisfactory because of 
a number of limitations. 

The question of the behavior of the system at 
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large values of the time is considered in a very 
general manner in Sec. 3 of the present paper. In 
particular, we investigate homogeneous relaxation 
in the case of soft potentials. This relaxation de
pends on the initial conditions, but can be de
scribed essentially by an exponential function of 
a fractional power of t. 

The general character of the analysis makes it 
possible to consider in the paper, besides small 
perturbations of a simple gas, also the evolution 
of a rarefied impurity in an equilibrium medium1 >. 
We shall henceforth assume that the medium is 
non-absorbing. The main formal difference be
tween the indicated cases lies in the number of 
the collision invariants. In the latter case, obvi
ously, only the number of particles is conserved. 
It is clear that in the absence of external forces, 
a Maxwellian distribution is established in the 
course of time in the here-considered systems 
"with conservation." under consideration, 

2. SPECTRUM OF RELAXATION FREQUENCIES 

The evolution of the systems under considera
tion is described by a linear Boltzmann equation 

where qJ is the perturbation of the distribution 
function; the latter is written in the form 2> 

( 1) 

/(v, 1', t) = fo + fo'!·rp(v, r, t), fo = (2n)-'he-v'f2. (2) 

The sum of the flux and collision terms in the 
right side of (1) determines the evolution operator. 

The following are the known properties of the 
collision operator J: a) it is self-adjoint and non
positive, b) it has a zero eigenvalue, c) it is iso
tropic in velocity space. The multiplicity of the 
zero eigenvalue is obviously equal to the number 
of collision invariants. When the particle number, 
momentum, and energy are conserved the corre
sponding normal eigenfunctions are: 

'{, 'f, ,/; .,, 
/o, vfo, r3 2(1- 1/3v2)/o. 

The collision term, as is well known [tsJ, is 

ltfJ =- v(v)rp +) K(v, vl)rp(vt)dvt. 

(3) 

(4) 

l)The so-called heat-bath (thermalizer) model. It is used 
for the study of a large number of questions. These include 
neutron transport, electron processes in a plasma, and Brown
ian motion. 

2 )We use henceforth dimensionless quantities introduced 
in [']. 

Here v ( v) is the frequency of collisions of the 
particle with velocity v. An important factor for 
the subsequent analysis is that the kernel 
K ( v, v1 ) is perfectly continuous for a broad class 
of interaction potentials [t 3]. These include repul
sion potentials of the form a/ rs ( s > 2) with a 
finite effective radius 3>. In the case of these po
tentials, to which we shall henceforth confine our
selves, the collision frequency, using the normali
zation condition v ( 0) = 1, is equal to (see [t J, 
formulas (8}-(10)) 

:rt'" \ 
v(v)=---- J 

2(1'+1)/2f( 'Y ~ 3 )I 
It is easy to verify that the function v( v) is 
monotonic. As v __.. oo we get 

n''• 
v(v) ~ vv. 

2(v+1)/2f( 'Y ~ 3 ) (6) 

The frequency increases (or remains constant) in 
the case s 2: 4 (hard potentials), and decreases to 
zero if s < 4 (soft potentials). We shall hence
forth discuss these cases separately, since there 
are qualitative differences between the properties 
of systems with soft and hard interactions _4l 

Thus, we proceed to study the spectrum of the 
Boltzmann equation. Going over to the Fourier 
representation 

rp (v, k, t) = S rp (v, r, t) eik•dr, ( 7) 

we obtain 
8rp(k) 

- 8-t- = ikvrp(k) + Jcp(k) = S(k)cp(k). (8) 

We are interested in values of p and k for which 
we can solve the equation 

prp = (ikv- v(v) )cp + Krp. (9) 

We first determine the spectrum of single
particle motions. As indicated, it plays an im
portant role in the case of soft potentials. Accord
ing to the invariance property of the continuous 
part of the spectrum relative to the fully continu
ous perturbation5> it is sufficient to study the 
equation 

3 )We have in mind the ordinary regularization (inclusion of 
"glancing" collisions), which ensures a finite total cross sec
tion within the framework of the classical theory. It should be 
noted that quantum mechanics gives a finite total cross section 
for the indicated potentials. 

