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Results of a numerical solution of the two-center problem in quantum mechanics are pre­
sented. Some interesting features of the Z1eZ 2 system are found for Z1 = 1 and Z2 = 3, ... 8. 
In particular, the existence of intersections of <r-terms in such a sfstem is confirmed. 
These intersections have previously been predicted theoretically [2 • The existence of stable 
molecular ion states for large distances between the nuclei Z1 and Z2 is proved. Pseudoin­
tersection of terms, which is not of a dynamic nature, is detected. Possible applications of 
the results obtained are discussed. 

1. INTRODUCTION 

THE Schrodinger equation for the two-center 
problem, that is, the problem of motion of an 
electron in a field of two fixed Coulomb centers 
with charges Z1 and Z2, separated by a distance 
R is [1•21 

' 
( -_!_dr-z1 -~)'$n(R;r) =En(R)'$n(R;r) (1) 

2 rt 12. 

r 1 and r 2 are the distances from the electron to 
charges Z1 and Z2, respectively; ti = m = e = 1). 

This classical problem of quantum mechanics 
plays the same role in the theory of the structure 
and spectrum of molecules as the problem of the 
hydrogen atom in the theory of atomic structure. 
Recently, the needs of meson physics at low ener­
gies have again renewed the interest in the two­
center problem [a, 4] 

However, in spite of the understandable interest 
in this problem and the large number of papers 
devoted to it (see, for example, [1-aJ), it has not 
yet been solved in general form, that is, for arbi­
trary values of Z1, Z2, and R. There are two 
reasons for it: first, for arbitrary R the problem 
cannot be solved analytically in terms of the known 
special functions; second, the exact numerical 
solution of the problem, obtained in the papers of 
Bates and his co-workers [5) for Z1 = 1 and Z2 

= 1 and 2, meets with peculiar computational dif­
ficulties when Z2 is increased further. The gist 
of these difficulties and the methods of their over­
coming is the subject of a separate mathematical 
investigation, on which we shall not dwell now [S). 

We note also the following: when the variables 
are separated in spheroidal coordinates 

rt + r2 rt- r2 s =-· -R-, '11 = --R-, 'il = X(s)Y('Il)eimcp 

Eq. (1) reduces to a coupled system of Sturm­
Liouville equations on the interval -1 s TJ s 1, 
1s~<oo: 

d dX 
d£ (62-t) d6 

+(-p2(s2-1) +b's+'A-62m21 Jx=o, (2a) 

d dY 
dYJ (1 -'1]2) d'l] 

+ [- p2(1-'1]2) + b'l]- 'A-___!!!!__ ] y = 0, (2b) 
1-'1]2 

where 
R2 

p2 =-2 E, b' = R(Z2 + Z1), b = R(Z2- Z1), 

A is the separation constant. With this, Eqs. (2a) 
and (2b) are coupled only via the quantities p2 and 
A. By solving (2a) and (2b) simultaneously, we de­
termine the eigenvalues E = En~nTJm( R) and 
A = An~nTJm( R) as functions of the internuclear 
distance R and of the elliptic quantum numbers 
n~, nry. and m. With so many parameters, the 
tabulation of the functions and of the eigenvalues 
is difficult. It is apparently likewise inexpedient, 
for the same reason, to compile extensive tables 
for all these quantities: at the present status of 
computational mathematics it is much more con~ 
venient to develop a computer program for their 
determination. 

A detailed description of such an algorithm for 
the calculation of the eigenvalues and the eigen­
functions of (2), and also of a procedure for cal-
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FIG. 1. Terms E(R) and W(R) of the peLi'+ system. The 
Umax(R) curve corresponds to the height of the potential 
barrier between the nuclei. 

culating the matrix elements by means of these 
functions, will be subject of a separate mathemat­
ical paper [GJ. 

In this paper we dwell only on the calculation 
results that have a direct physical interest. 