4 )This was pointed out earlier by Grad [13]. 

S)The generalized Weyl the9rem which we used is given in 
the book by Glazman ["], p. 41. 
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[p + v (v)- ikv] cp = 0, (10) 

which is obtained when the operator K is crossed 
out from (9). In the case of the problem with 
initial conditions ( p = A. + iw and k real), the 
continuous-spectrum region is determined from 
the relations 

/.., = -v(v), 

w=kv. 

(11) 

(12) 

Consequently, for soft potentials the continuum of 
the relaxation frequencies fills in the complex p
plane the strip 

-1 ~Rep< 0. (13) 

It is clear that single-particle excitation will have 
arbitrarily long lifetimes and should greatly in
fluence the evolution of the soft system. As fol
lows from (13), the long-lived excitations having 
a collective character will be quasicollective (they 
lie in the continuum). For the stationary situation 
( k = k1 - ik2, p = iw ) , the region of the continuous 
spectrum is given by the condition (see [1], for
mulas (46)-(50)) 

(14) 

i.e., it lies above the ray k1 = wk2 (see Fig. 2 
of [1]). In this case, too, the collective excitations 
(if they exist) are in the continuum. 

The question of collective excitations reduces 
to a study of the dispersion equation. We obtain 
the latter with the aid of a modified method of 
moments. Using the complete system of the func
tions 1/Jn ( v), normalized with weight v ( v): 

we represent the kernel K ( v, v1 ) in the form 

K(v, Vt} = v(v)v(v!) ~ Kmn¢m(v!)'ljln(v), 
m,n 

(15) 

(16) 

Kmn = ~ '\jlm(v)K(v, Vt)l~J..,(vt)dvdvt. (17) 

The first five functions are chosen in the form of 
linear combinations of the conservations (3). The 
corresponding matrix elements are then 

(m ~ 5). (18) 

In this representation, the collision operator is G> 

6 )Confining ourselves to a finite number of terms, we ob
tain collision-term models that generalize the well known BGK 
model. All possess conservation. The representation used in 
['] does not possess this property. 

lcp= v(v}[ -cp+ ~CmKmn'\jln], 
m,n 

Cm = S v'¢ncpdv. (19) 

Substituting ( 19) in ( 9), we get 

v(v) ~ 
cp(v,k,p) =[p+v(v) -ikv]~ Cm(p,k)Kmn'\jln. (20) 

m,n 

Multiplying this expression by vl/Jl and integrat
ing n, we arrive at a system of equations and the 
existence conditions for their solutions yields the 
dispersion equation 

D(p,k) = llblm-~ KmnTln(p,k}ll = 0, 
(21) n 

1 v2.¢1'¢ndv 
T1n (p, k) = J r + 'k ] . 

1p v- t v 
(22) 

In the case of hard potentials, the function 
D ( p, k), with Rep> -1, is obviously analytic. 
Taking this circumstance into account, and also 
the properties of the evolution operator S ( k ), we 
can represent the solutions of (21) for small 
values of k in the form of expansions 

p;(k) = /..;- ikp~1)+ (ik) 2p~) + ... ' (23) 

where Ai are the eigenvalues of the collision op
erator, the coefficients p~j) are real, and p~2 > > 0 
(see [1]). The longest lifetimes are possessed by 
the hydrodynamic modes (sonic, thermal, and 
transverse B> ): 

Pt, 2 = +i -y'5/ 3 k- a1k2 + ... , (24) 

Pa, 4 = -aa, 4 k2 + ~3, 4 k 4 + ... (25) 

It is clear that in the case of the thermalizer 
(heat-bath) model, one branch of the diffusion type 
(density) emerges from zero. Inversion of the 
series (24) and (25) with p = iw yields the posi
tions of the corresponding branches; all describe 
propagation. In particular, a density wave exists 
in the presence of a pulsating source of impurity 
particles. Its low-frequency propagation constant 
has in the diagonal approximation the form 

1 I-;;; [ K22 ]-'1• 
k ~ V 2 (u2/v) + (u2v) (1- K22) (1 - i) · (26) 

The angle brackets ( ... ) denote here averaging 
over the Maxwellian distribution, and the matrix 
element is taken with respect to the function 

7)In the case when the denominator in (20) vanishes and cp 
becomes a singular function, it is necessary to use suitable 
regularization to determine the integral correctly. 