2. THE TERMS E ( R) OF THE SYSTEMS peLi3+ 

peB5+, AND pe08 + 

Usually, for most qualitative considerations, 
great interest attaches to knowledge of the E ( R) 
terms of the Z1eZ 2 system. Figures la, 2a, and 
3a show pictures of the terms En~ n11m( R) for 
Z1eZ 2 systems with Z1 = 1 = p and Z 2 = Z = 3, 5, 
and 8 respectively. Figures lb, 2b, and 3b show 
also plots of the total energy W ( R) = E ( R) 
+ Z1Z2/R, which includes the nuclear repulsion 
energy. The classification of the terms is based 
on the quantum numbers NZ m of the combined 
atom with charge Z1 + Z2 into which the system 
Z1eZ 2 goes over when R ~ 0. With this, each 
level with principal quantum number N is N2-

fold degenerate. When R "'- 0 the degeneracy is 

a 

FIG. 2. Terms E(R) and W(R) of the peB'+ system. We call 
attention to the unique inte~action of the terms Sga and 4fa. 

lifted and in the limit as R ~ oo each of the levels 
of the combined atom e ( Z 1 + Z2 ) goes over con­
tinuously into one of the levels of the atom eZ 1 or 
eZ 2 with parabolic quantum numbers ( nn1 n2m) or 
( n'n1n2m) respectively. The relations of these 
sets of quantum numbers with each other and also 
with the elliptic quantum numbers N, N~, n11 , and 
m are given in a paper by Gershte1n and Kriv­
chenkov [2]. In Figs. lb-3b the parabolic quantum 
numbers are given in the parentheses on the right 
sides of the term symbols. 

Let us analyze the obtained curves. First, it 
follows from them immediately that in this case 
the Neumann- Wigner theorem, which states that 
terms of identical symmetry do not cross, does 
not hold true (in its usual formulation for the case 
of a diatomic molecule[?]). This result confirms 
to the theoretical conclusions of Gershte'ln and 
Krivchenkov [2] that this theorem is not applicable 
in the case of equations with separable variables. 

Actually, however, the presence of such cross­
ings does not contradict the general formulation 
of the Neumann- Wigner theorem: as shown in a 
recent paper by Alliluev and Matveenko [sJ, the 
problem with separable variables can have a 
symmetry higher than geometric. From the point 
of view of this higher symmetry, all the terms of 



848 L. I. PONOMAREV and T. P. PUZYNINA 

-(5 hd/-+1 -----1---1 
I; 

I 
I 
I 

/ 
I 
I 

I 
I 

Z=B 

-2J] -- ++----t-
5g6 : 

/Umax(R) 
I 

E 10 

a 

FIG. 3. Terms E(R) and W(R) of the system peo•+. The 
terms 8ka, 7ia, and 6ha interact. 

the system Ze1eZ 2 have different symmetries and 
can therefore intersect without limitations. In 
particular, the a-terms intersect both for equal 
N (for example terms 4pa and 4fa for Z = 5) 
and for different N (the terms 5ga and 4da for 
Z = 5; henceforth Z1 = 1 and Z2 = Z throughout). 
The Umax ( R) curve of Figs. 1a-3a1> corre­
sponds to the maximum potential energy U of the 
electron in the field of two fixed nuclei (that is, to 
the height of the potential barrier between the 
nuclei p and Z) 

1 z 
U=---

Umax(R) =- (1 +l'Z) 2 

R 

When R » 1, the energy of the terms of the peZ 

(3) 

1 )The Urn ax (R) curves on the plots of W(R) (Figs. lb - 3b) 
differ from the Umax (R) curves on the plots of E(R) by a term 
Z/R. 

system, corresponding when R - oo to the levels 
of the atom ep, is equal to [21 

1 z 
En~ -2n2-R" (4) 

Equating expressions (3) and (4), we find that when 

(5) 

the energy of the system peZ becomes equal to the 
height of the potential barrier between the nuclei 
p and Z [41 , with 

En(Rx) = Umax(Rx) = -(1 +l'Z} 2 /2n.2 (1+2l'Z). 

At the point Rx where the term En ( R) crosses 
the Umax ( R) curve, the level n of the isolated 
hydrogen atom ep goes over into the general level 
of the system peZ. This phenomenon is perfectly 
analogous to the vanishing of the Stark-effect 
lines in strong fields 2>. Formula (5) was derived 
under the assumption that the LCAO method is 
valid. Exact calculation [S1 shows that, owing to 
pseudocrossing effects (which will be discussed in 
detail below), this formula does not hold, and 
actually Rx > 2n2 ( 1 + 2Vz) (see Figs. 1a-3a). 