8 )0wing to the invariance of the operator S(k) to rotations 
about the vector k, the transverse mode is two-fold degenerate. 
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lfi 2 = (u2v)-1/ 2uf¥ 2• In the case of a Maxwellian 
background - impurity interaction, the coefficient 
in (26) becomes exact. 

In the case of soft potentials, the function 
D ( p, k) is singular in the region -1 :::: Re p < 0, 
of greatest interest 9>, and consequently the in
vestigations of the quasicollective excitations 
should be carried out in a special manner (see 
footnote 7l). Such excitations can be of two types: 
modes and resonances. In order to describe them, 
let us consider for simplicity a spatially-homo
geneous case. Noting that the function D ( p) 
= D ( p, 0) is analytic when p is complex, we in
vestigate the real values of interest to us, resort
ing to one of the limiting transitions p =A± iO. 
Calculating the upper and lower limits ( +) and 
(-) and carrying out algebraic transformations, 
we get 

D±('A)= .D('A)+i:rtf('A), 

.D('A) =!161m-~ KmnPTln('A) II' 
n 

(27) 

(28) 

(29) 

where p is t'.!_e srmbol for the principal value of 
the integral, D m (A) is the co-factor of the ele
ment of the determinant (28), and vA is the solu
tion of the equation v ( vA) + A = 0. The resonance 
is characterized by the condition 

.D('A)=O. (30) 

The value of r (A) determines in this case the 
width of the resonance. The quasicollective modes 
are resonances of zero width, i.e., it is necessary 
to satisfy in addition to (30) the equation 

f(A.)= 0. (31) 

Equations (30) and (31) are independent, so that 
the existence of modes (which differ from the 
"conservations") has low probability. Resonances 
do exist. Unfortunately, those revealed by the 
preliminary calculations do not include small
width long-lived resonances that can determine 
the behavior of the system for medium values of 
t. It should be noted that in the study of quasi
collective excitations we are dealing as a rule with 
resonances, such as the Langmuir and undamped 
sonic branches obtained by Vlasov [18] 10>. 

9>outside this region, there is no spectrum for the thermal
izer model. 

lO)This can be verified by using one of the limiting transi
tions p = iCil ± 0. 

Interest attaches to the structure of the func
tions corresponding to the quasicollective excita
tions. They are written in the form 

'\I~Cm('A)Kmn'lln (32) 
QJA=P A.+v(v) +ll(A)6('A+v(v)), 

where Cm (A) and Jl. (A) are determined from the 
system of equations for their moments and from 
the normalization condition (for example, C0 = 1). 
It is easy to establish that JJ. (A) is proportional 
to D (A). In spite of the vanishing of the second 
term, resonance corresponds to a singular eigen
function. It can be shown that condition (30) with 
allowance for (31) leads to vanishing of the 
numerator in the first term of (32). Consequently, 
cpA is a regular function and the mode corresponds 
to an eigenvalue on the continuous spectrum. 

In the inhomogeneous case, we should expect 
the eigenvalues of the collision operator to gener
ate diffusion trajectories. In this case, there 
exist thermal and transverse modes. As shown by 
preliminary calculations, the corresponding tra
jectories are "dissolved" in the continuum at 
certain values of the wave number ( kpr R: 0.9, 
p(kpr) R: -0.6). The question of the sonic excita
tion becomes complicated, for it no longer corre
sponds to a spectral branch. One can hope that 
sonic excitation has the same character as a 
resonance. We note that formal application of 
perturbation theory makes it possible to obtain 
the adiabatic propagation velocity of the perturba
tion for vanishingly small k. 