3. STABLE STATES OF THE MOLECULAR IONS 
peZ 

The term with quantum numbers n = 1 and 
n1 = n2 = m = 0, which corresponds when R- oo 

to the ground state of the hydrogen atom ep, goes 
over into the terms with quantum numbers N = Z, 
l = Z - 1, and m = 0 when R- 0[ 21• The energy 
of these terms depends on R in the following 
manner [21 : 

1 9 Z2 
when R~1 W ~ - 2 -4 R~, (6a) 

(Z + 1) 2 Z 
when R ~ 1 W ~ - 2Z2 + R , ( 6b) 

That is, these terms should have a minimum at 
finite values R = R 0 [101• Actually, as seen from 
Figs. 1b-3b, the corresponding minima for the 
terms 3da with Z = 3, 5ga with Z = 5, and 8ka 
with Z = 8 are attained at internuclear distances 
R0 equal to 6.2, 13.6, and 44.5. This means that at 
large internuclear distances there exist stable 
states of the molecular ions of the peZ type. 

It has turned out, however, that in addition to 
the states of the molecular ions, quasistationary 

2 )The critical field F at which the line vanishes can be 
easily obtained from (3) and (5): 

F = (1 + ")'Z)'2 /4n'(1 + 2;fz)z. 

When Z __, oo we obtain the classical limit [9 ]: F 0 = l/16n4 • 
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levels are possible in peZ system. They appear 
when Z > 4 and are connected with the terms 
N = Z - 1, l = Z - 2, and m = 0 (that is, n' = Z 
- 1, ni = 0, n2 = Z - 2, and m = 0; for example, 
4fu for Z = 5, and 7iu and 6hu for Z = 8). 
Apparently this type of terms was hitherto un­
known. 

4. TERM PSEUOOINTERSECTION 
PHENOMENA 

We call attention to the unique interaction of 
the terms with the quantum numbers 

N = Z, l = Z- 1, m = 0 

(n = 1, nt = n2 = m = 0) 

and 

N=Z-1, l=Z-2, m=O 

(n' = Z -1, nt' = 0, n2' = Z- 2, m = 0). 

This phenomenon occurs when Z 2:: 4, although it 
is noticeable already when Z = 3 for the terms 
3du and 2pu (see Fig. 1b). With increasing Z, 
these terms come gradually closer together, 
forming at the same time a typical picture of 
pseudointersection (for example, the terms 5gu 
and 4fu for Z = 5 on Fig. 2 and Sku and 7iu for 
Z = 8 on Fig. 3). 

When Z 2:: 7, the pseudointersection picture is 
produced by one more pair of terms 

N = Z- 1, l = Z- 2, m = 0 
(n' = Z- 1, n{ = 0, n{ = Z- 2, m = 0) 

and 

N=Z-2, l=Z-3, m=O 

(n'=Z-2, n{=O, ~'=Z-3, m=O) 

(for example, 7iu and 6hu for Z = 8 in Fig. 3). 
With increasing Z, this tendency still remains, 
that is, the number of such "interacting" pairs of 
terms increases. 

Let us note the characteristic attributes of the 
described terms: all have a maximum angular 
momentum l = N - 1, which corresponds to cir­
cular orbits in Bohr's theory and to the largest 
density of the electron cloud between the nuclear 
Z 1 and Z 2 in the Stark effect, for in this case n2 

- n1 is a maximum [S]; in addition, their "radial" 
wave function X ( ; ) does not have any zeroes in 
the entire region where ; is defined, that is, n; 
= n1 = ni = 0, and the "angular" quantum num­
bers differ by unity: n' = n + 1. 

We note one more peculiarity of these pseudo­
intersections: for the same value of R as for 
W( R), a pseudointersection of the separation 

15 

FIG. 4. Values of A = .\. + p2 for different terms at Z = 5. 

constants A ( R) of the corresponding levels takes 
place for them, whereas for the ordinary inter­
sections the constants A ( R ) differ greatly at the 
point of the term crossing W( R) (see Fig. 4, 
which gives the values of A = A + p2 for different 
terms at Z = 5). We note that by virtue of the 
nondegeneracy of the one-dimensional boundary­
value problem, the A ( R ) and W ( R) curves for 
different levels cannot intersect at the same value 
of R [21• 

The unique "interactions" of the terms are 
also revealed by the fact that in the pseudointer­
section region the term with N = Z - 1 has the 
properties of the term with N = Z. In particular, 
for the term with N = Z ( 5gu for Z = 5), in the 
LCAO approximation, at values of R to the right 
of the point of pseudo-intersection, formula (6a) 
holds for the polarization of the ground level of 
the hydrogen atom, into which the term 5gu goes 
over as R - oo. It turns out that to the left of the 
pseudointersection point formula (6a) describes 
well the term with N = Z - 1 ( 4fu for Z = 5 ), 
that is, formally the term 5gu and 4fu intersect. 
Actually, of course, this does not take place, since 
it follows from an analysis of the behavior of the 
terms as R - 0 (see Fig. 2a) that in this case 
the terms 5gu and 4fu do not simply intersect but 
go over one into the other. The latter is impossi­
ble, for this is equivalent to violation of the 
theorem regarding the conservation of the number 
of zeroes of the wave function Y ( TJ) when the 
parameter R varies, and violation of such corol­
laries of theorem as the rule of correspondence 
of the terms for R - 0 and R- oo [ 2]. 

Gershte'in, using the LCAO method, obtained 
the usual intersection of the terms at the point of 
pseudointersection, meaning that the LCAO 
method is not valid in this range of values of R. 
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This is all the more strange, since all the indi­
cated pseudointersections occur either in the 
region of the potential barrier ( E ( R) R: Umax( R )) 
or behind the barrier, that is, when E ( R) 
< Umax(R) (see Figs. 2a and 3a). 

This gives rise to a unique situation: The 
LCAO formulas, which are well satisfied in a 
wide range of values of R on both sides of the 
pseudointersection point, are quite unsuitable in 
the vicinity of this point, since they lead to the 
crossing of the terms. According to the results of 
Gershte'in and Krivchenkov [2] and Alliluev and 

d. t s . [B] Matveenko, and also accor mg o m1rnov , 
there are no general hindrances for any crossings 
of the terms in Z1eZ 2 system, so that additional 
selection rules, which distinguish the terms with 
n1 = n1 = 0 from all others, should exist in this 
case. 

Let us examine this phenomenon in greater 
detan3>. When R -- oo the LCAO method leads to 
the following expressions for the total energy 
W(R) ofthe peZ system: 

1 9 Z2 
W (N =Z, l= Z-1), 1 ~ -2-4 R"' 

"' it. ( Z )z Z- 1 _ ~ (Z- 1)_ (Z- 2) 
Wp..., -2 Z-1 + R 2 ZR2 

(N=Z-1, l=Z-2). (7) 

We then obtain from the condition W1 = W2 an 
intersection of the terms at the point R = Rz 

(Z -1) 3 

Rz ~ 2 2Z - 1 ( 8) 

However, from (2a) it follows that for any R 
there should be satisfied the relation [2] 

(A= "A+ p2 ): 

(At- Az) r XtXzds = (Pt2 -p 22) 1 Xt62Xzd6. (9) 
1 

Therefore we get from the condition p1 = p2 at the 
intersection point either that A1 = A2 or that 
00 

J X1X2d~ = 0. The former is impossible, since the 
0 • 
problem is nondegenerate. For terms w1th quan-
tum numbers n1 = n1 = 0 the latter condition is 
also impossible, for in this case the integrand is 
positive in the entire defined region. Consequently, 
such terms cannot intersect, although they can 
come close to one another. It follows from (9) that 
when .6p2 = p~ - p~-- 0 we have simultaneously 
.6A-- 0. The latter can also be established 
directly, by using the expressions given in [2] for 
A when R » 1 and n1 = n1 = 0. 

3 >These ideas are due to S. S. Gershte1n. 

In this case 

8A = 1 + _!__ + a( _!_) . 
8p2 p p2 

(10) 

We note here one quasiclassical analogy4 , which 
may be useful for the understanding of the de-

. . 11 kn [ttl h scnbed phenomenon. As 1s we own , w en 
z 1 = z 2 the effective potential of Eq. (2b) has the 
form of a double symmetrical well. In this case, 
when R -- co, the levels with the quantum num-

' I 1 hers n~, n17 , m and n~ = n~, I1r) = I1r) + , m are 
degenerate, that is, they have equal energy. For 
a large but finite value of R, the splitting of 
these levels is exponentially small and is de­
scribed, for example, by formula (23) of [a]. In 
the general case when Z1 ;>! Z2, this double well 
is asymmetrical, but its concrete form depends 
on the parameter R. For a certain value of R 
(but a value below the barrier!), which depends 
on Z1 and Z2 and also on the quantum numbers 
of the levels, the effective potential of (2b) may 
turn out to be such that the two levels in different 
wells approximately coincide. In this case, phe­
nomena analogous to the effects of the level 
splitting in a symmetrical potential should occur. 
More accurately speaking, the levels whose ener­
gies are not equal when R-- 00 , and whose wave 
functions are concentrated in different wells, can 
come closer together when R decreases and 
start "interacting" as a result of quantum­
mechanical subbarrier transitions. With further 
change in R, this random "resonance" of the 
levels is disturbed and they again move apart. 