We were unable to reveal any modes in the 
stationary case. For all potentials, there exists 
at w = 0 a resonance k1 = 0, k2 R: 1, which de
scribes diffusion at the free-path wavelength. It 
is obvious that the third "trajectory" obtained 
in [19 ] comes from it. This fact sheds light on the 
nature of the "special" solutions of the Boltzmann 
equation, referred to in [1]. 

3. EVOLUTION TO THE EQUILIBRIUM STATE 

Assume that a certain perturbation is specified 
at the initial instant 

cp(v,r,t)t=o= QJo(v,r). 

We investigate its behavior at larger values of the 
time. 

In considering Eq. (1), it is convenient to use 
the Fourier representation (7), (8). To solve the 
initial-condition problem we apply to Eq. (8) the 
Laplace transformation 

"" 
cp(v,k,p) = ~ cp(v,k,t)e-Ptdt. (33) 

0 
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As a result we get 

pqJ(k,p)-qJo(k) = S(k)qJ(k,p). (34) 

According to the inversion formula, we have 

1 ioo+a ePidp 
qJ (k, t) = 2ni .~ ( -s (k) ) 0 (k) · (35) 

-•oo+cr p 

The last expression is formal, and in order to 
calculate it we must find ( p - S ( k)) - 1, the re
solvent of the operator S ( k). We use for this 
purpose the representation (19) for the collision 
operator. After simple manipulations we reduce 
(35) to the form 

1 ioo+cr 

qJ(v,k,t) =-. ~ [«po(v,k) 
2m . 

-lXl+J 

~ Fm(v)Bm(P, k) td 
m J eP p + ---·--. 

D(p,k) {p+v(v)-ikv] 

Here 

Bm(p,k) = ~bz(p,k)D1m(p,k), 

\ v'ljlzqJodv 
bz(p,k) = J[ + "k ] , p v- ~ v 

(36) 

(37) 

(38) 

Fm(v) = v(v) L;Kmn'¢n(v). (39) 
n 

Expression (36) makes it possible to determine 
the form of cp ( v, k, t) at large values of t in the 
case of hard interaction potentials. As is well 
known, the asymptotic behavior of the function as 
t -- oo depends on the location and character of the 
singularities of its Laplace transformation. In 
this case, the integrand in (36) is, in accordance 
with (37) and (38), the quotient of two functions 
which are regular in the region Rep > -1. It 
follows therefore that its singularities (poles) in 
the indicated region can be only zeroes of the de
nominator, i.e., the roots Pi =Pi ( k) of the dis
persion equation (21). The picture of these tra
jectories [1] enables us to confine ourselves in the 
case of an asymptotic analysis ( t- oo) to con
sideration of small values of k. Taking these con
siderations into account, we shift the Laplace con
tour to the left, as shown in Fig. 1 (we take into 
account the non-hydrodynamic mode, having the 
homogeneous case in mind). Calculating the con
tributions of the encountered poles, and also the 
integral of the first term, we represent the solu
tion (36) in the form 

qJ(v,k,i)=qJneH+ikv)t+ ~R;(v,k)eP;(k)t+ 21-.~, (40) 
. J't~ 
1 L 

where 

R;{v,k) = ~ Fm(v)bz(p;(k),k) res [Dlm(p,k) ]. (41) 

l {p; (k) + v - ikv]p=p (k) D (p, k) 
m, ' 

At large values of t, the principal term is the 
second one; the integral over the shifted contour 
and the first term (transient term) are exponen
tially small compared with the second term. 

We shall now find it useful to expand Ri ( v, k) 
in powers of k. These quantities can be readily 
obtained by using the series (23), and also the 
expansions 

[ Dlm(p, k) ] (0) • (1) 
res = r; lm + ~kr; lm + ... 
P;{k) D(p,k) ' ' 

(42) 

Greatest interest attaches to the hydrodynamic 
modes. For these modes, the lowest-order term 
in the expansion Ri ( v, k) is: 

5 

Ri(O) (v) = ~ r\~~m'IJm (v) \ \jJz (v) ljlo (v, r) dvdr, (43) 
l,m 

where the coefficients r ~ol> are calculated with 
1 m 

the aid of the fifth-order Cieterminant located in 
the upper left corner of D ( p, k). 

The relations obtained above enable us to de
termine the asymptotic attenuation of any speci
field initial perturbation. We consider first the 
class of distributions whose Fourier components 
do not vanish when k = 0 (a simple example is a 
Gaussian density perturbation). In the asymptotic 
analysis, it is sufficient to take into account only 
the longest-lived (hydrodynamic) modes. Let us 
determine the contribution made to the evolution, 
say, of the thermal mode. According to (40), this 
contribution is given by the integral 

_ 1_ ~ Ra(v k)eP3(k)t-ikrdk. (44) 
(2n)3 ' 

It is clear that at large values of t (and fixed 

® 
~ 
Pt ', 

\ 
\ 

PJ p_* - ...too =0 

L 

FIG. 1. 
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values of r) the main contribution is made by the 
point where the function p3 ( k) has a maximum, 
k = o. Using the expansion (25) of Pa( k) and cal
culating the integral (44) by the saddle-point 
method, we obtain for it the asymptotic expression 

( 4naat) -'f, Ra (v). (45) 

The transverse mode is considered similarly. 
An estimate of the contribution of the sonic mode 
at the fixed point r by the saddle-point method 
leads to exponential damping of the contribution 
with increasing time (in this case the point k = 0 
is not the saddle point). In view of the propagation 
character of the mode, it is necessary to calculate 
its contribution in a reference frame tied to the 
wave. Appropriate manipulations show that the 

l "k t-5/2 ( amplitude of the signal decreases 1 e a 
"geometric" decrease like C 1 is added to the 
ordinary diffusion). 

Thus, the relaxation of the perturbation class 
under consideration obeys the c 312 law (we shall 
call it typical). Obviously, for one- and two
dimensional perturbations of this kind we have 
respectively the t-11 2 and t-1 asymptotics. In the 
general case, the asymptotic behavior depends on 
the character of the initial distribution in coordi
nate space. This dependence can be readily 
traced by starting from the form (40) (see (41)). 
For example, if cp 0 ( k) ~ kn ( k _.. 0), the attenua
tion law will be 

QJ (t) '""""' t-{n+3)/2. (46) 

A similar relaxation is exhibited, in particular, 
by the initial distribution obtained by n-fold dif
ferentiation of the "typical" perturbation with 
respect to r. 

Using the foregoing analysis we can readily 
solve the problem of the asymptotic behavior of 
macroscopic quantities; in the calculation of the 
mean values it is sufficient to use the asymptotic 
expression for the distribution function. Obviously, 
the hydrodynamic variables (density, velocity, and 
temperature) attenuate in synchronism with the 
distribution function. We note that the Navier
Stokes approximation yields for them an analogous 
attenuation law 11>, and in this sense the asymp
totic behavior obtained above for the distribution 
function is hydrodynamic. From among the macro
scopic non-hydrodynamic quantities we separate 
those whose molecular attributes are orthogonal 
to the conservations (3). These include, in partie-

11 )In the case of soft potentials, the result may differ from 
that of Navier-Stokes. 

ular, tangential stresses and heat flow. As follows 
from (42) and (43), the attenuation of such quantities 
is faster by at least -ft. Thus, for example, the 
heat flux 

([(r,t)= tj2 ~ (v2-5)vj~'QJ(v,r)dv (47) 

has an asymptotic form q( t) ~ t- 2• 

Let us consider briefly relaxation in the 
spatially-homogeneous case. Putting k = 0 in (40), 
we see that the asymptotic regime will describe 
the term with the smallest decrement 12> 

(48) 

The collision-operator eigenvalue closest to zero, 
A.1o is best calculated by a variational method. In 
this case the problem is greatly simplified by the 
fact that the corresponding eigenfunction depends 
only on the energy variable. According to the 
available data [a~ A.1 ~ 0.1, so that the relaxation 
time is t 0 ~ 10 T, where T is the mean free-path 
time. Comparison of the results (46) and (48) 
point to a much larger rate of relaxation in 
velocity space. This leads to the well known mo
tion of a local equilibrium established within a 
time on the order of t 0• However, as shown by the 
asymptotic behavior of the higher-order moments, 
this notion is meaningless in the study of the ap
proach to equilibrium. 