We emphasize that the observed "interaction" 
of the terms has no dynamic nature, since the 
system peZ has only one electron, and the nuclei 
are assumed to be fixed5>. We have here essen­
tially an example of a unique interaction of con­
figurations, and therefore the described phenom­
enon can be called configurational interaction of 
the terms. 

5. WAVE FUNCTIONS OF THE peZ SYSTEM 

Figures 5 and 6 show the wave functions X ( ~) 
and Y ( 11) of the peZ system for Z = 5 and for 
the terms 5g0', 4f0', and 4SO'. As expected, as 
R _... 0 they describe the motion of an electron in 
the field of a nucleus with charge Z + 1. 

4)This circumstance was pointed out to the authors by S. P . 
Alliluev. 

S>usually the pseudo-intersection picture arises at the 
point of level intersection when account is taken of perturba­
tions due to motion of the nuclei, electron intersection, 
etc. [']. 
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FIG. 5. Wave functions X((} of the peZ system with Z = 5 
for the terms 5ga (solid curve), 4fa (dashed), and 4sa (dash­
dot). The functions X((} are not normalized. At R = 0.2 the 
function X((} for the 4sa term is decreased by a factor of 10; 
~* is determined from the relation ~* = 10/p + 1, p = 
1/2Ry-2E. The abscissa scales are different for different R 
and depend on ~*, the values of X((} being defined in the 

interval 1 ::; ~::; ~*-

We call attention to the peculiarities of the be­
havior of the wave functions at R = 7 and R = 13. 
In particular, when R = 13 the wave functions of 
the terms 5gu and 4fu are quite similar. Fur­
ther, in spite of the fact that when R _.. oo the 
term 4fu belongs to the eZ system, its wave 
function is already concentrated near the proton 
when R = 7. This corresponds precisely to the 
statement that the term 4fu acquires the proper­
ties of the term 5gu to the left of the pseudo­
intersection point. With further increase in R, 
the wave functions of the peZ system go over on 
the right of the pseudo-intersection point ( R = 19) 
into the wave functions of the isolated atoms ep 
and eZ, as can be readily seen from Figs. 5d and 
6d. 

a 

FIG. 6. Wave functions Y('l) of the peZ system with Z = 5 
for the terms 5ga (solid curve), 4fa (dashed), and 4sa (dash­
dot). 

6. POSSIBLE APPLICATIONS 

1. Using the results of the present paper, we 
can estimate the character and limits of applica­
bility of different approximations, and particu­
larly the values of R for which the asymptotic 
formulas are valid. For example, from an analy­
sis of the curves it follows that when R » 1 there 
exists a region of values of R where the LCAO 
approximation is not valid. 

2. Our results allow us to calculate the proba­
bilities of radiative transitions of a 1r- meson 
moving in the Coulomb field of two fixed nucleons. 
Such a calculation is of physical interest in con­
nection with experimental [12] and theoretical [4] 

research on the absorption of 'If- mesons stopped 
in hydrogen-containing substances, and also in 
connection with experiments on the mesic x-ray 
series in chemical compounds. [13 ] 

3. The theory of the chemical bond and of 
molecular spectra makes extensive use of the 
method of molecular orbitals [3], which are usually 
determined approximately by using linear com­
binations of atomic functions in conjunction with a 
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variational principle. It is obvious that by solving 
(1) we obtain an exact picture of the molecular 
orbitals. 

4. In some estimates of the cross sections of 
charge-exchange reactions of the type A + B + 
- A+ + B and their like it is sufficient to know the 
distance R at which the intersection of the terms 
takes place, as well as the values of the deriva­
tives aE/aR at this point. 

All these quantities can be easily determined 
if the system of terms is known. 

5. The main application of our results, however, 
is connected with various processes in which 
three Coulomb-interacting particles participate. 
These include, in particular, problems of capture 
and asymmetrical charge exchange of the type 

prc+Z-+Zrc+p, 

/lfC + Z-+Z[t- + p + y; 

mesic-molecule production processes 

pfC + Z-+ prcZ; 

catalysis of nuclear reactions by JJ.- mesons 

scattering and protons and positrons by hydrogen 
atoms, and similar questions. 

In conclusion, we are deeply grateful to S. S. 
Gershte1n for persistent and stimulating interest 
during the course of the entire investigation, and 
S. P. Alliuev for fruitful discussions. 
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