Let us now proceed to the evolution of soft 
systems. In order to reveal its characteristic 
features, it is sufficient to consider the spatially
homogeneous case. We represent (36) with k = 0 
in a form that is convenient for analysis. As 
shown by a study of the spectrum, the integrand in 
(36) has the following singularities: a cut in the 
interval ( -1, 0), and possible poles other than 
p = 0. Contracting the Laplace contour to them 
(see Fig. 2) and carrying out the appropriate cal
culations, we obtain 

{ 1 [( Bm('J..,) )+ QJ(V, t) = e-vt(jlo + 2; Fm(v) e-vt 2 D('J..,) 
m 

+(Bm(A) )-] +~res [ Bm(p)eP1 J 
D('J..,) '-=-v(v) i p=?., D(p) (p+v) 

_1 p so eMd~[(Bm(A) )+ -(BmCJ..) )-]} (49) 
+ 2ni 'J..,+v D('J..,) D('J..,) 

-1 

The first term is the already known transient 
term, the second results from the "moving" pole 
p = -v ( v) on the cut; the third is the contribution 

12)The contribution of the conservations obviously is of no 
interest and can be eliminated in general. 
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FIG. 2. 

of the eigenvalues, and finally the fourth is the in
tegral along the cut. The transient term, which 
reflects the influence of the initial state, cannot 
be discarded at t- 00 as before, for now it can 
turn out to be appreciable. The contribution from 
the quasicollective modes in the third term, after 
subtracting the conservations, obviously relaxes 
exponentially. As already noted, their existence 
is not very likely, and greater interest attaches 
to the resonances. They become manifest in the 
fourth term. The expression in the square brack
ets has, according to (27), the structure 

Bm +D-- Bm -D+ 
f52 + f2 • (50) 

i.e., the resonance ( D = 0) makes a contribution 
which is inversely proportional to its width r. 
The presence of a small-width resonance with a 
characteristic velocity exceeding the average 
velocity can lead, at average values of t, to an 
exponential evolution. 

Let us investigate the asymptotic behavior of 
the relaxing quantities. As follows from (49), it is 
impossible to indicate a single attenuation law for 
the particle distribution (the relaxation depends 
essentially on the velocity of the chosen com
ponent). In view of this, it is expedient to consider 
quantities that are averaged with respect to v 
(macroscopic). To exclude the conservation, we 
agree to consider "orthogonal" quantities. An 
analysis of (49) shows that the slowest to relax is 
the high-velocity component. (the "tail" of the 
particle distribution). This makes it difficult to 
obtain the asymptotic behavior of the macroscopic 
quantity as t- co directly with the aid of (49). 
The analysis that follows will enable us to "sum" 
the infinite series in (49). 

We write the formal solution of the problem 
with the initial condition in the form 

cp(v, t) = e(-v(v)+Kltcpo(v). 

In this case the macroscopic quantity whose 
asymptotic behavior interests us will be 

p (t) = ~ p (v)Jt' e(-v(v)+Kllcp0(v) dv. 

(51) 

(52) 

As indicated, as t- co the main contribution is 
made by the high-velocity component. This en
ables us to specify more concretely the integrand 
in (52). Let us first specify the behavior of the 
quantities contained in it when v- co • Let p ( v) 
~ vn and let us also assume that 

cpo (v) ......, 1/vr. 

The basis of the analysis that follows is the esti
mate 13> 

(53) 

where C is a constant. Expanding in suitable 
manner the operator exponential, estimating the 
terms of the resultant series with the aid of (53), 
and summing the majorant series, we can verify 
that the main contribution to the asymptotic value 
is made by the integral 

~ 2] ~ vn-r+2 exp [- v (v) t- : dv. (54) 
0 

Calculating this integral by the saddle-point 
method, we obtain the following attenuation law 

p(t) ~ t•(n-r+1)/(s+4lexp(- ijt2s/(sHl), (55) 

where 

6=--
s + 4 I s )(4-s)/(2+s) 

2s 2(4- s) 

Thus, the relaxation is appreciably slower in the 
case of soft interaction potentials. An obvious 
consequence of (55) is the decrease of the relaxa
tion rate for softer potentials. 

4. CONCLUSION 

1. A study of the spectrum of a system of par
ticles interacting via a soft potential has shown 
that its properties are determined essentially by 
the continuous spectrum (single-particle motions). 
As is well known [1], the contribution of the collec
tive modes predominates in the case of hard in
teractions at moderate gradients, while the single
particle motions predominate if the gradients are 
appreciable. These results are perfectly natural 
from the physical point of view. 

An analysis of the dispersion equation has re
vealed the existence of excitations of collective 
character (modes and resonances) lying in the 
continuum. As a rule, quasicollective excitations 
are resonances. In particular, the branches of 
plasma oscillations without attentuation, con
sidered by Vlasov [18J, are resonances. Of course, 
under certain conditions it is possible to observe 
quasicollective excitations experimentally. A 
quantum-mechanical illustration of this are the 
brighter bands against the background of a con
tinuous spectrum ("quasistationary" levels). 

13)Its derivation can be found in the paper of Grad ["] (see 
also the paper of Carleman [20]). 
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The obtained picture of the spectrum of Boltz
mann systems has enabled us to investigate in de
tail the approach to the equilibrium state. As a 
result of an asymptotic analysis of the solution of 
the initial-condition problem, we established the 
law governing the attenuation of the perturbation 
as a function of its initial form in coordinate 
space. An examination of homogeneous relaxation 
has shown that in a system of particles with soft 
interaction this relaxation is much slower than in 
the case of hard particle interaction. The increase 
in the duration of the relaxation in the case of 
softer potentials is physically obvious. We note, 
however, that in the case of very soft Coulomb 
interaction the existing theory did not reveal a 
qualitatively different attenuation law. 

2. The representation (19) used in this paper 
for the collision integral yields, if we confine our
selves in it to a finite number of terms, models 
of the collision term which are convenient for 
concrete considerations (and which are rigorously 
proved) w. They are generalizations of the models 
obtained by Gross and Jackson [21 1 for a gas of 
Maxwellian molecules to include the case of an 
arbitrary interaction law. It should be noted that 
the eigenfunctions of the model collision operator 
constitute a complete set. This was proved by 
Koppel [121 for hard potentials and can be estab
lished without essential changes in the case of 
soft interactions. Of course, the completeness 
property enables us to solve the initial-condition 
problem for a homogeneous gas by expansion in 
eigenfunctions. Unfortunately, we have no such a 
possibility in the general case. 

One of the obvious consequences of our analysis 
(see also [t 1) is the need for using a modified 
method of moments to study excitations of collec
tive character in the case when the continuum 
plays an appreciable role. In particular, the use 
of the standard method of moments would lead to 
qualitatively incorrect results (for example, to an 
attenuation in the form exp (-at)). It is obvious 
that in the absence of a continuous spectrum 
(homogeneous gas of Maxwellian molecules) the 
modified method coincides with the standard one. 

The results of our earlier paper [t 1 and of the 
present one reveal that the dispersion approach is 
not adequate for the description of sonic excitation 
of high frequency in the case of hard potentials 
and of any frequency for soft potentials. It should 
be noted that in the case of Maxwellian molecules 

14)We note that a model of any order leaves all the main 
properties of the collision operator unchanged. 

it is possible, by analytically continuing the dis
persion equation (20), to obtain its solution for 
arbitrary values of the defining parameter. The 
trajectories for the values of the parameter in 
excess of the limiting values [1] will lie in this 
case essentially on the "unphysical" sheet (it is 
used in quantum mechanics to study ''quasistation
ary" levels) 15>. Inasmuch as this case is excep
tional, and the connection between the trajectories 
and real excitations is not yet clear, it is neces
sary to investigate quasicollective sound on the 
basis of a formulation of the problem correspond
ing to the experimental conditions. 

lS)The author takes this opportunity to thank B. S. Pavlov 
for a discussion of this question. 
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